Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976234

RESUMEN

Photoelectrochemical (PEC) water splitting is gaining recognition as an effective method for producing green hydrogen. However, the absence of in situ, continuous decoding hydrogen generation tools hampers a detailed understanding of the physics and chemistry involved in hydrogen generation within PEC systems. In this article, we present a quantitative, spatiotemporally resolved optical sensor employing a fiber Bragg grating (FBG) to probe hydrogen formation and temperature characteristics in the PEC system. Demonstrating this principle, we observed hydrogen formation and temperature changes in a novel cappuccino cell using a BiVO4/TiO2 photoanode and a Cu2O/CuO/TiO2 photocathode. Our findings demonstrate that FBG sensors can probe dynamic hydrogen formation at 0.5 s temporal resolution; these sensors are capable of detecting hydrogen concentrations as low as 0.6 mM. We conducted in situ and continuous monitoring of hydrogen and temperature to ascertain various parameters: the rate of hydrogen production at the photocathode surface, the time to reach hydrogen saturation, the distribution of hydrogen and temperature, and the rate of hydrogen transfer in the electrolyte under both external bias and unbiased voltage conditions. These results contribute valuable insights into the design and optimization of PEC water-splitting devices, advancing the in situ comprehensive monitoring of PEC water-splitting processes.

2.
Mikrochim Acta ; 191(8): 446, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963446

RESUMEN

The stability of black phosphorene (BP) and its preparation and modification for developing and applying devices have become a hot topic in the interdisciplinary field. We propose ultrasound-electrochemistry co-assisted liquid-phase exfoliation as an eco-friendly one-step method to prepare gold-silver bimetallic nanoparticles (Au-AgNPs)-decorated BP nanozyme for smartphone-based portable sensing of 4-nitrophenol (4-NP) in different water sources. The structure, morphology, composition, and properties of Au-AgNPs-BP nanozyme are characterized by multiple instrumental analyses. Bimetallic salts are induced to efficiently occupy oxidative sites of BP to form highly stable Au-AgNPs-BP nanozyme and guarantee the integrity of the lamellar BP. The electrochemistry shortens the exfoliation time of the BP nanosheet and contributes to the loading efficiency of bimetallic nanoparticles on the BP nanosheet. Au-AgNPs-BP-modified screen-printed carbon electrode coupled with palm-sized smartphone-controlled wireless electrochemical analyzer as a portable wireless intelligent sensing platform was applied to the determination of 4-NP in a linear range of 0.6-10 µM with a limit of detection of 63 nM. It enables on-site determination of 4-NP content in lake water, river water, and irrigation ditch water. This work will provide a reference for an eco-friendly one-step preparation of bimetallic nanoparticle-decorated graphene-like materials as nanozymes and their smartphone-based portable sensing application outdoors.

3.
Med Res Rev ; 43(6): 2115-2176, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37165896

RESUMEN

Breast cancer is the most malignant tumor in women, and there is no absolute cure for it. Although treatment modalities including surgery, chemotherapy, and radiotherapy are utilized for breast cancer, it is still a life-threatening disease for humans. Nanomedicine has provided a new opportunity in breast cancer treatment, which is the focus of the current study. The nanocarriers deliver chemotherapeutic agents and natural products, both of which increase cytotoxicity against breast tumor cells and prevent the development of drug resistance. The efficacy of gene therapy is boosted by nanoparticles and the delivery of CRISPR/Cas9, Noncoding RNAs, and RNAi, promoting their potential for gene expression regulation. The drug and gene codelivery by nanoparticles can exert a synergistic impact on breast tumors and enhance cellular uptake via endocytosis. Nanostructures are able to induce photothermal and photodynamic therapy for breast tumor ablation via cell death induction. The nanoparticles can provide tumor microenvironment remodeling and repolarization of macrophages for antitumor immunity. The stimuli-responsive nanocarriers, including pH-, redox-, and light-sensitive, can mediate targeted suppression of breast tumors. Besides, nanoparticles can provide a diagnosis of breast cancer and detect biomarkers. Various kinds of nanoparticles have been employed for breast cancer therapy, including carbon-, lipid-, polymeric- and metal-based nanostructures, which are different in terms of biocompatibility and delivery efficiency.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Neoplasias , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Preparaciones Farmacéuticas , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Inmunoterapia , Terapia Genética , Nanopartículas/química , Microambiente Tumoral
4.
Environ Res ; 239(Pt 2): 117338, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37816425

RESUMEN

The present research work introduced a new electrocatalyst (Pt-Pd-ZnO/SWCNTs in this case) to the fabrication of a powerful DNA biosensor in the monitoring of Vinorelbine anticancer drug. The characterization information confirms the high purity of Pt-Pd-ZnO/SWCNTs nanocomposite and an intercalation reaction between Vinorelbine anticancer drug and the guanine base of DNA in an aqueous solution. The reducing signal of DNA after interaction with Vinorelbine drug showed a linear analytical range of 0.1-120 µM with a detection limit of 0.05 µM. The biosensor was fabricated by layer-by-layer modification of glassy carbon electrode with ds-DNA and Pt-Pd-ZnO/SWCNTs nanocomposite and used as the working electrode to sensing of vinorelbine drug in pharmaceutical and other real samples with acceptable recovery data. The preferential intercalation mode for the binding of vinorelbine anticancer drug into the ds-DNA receptor is clarified using the molecular docking study.


Asunto(s)
Antineoplásicos , Técnicas Biosensibles , Neoplasias de la Mama , Óxido de Zinc , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Vinorelbina , Óxido de Zinc/química , Simulación del Acoplamiento Molecular , ADN , Preparaciones Farmacéuticas
5.
Environ Res ; 216(Pt 3): 114643, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36341789

RESUMEN

The spread of antibiotic resistant genes has become a serious global concern. Thus, the development of efficient antibiotic monitoring systems to reduce their environmental risks is of great importance. Here, a potent electrochemical sensor was fabricated to detect metronidazole (MNZ) on the basis of green synthesis of Fe3O4 nanoparticles (NPs) using Sambucus ebulus L. leaves alcoholic plant extract as a safe and impressive reducing and stabilizing agent. Several analyses such as X-ray diffraction (XRD), Fourier transform infrared spectrophotometer (FTIR), thermogravimetric analysis (TGA), field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDX), and dynamic light scattering (DLS) confirmed the production of homogeneous, monodisperse, regular, and stable magnetite NPs with a spherical morphology. The as-prepared Fe3O4NPs were afterwards applied to evaluate the electrochemical activity of MNZ by merging them with graphene nanosheets (GR NSs) on the glassy carbon electrode (GCE). The GR/Fe3O4NPs/GCE represented extraordinary catalytic activity toward MNZ with two dynamic ranges of 0.05-5 µM and 5-120 µM, limit of detection (LOD) of 0.23 nM, limit of quantification (LOQ) of 0.76 nM, and sensitivity of 7.34 µA µM-1 cm-2. The fabricated sensor was further employed as a practical tool for electrochemical detection of MNZ in real aqueous samples.


Asunto(s)
Nanopartículas de Magnetita , Metronidazol , Metronidazol/análisis , Técnicas Electroquímicas/métodos , Antibacterianos , Nanopartículas de Magnetita/química , Carbono/química , Fenómenos Magnéticos
6.
Environ Res ; 237(Pt 1): 116935, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37625534

RESUMEN

In recent years, pollution caused by disinfection by-products (DBPs) has become a global concern. Initially, there were fewer contaminants, and the mechanism of their generation was unclear; however, the number of contaminants has increased exponentially as a result of rapid industrialization and numerous economic activities (e.q., during the outbreak of COVID-19 a surge in the use of chlorinated disinfectants was observed). DBP toxicity results in various adverse health effects and organ failure in humans. In addition, it profoundly affects other forms of life, including animals, plants, and microorganisms. This review comprehensively discusses the pre-treatment methods of traditional and emerging DBPs and the technologies applied for their detection. Additionally, this paper provides a detailed discussion of the principles, applicability, and characteristics of traditional large-scale instrumentation methods (such as gas/liquid/ion chromatography coupled with mass spectrometry) for detecting DBPs based on their respective detection techniques. At the same time, the design, functionality, classification, and characteristics of rapid detection technologies (such as biosensors) are also detailed and analyzed.

7.
Environ Res ; 217: 114785, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36395866

RESUMEN

Today, it is known that most of the water sources in the world are either drying out or contaminated. With the increasing population, the water demand is increasing drastically almost in every sector each year, which makes processes like water treatment and desalination one of the most critical environmental subjects of the future. Therefore, developing energy-efficient and faster methods are a must for the industry. Using functional groups on the membranes is known to be an effective way to develop shorter routes for water treatment. Accordingly, a review of nano-porous structures having functional groups used or designed for desalination and water treatment is presented in this study. A systematic scan has been conducted in the literature for the studies performed by molecular dynamics simulations. The selected studies have been classified according to membrane geometry, actuation mechanism, functionalized groups, and contaminant materials. Permeability, rejection rate, pressure, and temperature ranges are compiled for all of the studies examined. It has been observed that the pore size of a well-designed membrane should be small enough to reject contaminant molecules, atoms, or ions but wide enough to allow high water permeation. Adding functional groups to membranes is observed to affect the permeability and the rejection rate. In general, hydrophilic functional groups around the pores increase membrane permeability. In contrast, hydrophobic ones decrease the permeability. Besides affecting water permeation, the usage of charged functional groups mainly affects the rejection rate of ions and charged molecules.


Asunto(s)
Membranas Artificiales , Purificación del Agua , Humanos , Permeabilidad , Iones , Interacciones Hidrofóbicas e Hidrofílicas , Purificación del Agua/métodos
8.
Environ Res ; 238(Pt 1): 117082, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37699471

RESUMEN

In this research, we propose a novel approach for constructing a sensitive and selective electrochemical sensor utilizing high-quality multi-walled carbon nanotubes functionalized with amino groups (MWCNT-NH2) for the detection of Talazoparib (TLZ), a poly (ADP-ribose) polymerase (PARP) enzyme inhibitor, in real samples. The MWCNT-NH2-based sensor exhibited remarkable performance characteristics, including excellent repeatability, reproducibility, and high selectivity against various interferences. Under optimized conditions, the sensor demonstrated a wide linear concentration range of 1.0-5.0 µM, with a low limit of detection (LOD) of 0.201 µM. Substantiated by rigorous analysis of pharmaceutical and biological matrices, our methodology emerges as a paragon of reliability, boasting recovery rates within the satisfactory bracket of 96.38-105.25%. The successful application of the MWCNT-NH2-based sensor in practical sample analysis highlights its potential for implementation in clinical and pharmaceutical settings. This research not only advances the application of MWCNT-NH2 in electrochemical sensing but also opens new avenues for the development and monitoring of innovative anticancer treatments. The insights gained from our study have far-reaching implications, pointing toward a future where precision and innovation converge to improve patient care and treatment outcomes.


Asunto(s)
Antineoplásicos , Nanotubos de Carbono , Humanos , Técnicas Electroquímicas/métodos , Límite de Detección , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas , Reproducibilidad de los Resultados , Ribosa
9.
Environ Res ; 233: 116355, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37329944

RESUMEN

Lead ions (Pb2+), as one of many common heavy metallic environmental pollutants, can cause serious side-effects and result in chronic poisoning to people's health, so it is highly significant to monitor Pb2+ efficiently and sensitively. Here, we proposed an antimonene@Ti3C2Tx nanohybrid-based electrochemical aptamer sensor (aptasensor) for high sensitive Pb2+ determination. The sensing platform of nanohybrid was synthesized by ultrasonication, possessing the advantages of both antimonene and Ti3C2Tx, which not only can vastly enlarge the sensing signal of the proposed aptasensor, but also greatly simplified its manufacturing flow, because antimonene can strongly interact with aptamer through noncovalently bound. The surface morphology and microarchitecture of the nanohybrid were perused by several methods such as scanning electron microscope (SEM), energy-dispersive X-ray mapping spectroscopy (EDS), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and atomic force microscope (AFM). Under optimal empirical conditions, the proposed aptasensor exhibited a wide linear correlation of the current signals with the logarithm of CPb2+ (Log CPb2+) over the span from 1 × 10-12 to 1 × 10-7 M and provided a trace discernment limit of 3.3 × 10-13 M. Moreover, the constructed aptasensor displayed superior repeatability, great consistency, eminent selectivity, and beneficial reproducibility, implying its extreme potential application for water quality control and the environmental monitoring of Pb2+.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Humanos , Plomo , Reproducibilidad de los Resultados , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Técnicas Electroquímicas , Titanio , Límite de Detección
10.
Environ Res ; 221: 115287, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36640937

RESUMEN

Activated carbon (AC) supported palladium cobalt bimetallic nanoparticles (PdCo@AC NPs) were obtained by green synthesis method using Cinnamomum verum (C. Verum) extract. The obtained NPs were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Crystallography (XRD), Transmission Electron Microscope (TEM) and Ultraviolet Visible (UV-VIS) spectroscopy, and the functional groups and morphology of the nanoparticle were elucidated. The resulting particle size was found to be 2.467 nm. NPs were evaluated using Cyclic Voltammetry (CV), Scan Rate (SR), and Differential Pulse Voltammetry (DPV) techniques for potential dopamine sensors application. According to the obtained DPV results, Limit of Detection (LOD) and Limit of Quantitation (LOQ) values are found to be 5.68 pM and 17.21 pM, respectively. It was also observed that AC supported PdCo nanoparticles obtained from C. verum extract sensed dopamine quite well. Besides, to examine the antibacterial properties of NPs, antibacterial analyzes were performed with Escherichia coli (E. Coli) and Staphylococcus aureus (S. Aureus). It was observed that it showed good antibacterial properties against gram positive (S. aureus) and gram negative (E. coli) bacteria. The study gave important results in terms of the synthesis of bimetallic NPs using the green synthesis method and their usability in different areas. With this study, it was observed that a good antibacterial dopamine sensor were obtained with the successful biogenic synthesis of AC supported PdCo bimetallic NPs.


Asunto(s)
Nanopartículas del Metal , Staphylococcus aureus , Nanopartículas del Metal/química , Carbón Orgánico , Escherichia coli , Dopamina , Antibacterianos/farmacología , Antibacterianos/química , Espectroscopía Infrarroja por Transformada de Fourier , Pruebas de Sensibilidad Microbiana , Difracción de Rayos X
11.
Environ Res ; 231(Pt 1): 116073, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37164282

RESUMEN

The presence of heavy metal ions and emerging pollutants in water poses a great risk to various biological ecosystems as a result of their high toxicity. Consequently, devising efficient and environmentally friendly methods to decontaminate these waters is of high interest to many researchers around the world. Among the varied water treatment and desalination means, adsorption and photocatalysis have been widely employed. However, the discussion and analysis of the use of zeolite-based composites as adsorbents are somehow minimal. The porous aluminosilicates (zeolites) are excellent candidates in wastewater treatment owing to various mechanisms of pollutants removal that they possess. The purpose of this review is thus to provide a synopsis of the current developments in the fabrication and application of nanocomposites based on zeolite as adsorbents and photocatalysts for the extraction of heavy metals, dyes and emerging pollutants from wastewaters. The review goes on to look into the effect of weight ratio on photocatalyst, photodegradation pathways, and various factors that influence photocatalysis and adsorption.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Nanocompuestos , Contaminantes Químicos del Agua , Purificación del Agua , Zeolitas , Ecosistema , Aguas Residuales , Indicadores y Reactivos , Purificación del Agua/métodos , Adsorción
12.
Environ Res ; 222: 115338, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36702186

RESUMEN

p_Aminophenol, namely 4-aminophenol (4-AP), is an aromatic compound including hydroxyl and amino groups contiguous together on the benzene ring, which are suitable chemically reactive, amphoteric, and alleviating agents in nature. Amino phenols are appropriate precursors for synthesizing oxazoles and oxazines. However, since the toxicity of aniline and phenol can harm human and herbal organs, it is essential to improve a reliable technique for the determination of even a trace amount of amino phenols, as well as elimination or (bio)degradation/photodegradation of it to protect both the environment and people's health. For this purpose, various analytical methods have been suggested up till now, including spectrophotometry, liquid chromatography, spectrofluorometric and capillary electrophoresis, etc. However, some drawbacks such as the requirement of complex instruments, high costs, not being portable, slow response time, low sensitivity, etc. prevent them to be employed in a wide range and swift in-situ applications. In this regard, besides the efforts such as (bio)degradation/photodegradation or removal of 4-AP pollutants from real samples, electroanalytical techniques have become a promising alternative for monitoring them with high sensitivity. In this review, it was aimed to emphasize and summarize the recent advances, challenges, and opportunities for removal, degradation, and electrochemical sensing 4-AP in real samples. Electroanalytical monitoring of amino phenols was reviewed in detail and explored the various types of electrochemical sensors applied for detecting and monitoring in real samples. Furthermore, the various technique of removal and degradation of 4-AP in industrial and urban wastes were also deliberated. Moreover, deep criticism of multifunctional nanomaterials to be utilized as a catalyst, adsorbent/biosorbent, and electroactive material for the fabrication of electrochemical sensors was covered along with their unique properties. Future perspectives and conclusions were also criticized to pave the way for further studies in the field of application of up-and-coming nanostructures in environmental applications.


Asunto(s)
Contaminantes Ambientales , Nanoestructuras , Humanos , Aminofenoles/análisis , Contaminantes Ambientales/análisis , Fenoles/análisis , Nanoestructuras/química
13.
Environ Res ; 222: 115321, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36696944

RESUMEN

The first ultrasonic synthesis of [Cu(L)4(SCN)2] (L = 1-methylimidazole) nanocomplex was carried out under ultrasonic irradiation, and its photocatalytic performance for the degradation of remdesivir (RS) under sunlight irradiation was comprehensively investigated for the first time in this study. The physicochemical properties of the synthesized photocatalyst were examined by Fourier-transform infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), diffuse reflectance spectroscopy (DRS), and thermogravimetric analysis (TGA) techniques. The band gap of the synthesized [Cu(L)4(SCN)2] nanocomplex was determined to be 2.60 eV by the diffuse reflectance spectroscopy method using Kubelka-Munk formula. The photocatalytic performance of nanocomplex was examined for the removal of remdesivir under sunlight from water for which the results indicated that an amount of 0.5 gL-1 of the [Cu(L)4(SCN)2] nanocomplex was sufficient to remove more than 96% remdesivir from its 2 mg L-1 concentration within 20 min, at pH = 6. The kinetic data showed that the photodegradation onto the [Cu(L)4(SCN)2] nanocomplex has a high correlation (0.98) with the pseudo-second-order kinetic model. The decrease in chemical oxygen demand (COD) (from 70.5 mg L-1 to 36.4 mg L-1) under optimal conditions clearly confirmed the mineralization of the RS drug. The values of ΔS° (-0.131 kJ mol-1 K-1) and ΔH° (-49.750 kJ mol-1) were negative, indicating that the adsorption process was spontaneous and more favorable in lower temperatures. Moreover, the RS structure in the open shell state and the high HOMO and LUMO gaps based on the M06/6-31 + G (d) level of theory may be a confirmation of this fact. In addition, the Hirshfeld surface analysis (HSA) of the crystal packing of the prepared complex was discussed in detail to evaluate the interactions between the crystal packings. The results of this study confirm that the [Cu(L)4(SCN)2] nanocomplex can be successfully used for the photodegradation of pharmaceutical contaminants.


Asunto(s)
Profármacos , Nucleótidos , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica , Catálisis
14.
Environ Res ; 238(Pt 1): 117166, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37741570

RESUMEN

Tofacitinib (TOF) is gaining recognition as a potent therapeutic agent for a variety of autoimmune disorders, including rheumatoid arthritis and psoriasis. Ensuring precise drug concentration control during treatment necessitates a rapid and sensitive detection method. This study introduces a novel electrochemical sensor employing a composite of nanodiamond (ND), copper aluminate spinel oxide (CuAl2O4), and iron (II, III) oxide (Fe3O4) as modified materials for efficient TOF detection. Extensive analyses using physicochemical and electrochemical techniques were carried out to characterize the morphological, structural, and electrochemical properties of the ND@CuAl2O4@Fe3O4 composite. Thereafter, various voltammetric methods were utilized to evaluate the electrochemical behavior of the ND@CuAl2O4@Fe3O4-modified glassy carbon electrode (GCE) concerning TOF determination. The fabricated electrode showcased superior performance in electrochemical TOF detection in a buffered solution (pH = 5), achieving a remarkably low detection limit of 7.8 nM and a linear response from 0.05 µM to 13.21 µM. Furthermore, applying the modified electrode as an electrochemical sensor exhibited exceptional selectivity, stability, and practicality in determining TOF in pharmaceutical and biological samples. Alongside the sensor development, this study conducted a thorough investigation using Density Functional Theory (DFT) for the geometry optimization of TOF and the TOF-ND complex. Consequently performed molecular docking studies using Janus Kinase 1 (JAK1) (PDB ID: 3EYG) and JAK3 (PDB ID: 3LXK) indicated higher interaction of the TOF-ND conjugate with the JAKs, reflected by binding energies of -12.9 kcal/mol and -11.7 kcal/mol for JAK1 and JAK3 respectively, compared to -7.0 kcal/mol and -6.9 kcal/mol for TOF alone. These findings illustrate the potential of the ND-based ND@CuAl2O4@Fe3O4 composite as a proficient sensing material for TOF detection and the merits of DFT in providing a detailed understanding of the interactions at play. This pioneering research holds promise for real-time TOF monitoring, which will advance personalized treatment strategies and improve therapeutic outcomes for patients with autoimmune disorders.


Asunto(s)
Enfermedades Autoinmunes , Grafito , Nanodiamantes , Humanos , Grafito/química , Simulación del Acoplamiento Molecular , Límite de Detección , Carbono/química , Óxidos/química
15.
Environ Res ; 239(Pt 2): 117368, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37827366

RESUMEN

Cancer monitoring plays a critical role in improving patient outcomes by providing early detection, personalized treatment options, and treatment response tracking. Carbon-based electrochemical biosensors have emerged in recent years as a revolutionary technology with the potential to revolutionize cancer monitoring. These sensors are useful for clinical applications because of their high sensitivity, selectivity, rapid response, and compatibility with miniaturized equipment. This review paper gives an in-depth look at the latest developments and the possibilities of carbon-based electrochemical sensors in cancer surveillance. The essential principles of carbon-based electrochemical sensors are discussed, including their structure, operating mechanisms, and critical qualities that make them suited for cancer surveillance. Furthermore, we investigate their applicability in detecting specific cancer biomarkers, evaluating therapy responses, and detecting cancer recurrence early. Additionally, a comparison of carbon-based electrochemical sensor performance measures, including sensitivity, selectivity, accuracy, and limit of detection, is presented in contrast to existing monitoring methods and upcoming technologies. Finally, we discuss prospective tactics, future initiatives, and commercialization opportunities for improving the capabilities of these sensors and integrating them into normal clinical practice. The review highlights the potential impact of carbon-based electrochemical sensors on cancer diagnosis, treatment, and patient outcomes, as well as the importance of ongoing research, collaboration, and validation studies to fully realize their potential in revolutionizing cancer monitoring.


Asunto(s)
Técnicas Biosensibles , Neoplasias , Humanos , Carbono , Estudios Prospectivos , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Neoplasias/diagnóstico
16.
Environ Res ; 238(Pt 2): 117202, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37769832

RESUMEN

Due to their widespread application in water purification, there is a significant interest in synthesising nanoscale photocatalysts. Nanophotocatalysts are primarily manufactured through chemical methods, which can lead to side effects like pollution, high-energy usage, and even health issues. To address these issues, "green synthesis" was developed, which involves using plant extracts as reductants or capping agents rather than industrial chemical agents. Green fabrication has the benefits of costs less, pollution reduction, environmental protection and human health safety, compared to the traditional methods. This article summarises recent advances in the environmentally friendly synthesis of various nanophotocatalysts employed in the degradation of azo dyes. This study compiles critical findings on natural and artificial methods to achieve the goal. Green synthesis is constrained by the time and place of production and issues with low purity and poor yield, reflecting the complexity of plants' geographical and seasonal distributions and their compositions. However, green photocatalyst synthesis provides additional growth opportunities and potential uses.


Asunto(s)
Compuestos Azo , Extractos Vegetales , Humanos , Extractos Vegetales/química , Colorantes/química
17.
Environ Res ; 220: 115135, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36566962

RESUMEN

The greatest environmental issue of the twenty-first century is climate change. Human-caused greenhouse gas emissions are increasing the frequency of extreme weather. Carbon dioxide (CO2) accounts for 80% of human greenhouse gas emissions. However, CO2 emissions and global temperature have risen steadily from pre-industrial times. Emissions data are crucial for most carbon emission policymaking and goal-setting. Sustainable and carbon-neutral sources must be used to create green energy and fossil-based alternatives to reduce our reliance on fossil fuels. Near-real-time monitoring of carbon emissions is a critical national concern and cutting-edge science. This review article provides an overview of the many carbon accounting systems that are now in use and are based on an annual time frame. The primary emphasis of the study is on the recently created carbon emission and eliminating sources and technology, as well as the current application trends for carbon neutrality. We also propose a framework for the most advanced naturally available carbon neutral accounting sources capable of being implemented on a large scale. Forming relevant data and procedures will help the "carbon neutrality" plan decision-making process. The formation of pertinent data and methodologies will give robust database support to the decision-making process for the "carbon neutrality" plan for the globe. In conclusion, this article offers some opinions, opportunities, challenges and future perspectives related to carbon neutrality and carbon emission monitoring and eliminating resources and technologies.


Asunto(s)
Dióxido de Carbono , Gases de Efecto Invernadero , Humanos , Dióxido de Carbono/análisis , Efecto Invernadero , Biodiversidad , Temperatura , Tecnología , Recursos Naturales
18.
Sensors (Basel) ; 23(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37896749

RESUMEN

Bisphenol A (BPA) is an industrial chemical used extensively in plastics and resins. However, its endocrine-disrupting properties pose risks to human health and the environment. Thus, accurate and rapid detection of BPA is crucial for exposure monitoring and risk mitigation. Molecularly imprinted electrochemical sensors (MIES) have emerged as a promising tool for BPA detection due to their high selectivity, sensitivity, affordability, and portability. This review provides a comprehensive overview of recent advances in MIES for BPA detection. We discuss the operating principles, fabrication strategies, materials, and methods used in MIES. Key findings show that MIES demonstrate detection limits comparable or superior to conventional methods like HPLC and GC-MS. Selectivity studies reveal excellent discrimination between BPA and structural analogs. Recent innovations in nanomaterials, novel monomers, and fabrication techniques have enhanced sensitivity, selectivity, and stability. However, limitations exist in reproducibility, selectivity, and stability. While challenges remain, MIES provide a low-cost portable detection method suitable for on-site BPA monitoring in diverse sectors. Further optimization of sensor fabrication and characterization will enable the immense potential of MIES for field-based BPA detection.


Asunto(s)
Impresión Molecular , Humanos , Impresión Molecular/métodos , Reproducibilidad de los Resultados , Técnicas Electroquímicas/métodos , Plásticos
19.
Molecules ; 28(18)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37764496

RESUMEN

Graphene is an emerging nanomaterial increasingly being used in electrochemical biosensing applications owing to its high surface area, excellent conductivity, ease of functionalization, and superior electrocatalytic properties compared to other carbon-based electrodes and nanomaterials, enabling faster electron transfer kinetics and higher sensitivity. Graphene electrochemical biosensors may have the potential to enable the rapid, sensitive, and low-cost detection of cancer biomarkers. This paper reviews early-stage research and proof-of-concept studies on the development of graphene electrochemical biosensors for potential future cancer diagnostic applications. Various graphene synthesis methods are outlined along with common functionalization approaches using polymers, biomolecules, nanomaterials, and synthetic chemistry to facilitate the immobilization of recognition elements and improve performance. Major sensor configurations including graphene field-effect transistors, graphene modified electrodes and nanocomposites, and 3D graphene networks are highlighted along with their principles of operation, advantages, and biosensing capabilities. Strategies for the immobilization of biorecognition elements like antibodies, aptamers, peptides, and DNA/RNA probes onto graphene platforms to impart target specificity are summarized. The use of nanomaterial labels, hybrid nanocomposites with graphene, and chemical modification for signal enhancement are also discussed. Examples are provided to illustrate applications for the sensitive electrochemical detection of a broad range of cancer biomarkers including proteins, circulating tumor cells, DNA mutations, non-coding RNAs like miRNA, metabolites, and glycoproteins. Current challenges and future opportunities are elucidated to guide ongoing efforts towards transitioning graphene biosensors from promising research lab tools into mainstream clinical practice. Continued research addressing issues with reproducibility, stability, selectivity, integration, clinical validation, and regulatory approval could enable wider adoption. Overall, graphene electrochemical biosensors present powerful and versatile platforms for cancer diagnosis at the point of care.


Asunto(s)
Grafito , Neoplasias , Reproducibilidad de los Resultados , Carbono , Anticuerpos , Biomarcadores de Tumor , Neoplasias/diagnóstico
20.
Inorg Chem ; 61(40): 15747-15783, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36173289

RESUMEN

Due to the increasing environmental pollution caused by human activities, environmental remediation has become an important subject for humans and environmental safety. The quest for beneficial pathways to remove organic and inorganic contaminants has been the theme of considerable investigations in the past decade. The easy and quick separation made magnetic solid-phase extraction (MSPE) a popular method for the removal of different pollutants from the environment. Metal-organic frameworks (MOFs) are a class of porous materials best known for their ultrahigh porosity. Moreover, these materials can be easily modified with useful ligands and form various composites with varying characteristics, thus rendering them an ideal candidate as adsorbing agents for MSPE. Herein, research on MSPE, encompassing MOFs as sorbents and Fe3O4 as a magnetic component, is surveyed for environmental applications. Initially, assorted pollutants and their threats to human and environmental safety are introduced with a brief introduction to MOFs and MSPE. Subsequently, the deployment of magnetic MOFs (MMOFs) as sorbents for the removal of various organic and inorganic pollutants from the environment is deliberated, encompassing the outlooks and perspectives of this field.


Asunto(s)
Contaminantes Ambientales , Restauración y Remediación Ambiental , Estructuras Metalorgánicas , Metales Pesados , Adsorción , Óxido Ferrosoférrico , Humanos , Ligandos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA