Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33627406

RESUMEN

Marine Synechococcus cyanobacteria owe their ubiquity in part to the wide pigment diversity of their light-harvesting complexes. In open ocean waters, cells predominantly possess sophisticated antennae with rods composed of phycocyanin and two types of phycoerythrins (PEI and PEII). Some strains are specialized for harvesting either green or blue light, while others can dynamically modify their light absorption spectrum to match the dominant ambient color. This process, called type IV chromatic acclimation (CA4), has been linked to the presence of a small genomic island occurring in two configurations (CA4-A and CA4-B). While the CA4-A process has been partially characterized, the CA4-B process has remained an enigma. Here we characterize the function of two members of the phycobilin lyase E/F clan, MpeW and MpeQ, in Synechococcus sp. strain A15-62 and demonstrate their critical role in CA4-B. While MpeW, encoded in the CA4-B island and up-regulated in green light, attaches the green light-absorbing chromophore phycoerythrobilin to cysteine-83 of the PEII α-subunit in green light, MpeQ binds phycoerythrobilin and isomerizes it into the blue light-absorbing phycourobilin at the same site in blue light, reversing the relationship of MpeZ and MpeY in the CA4-A strain RS9916. Our data thus reveal key molecular differences between the two types of chromatic acclimaters, both highly abundant but occupying distinct complementary ecological niches in the ocean. They also support an evolutionary scenario whereby CA4-B island acquisition allowed former blue light specialists to become chromatic acclimaters, while former green light specialists would have acquired this capacity by gaining a CA4-A island.


Asunto(s)
Proteínas Bacterianas/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Liasas/metabolismo , Ficocianina/biosíntesis , Ficoeritrina/biosíntesis , Pigmentos Biológicos/biosíntesis , Synechococcus/metabolismo , Aclimatación , Organismos Acuáticos , Proteínas Bacterianas/genética , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Prueba de Complementación Genética , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Islas Genómicas , Luz , Complejos de Proteína Captadores de Luz/genética , Liasas/genética , Ficobilinas/biosíntesis , Ficobilinas/genética , Ficocianina/genética , Ficoeritrina/genética , Filogenia , Pigmentos Biológicos/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Synechococcus/clasificación , Synechococcus/genética , Synechococcus/efectos de la radiación , Urobilina/análogos & derivados , Urobilina/biosíntesis , Urobilina/genética
2.
J Biol Chem ; 296: 100031, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33154169

RESUMEN

Synechococcus cyanobacteria are widespread in the marine environment, as the extensive pigment diversity within their light-harvesting phycobilisomes enables them to utilize various wavelengths of light for photosynthesis. The phycobilisomes of Synechococcus sp. RS9916 contain two forms of the protein phycoerythrin (PEI and PEII), each binding two chromophores, green-light absorbing phycoerythrobilin and blue-light absorbing phycourobilin. These chromophores are ligated to specific cysteines via bilin lyases, and some of these enzymes, called lyase isomerases, attach phycoerythrobilin and simultaneously isomerize it to phycourobilin. MpeV is a putative lyase isomerase whose role in PEI and PEII biosynthesis is not clear. We examined MpeV in RS9916 using recombinant protein expression, absorbance spectroscopy, and tandem mass spectrometry. Our results show that MpeV is the lyase isomerase that covalently attaches a doubly linked phycourobilin to two cysteine residues (C50, C61) on the ß-subunit of both PEI (CpeB) and PEII (MpeB). MpeV activity requires that CpeB or MpeB is first chromophorylated by the lyase CpeS (which adds phycoerythrobilin to C82). Its activity is further enhanced by CpeZ (a homolog of a chaperone-like protein first characterized in Fremyella diplosiphon). MpeV showed no detectable activity on the α-subunits of PEI or PEII. The mechanism by which MpeV links the A and D rings of phycourobilin to C50 and C61 of CpeB was also explored using site-directed mutants, revealing that linkage at the A ring to C50 is a critical step in chromophore attachment, isomerization, and stability. These data provide novel insights into ß-PE biosynthesis and advance our understanding of the mechanisms guiding lyase isomerases.


Asunto(s)
Isomerasas/metabolismo , Ficobilinas/metabolismo , Ficoeritrina/metabolismo , Synechococcus/química , Urobilina/análogos & derivados , Secuencia de Aminoácidos , Proteínas Bacterianas , Cromatografía Liquida , Isomerasas/química , Isomerasas/clasificación , Biología Marina , Ficoeritrina/química , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/clasificación , Proteínas Recombinantes/metabolismo , Synechococcus/genética , Espectrometría de Masas en Tándem , Urobilina/metabolismo
3.
Development ; 146(17)2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31399469

RESUMEN

The dramatic growth that occurs during Drosophila larval development requires rapid conversion of nutrients into biomass. Many larval tissues respond to these biosynthetic demands by increasing carbohydrate metabolism and lactate dehydrogenase (LDH) activity. The resulting metabolic program is ideally suited for synthesis of macromolecules and mimics the manner by which cancer cells rely on aerobic glycolysis. To explore the potential role of Drosophila LDH in promoting biosynthesis, we examined how Ldh mutations influence larval development. Our studies unexpectedly found that Ldh mutants grow at a normal rate, indicating that LDH is dispensable for larval biomass production. However, subsequent metabolomic analyses suggested that Ldh mutants compensate for the inability to produce lactate by generating excess glycerol-3-phosphate (G3P), the production of which also influences larval redox balance. Consistent with this possibility, larvae lacking both LDH and G3P dehydrogenase (GPDH1) exhibit growth defects, synthetic lethality and decreased glycolytic flux. Considering that human cells also generate G3P upon inhibition of lactate dehydrogenase A (LDHA), our findings hint at a conserved mechanism in which the coordinate regulation of lactate and G3P synthesis imparts metabolic robustness to growing animal tissues.


Asunto(s)
Drosophila melanogaster/fisiología , Glicerolfosfato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Larva/crecimiento & desarrollo , Larva/metabolismo , Azúcares/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Animales Modificados Genéticamente , Femenino , Glicerolfosfato Deshidrogenasa/genética , Glucólisis/genética , Homeostasis/genética , L-Lactato Deshidrogenasa/genética , Ácido Láctico/biosíntesis , Masculino , Mutación , NAD/metabolismo , Oxidación-Reducción
4.
Proc Natl Acad Sci U S A ; 116(13): 6457-6462, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30846551

RESUMEN

Marine Synechococcus, a globally important group of cyanobacteria, thrives in various light niches in part due to its varied photosynthetic light-harvesting pigments. Many Synechococcus strains use a process known as chromatic acclimation to optimize the ratio of two chromophores, green-light-absorbing phycoerythrobilin (PEB) and blue-light-absorbing phycourobilin (PUB), within their light-harvesting complexes. A full mechanistic understanding of how Synechococcus cells tune their PEB to PUB ratio during chromatic acclimation has not yet been obtained. Here, we show that interplay between two enzymes named MpeY and MpeZ controls differential PEB and PUB covalent attachment to the same cysteine residue. MpeY attaches PEB to the light-harvesting protein MpeA in green light, while MpeZ attaches PUB to MpeA in blue light. We demonstrate that the ratio of mpeY to mpeZ mRNA determines if PEB or PUB is attached. Additionally, strains encoding only MpeY or MpeZ do not acclimate. Examination of strains of Synechococcus isolated from across the globe indicates that the interplay between MpeY and MpeZ uncovered here is a critical feature of chromatic acclimation for marine Synechococcus worldwide.


Asunto(s)
Aclimatación/fisiología , Aclimatación/efectos de la radiación , Adaptación Ocular/fisiología , Adaptación Ocular/efectos de la radiación , Color , Synechococcus/enzimología , Synechococcus/metabolismo , Aclimatación/genética , Adaptación Ocular/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación de la Expresión Génica , Genes Bacterianos/genética , Liasas/metabolismo , Mutación , Ficobilinas , Ficoeritrina , Proteínas Recombinantes , Agua de Mar/microbiología , Synechococcus/genética , Synechococcus/efectos de la radiación , Urobilina/análogos & derivados
5.
Proc Natl Acad Sci U S A ; 115(20): E4642-E4650, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29712844

RESUMEN

How genetic variation is generated and maintained remains a central question in evolutionary biology. When presented with a complex environment, microbes can take advantage of genetic variation to exploit new niches. Here we present a massively parallel experiment where WT and repair-deficient (∆mutL) Escherichia coli populations have evolved over 3 y in a spatially heterogeneous and nutritionally complex environment. Metagenomic sequencing revealed that these initially isogenic populations evolved and maintained stable subpopulation structure in just 10 mL of medium for up to 10,000 generations, consisting of up to five major haplotypes with many minor haplotypes. We characterized the genomic, transcriptomic, exometabolomic, and phenotypic differences between clonal isolates, revealing subpopulation structure driven primarily by spatial segregation followed by differential utilization of nutrients. In addition to genes regulating the import and catabolism of nutrients, major polymorphisms of note included insertion elements transposing into fimE (regulator of the type I fimbriae) and upstream of hns (global regulator of environmental-change and stress-response genes), both known to regulate biofilm formation. Interestingly, these genes have also been identified as critical to colonization in uropathogenic E. coli infections. Our findings illustrate the complexity that can arise and persist even in small cultures, raising the possibility that infections may often be promoted by an evolving and complex pathogen population.


Asunto(s)
Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Evolución Molecular , Regulación Bacteriana de la Expresión Génica , Variación Genética , Biopelículas/crecimiento & desarrollo , Células Cultivadas , Farmacorresistencia Bacteriana , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Fimbrias Bacterianas , Alimentos , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento , Dinámica Poblacional
6.
J Biol Chem ; 294(11): 3987-3999, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30670589

RESUMEN

Phycoerythrin (PE) is a green light-absorbing protein present in the light-harvesting complex of cyanobacteria and red algae. The spectral characteristics of PE are due to its prosthetic groups, or phycoerythrobilins (PEBs), that are covalently attached to the protein chain by specific bilin lyases. Only two PE lyases have been identified and characterized so far, and the other bilin lyases are unknown. Here, using in silico analyses, markerless deletion, biochemical assays with purified and recombinant proteins, and site-directed mutagenesis, we examined the role of a putative lyase-encoding gene, cpeF, in the cyanobacterium Fremyella diplosiphon. Analyzing the phenotype of the cpeF deletion, we found that cpeF is required for proper PE biogenesis, specifically for ligation of the doubly linked PEB to Cys-48/Cys-59 residues of the CpeB subunit of PE. We also show that in a heterologous host, CpeF can attach PEB to Cys-48/Cys-59 of CpeB, but only in the presence of the chaperone-like protein CpeZ. Additionally, we report that CpeF likely ligates the A ring of PEB to Cys-48 prior to the attachment of the D ring to Cys-59. We conclude that CpeF is the bilin lyase responsible for attachment of the doubly ligated PEB to Cys-48/Cys-59 of CpeB and together with other specific bilin lyases contributes to the post-translational modification and assembly of PE into mature light-harvesting complexes.


Asunto(s)
Cianobacterias/metabolismo , Ficobilinas/metabolismo , Ficoeritrina/metabolismo , Cianobacterias/química , Ficobilinas/química , Ficoeritrina/química , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
7.
J Org Chem ; 85(16): 10658-10669, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32687355

RESUMEN

The electrochemistry of flavone (1) has been carefully investigated at glassy carbon cathodes in dimethylformamide containing 0.10 M tetra-n-butylammonium tetrafluoroborate as supporting electrolyte. In this medium, a cyclic voltammogram for a reduction of 1 exhibits a reversible cathodic process (Epc = -1.58 V and Epa = -1.47 V vs SHE) that is followed by an irreversible cathodic peak (Epc = -2.17 V vs SHE). When water (5.0 M) is introduced into the medium, the first peak for 1 becomes irreversible (Epc = -1.56 V vs SHE), and the second (irreversible) peak shifts to -2.07 V vs SHE. Bulk electrolyses of 1 at -1.60 V vs SHE afford flavanone, 2'-hydroxychalcone, 2'-hydroxy-3-phenylpropionate, and two new compounds, namely (Z)-1,6-bis(2-hydroxyphenyl)-3,4-diphenylhex-3-ene-1,6-dione (D1) and (Z)-2,2'-(1,2-diphenylethene-1,2-bis(benzofuran-3(2H))-one) (D2), obtained in significant amounts, that were characterized by means of 1H and 13C NMR spectrometry as well as single-crystal X-ray diffraction. Along with the above findings, we have proposed a mechanism for the electroreduction of 1, which has been further corroborated by our quantum mechanical study.

8.
Proc Natl Acad Sci U S A ; 114(6): 1353-1358, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28115720

RESUMEN

L-2-hydroxyglutarate (L-2HG) has emerged as a putative oncometabolite that is capable of inhibiting enzymes involved in metabolism, chromatin modification, and cell differentiation. However, despite the ability of L-2HG to interfere with a broad range of cellular processes, this molecule is often characterized as a metabolic waste product. Here, we demonstrate that Drosophila larvae use the metabolic conditions established by aerobic glycolysis to both synthesize and accumulate high concentrations of L-2HG during normal developmental growth. A majority of the larval L-2HG pool is derived from glucose and dependent on the Drosophila estrogen-related receptor (dERR), which promotes L-2HG synthesis by up-regulating expression of the Drosophila homolog of lactate dehydrogenase (dLdh). We also show that dLDH is both necessary and sufficient for directly synthesizing L-2HG and the Drosophila homolog of L-2-hydroxyglutarate dehydrogenase (dL2HGDH), which encodes the enzyme that breaks down L-2HG, is required for stage-specific degradation of the L-2HG pool. In addition, dLDH also indirectly promotes L-2HG accumulation via synthesis of lactate, which activates a metabolic feed-forward mechanism that inhibits dL2HGDH activity and stabilizes L-2HG levels. Finally, we use a genetic approach to demonstrate that dLDH and L-2HG influence position effect variegation and DNA methylation, suggesting that this compound serves to coordinate glycolytic flux with epigenetic modifications. Overall, our studies demonstrate that growing animal tissues synthesize L-2HG in a controlled manner, reveal a mechanism that coordinates glucose catabolism with L-2HG synthesis, and establish the fly as a unique model system for studying the endogenous functions of L-2HG during cell growth and proliferation.


Asunto(s)
Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Glutaratos/metabolismo , Glucólisis , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Animales , Línea Celular , Metilación de ADN , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Glutaratos/química , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Estereoisomerismo
9.
J Bacteriol ; 201(5)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30510145

RESUMEN

Bacterial microcompartments (BMCs) are large (∼100-nm) protein shells that encapsulate enzymes, their substrates, and cofactors for the purposes of increasing metabolic reaction efficiency and protecting cells from toxic intermediates. The best-studied microcompartment is the carbon-fixing carboxysome that encapsulates ribulose-1,5-bisphosphate carboxylase and carbonic anhydrase. Other well-known BMCs include the Pdu and Eut BMCs, which metabolize 1,2-propanediol and ethanolamine, respectively, with vitamin B12-dependent diol dehydratase enzymes. Recent bioinformatic analyses identified a new prevalent type of BMC, hypothesized to utilize vitamin B12-independent glycyl radical enzymes to metabolize substrates. Here we use genetic and metabolic analyses to undertake in vivo characterization of the newly identified glycyl radical enzyme microcompartment 3 (GRM3) class of microcompartment clusters. Transcriptome sequencing analyses showed that the microcompartment gene cluster in the genome of the purple photosynthetic bacterium Rhodobacter capsulatus was expressed under dark anaerobic respiratory conditions in the presence of 1,2-propanediol. High-performance liquid chromatography and gas chromatography-mass spectrometry analyses showed that enzymes coded by this cluster metabolized 1,2-propanediol into propionaldehyde, propanol, and propionate. Surprisingly, the microcompartment pathway did not protect these cells from toxic propionaldehyde under the conditions used in this study, with buildup of this intermediate contributing to arrest of cell growth. We further show that expression of microcompartment genes is regulated by a two-component system located downstream of the microcompartment cluster.IMPORTANCE BMCs are protein shells that are designed to compartmentalize enzymatic reactions that require either sequestration of a substrate or the sequestration of toxic intermediates. Due to their ability to compartmentalize reactions, BMCs have also become attractive targets for bioengineering novel enzymatic reactions. Despite these useful features, little is known about the biochemistry of newly identified classes of BMCs. In this study, we have undertaken genetic and in vivo metabolic analyses of the newly identified GRM3 gene cluster.


Asunto(s)
Proteínas Bacterianas/metabolismo , Redes y Vías Metabólicas/genética , Propilenglicol/metabolismo , Rhodobacter capsulatus/enzimología , Rhodobacter capsulatus/metabolismo , 1-Propanol/metabolismo , Aldehídos/metabolismo , Anaerobiosis , Proteínas Bacterianas/genética , Biotransformación , Cromatografía Líquida de Alta Presión , Biología Computacional , Oscuridad , Espectrometría de Masas , Familia de Multigenes , Propionatos/metabolismo , Rhodobacter capsulatus/genética
10.
Proc Natl Acad Sci U S A ; 113(21): 6077-82, 2016 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-27152022

RESUMEN

The evolutionary success of marine Synechococcus, the second-most abundant phototrophic group in the marine environment, is partly attributable to this group's ability to use the entire visible spectrum of light for photosynthesis. This group possesses a remarkable diversity of light-harvesting pigments, and most of the group's members are orange and pink because of their use of phycourobilin and phycoerythrobilin chromophores, which are attached to antennae proteins called phycoerythrins. Many strains can alter phycoerythrin chromophore ratios to optimize photon capture in changing blue-green environments using type IV chromatic acclimation (CA4). Although CA4 is common in most marine Synechococcus lineages, the regulation of this process remains unexplored. Here, we show that a widely distributed genomic island encoding tandem master regulators named FciA (for type four chromatic acclimation island) and FciB plays a central role in controlling CA4. FciA and FciB have diametric effects on CA4. Interruption of fciA causes a constitutive green light phenotype, and interruption of fciB causes a constitutive blue light phenotype. These proteins regulate all of the molecular responses occurring during CA4, and the proteins' activity is apparently regulated posttranscriptionally, although their cellular ratio appears to be critical for establishing the set point for the blue-green switch in ecologically relevant light environments. Surprisingly, FciA and FciB coregulate only three genes within the Synechococcus genome, all located within the same genomic island as fciA and fciB These findings, along with the widespread distribution of strains possessing this island, suggest that horizontal transfer of a small, self-regulating DNA region has conferred CA4 capability to marine Synechococcus throughout many oceanic areas.


Asunto(s)
Aclimatación/fisiología , Organismos Acuáticos , Proteínas Bacterianas , Islas Genómicas , Ficoeritrina , Synechococcus , Organismos Acuáticos/genética , Organismos Acuáticos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ficoeritrina/genética , Ficoeritrina/metabolismo , Synechococcus/genética , Synechococcus/metabolismo
11.
Chemistry ; 23(44): 10652-10662, 2017 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-28568775

RESUMEN

Hydroxyanions pair up inside CH H-bonding cyanostar macrocycles against Coulombic repulsions and solvation forces acting to separate them. The driving forces responsible for assembly of bisulfate (HSO4- ) dimers are unclear. We investigated them using solvent quality to tune the contributing forces and we take advantage of characteristic NMR signatures to follow the species distributions. We show that apolar solvents enhance ion pairing to stabilize formation of a 2:2:2 complex composed of π-stacked cyanostars encapsulating the [HSO4 ⋅⋅⋅HSO4 ]2- dimer and endcapped by tetrabutylammonium cations. Without cations engaged, a third macrocycle can be recruited with the aid of solvophobic forces in more polar solvents. The third macrocycle generates a more potent electropositive pocket in which to stabilize the anti-electrostatic anion dimer as a 3:2 assembly. We also see unprecedented evidence for a water molecule bound to the complex in the acetonitrile solution. In methanol, OH H-bonding leads to formation of 2:1 complexes by bisulfate solvation inside the macrocycles inhibiting anion dimers. Knowledge of the driving forces for stabilization (strong OH⋅⋅⋅O H-bonding, CH H-bonding, ion pairs, π-stacking) competing with destabilization (Coulomb repulsion, solvation) allows high-fidelity selection of the assemblies. Thermodynamic stabilization of hydroxyanion dimers also demonstrates the ability to use macrocycles to control ion speciation and stoichiometry of the overall assemblies.

12.
Analyst ; 142(9): 1512-1518, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-28361146

RESUMEN

A mobile nanofluidic device based on theta pipettes was developed for "collect-react-analyze" measurements of small volumes of a sample collected locally from biological samples. Specifically, we demonstrate execution of local reactions inside single cells and on Pseudomonas aeruginosa biofilms for targeted analysis of metabolites. Nanoliter volumes of the sample, post-reaction, were delivered to a mass spectrometer via electrospray ionization (ESI) for chemical analysis. A new strategy was developed where the additional barrel of a theta pipette was utilized both to enable chemical manipulations after sample collection and to electrospray the nanoliter sample volumes collected directly from the pipette tip. This strategy proved a robust method for ESI from nanometer sized tips without clogging or degradation of the emitter and obviated the need to coat glass pipettes with a conductive metal coating. Chemical reactions investigated include acid catalyzed degradation of oligosaccharides inside the pipette tip to increase the detection sensitivity of minor metabolites found in Allium cepa cells. Additionally, phenylboronic acid complexation of carbohydrates from single cells and liposaccharides from biofilms was also performed inside the pipette tip for selective detection of carbohydrates and liposaccharides with cis-diols.

13.
Angew Chem Int Ed Engl ; 55(45): 14057-14062, 2016 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-27712022

RESUMEN

Contrary to the simple expectations from Coulomb's law, Weinhold proposed that anions can stabilize each other as metastable dimers, yet experimental evidence for these species and their mutual stabilization is missing. We show that two bisulfate anions can form such dimers, which stabilize each other with self-complementary hydrogen bonds, by encapsulation inside a pair of cyanostar macrocycles. The resulting 2:2 complex of the bisulfate homodimer persists across all states of matter, including in solution. The bisulfate dimer's OH⋅⋅⋅O hydrogen bonding is seen in a 1 H NMR peak at 13.75 ppm, which is consistent with borderline-strong hydrogen bonds.

14.
Mol Microbiol ; 91(4): 649-64, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24329562

RESUMEN

The tetrapyrroles haem, bacteriochlorophyll and cobalamin (B12 ) exhibit a complex interrelationship regarding their synthesis. In this study, we demonstrate that AerR functions as an antirepressor of the tetrapyrrole regulator CrtJ. We show that purified AerR contains B12 that is bound to a conserved histidine (His145) in AerR. The interaction of AerR to CrtJ was further demonstrated in vitro by pull down experiments using AerR as bait and quantified using microscale thermophoresis. DNase I DNA footprint assays show that AerR containing B12 inhibits CrtJ binding to the bchC promoter. We further show that bchC expression is greatly repressed in a B12 auxotroph of Rhodobacter capsulatus and that B12 regulation of gene expression is mediated by AerR's ability to function as an antirepressor of CrtJ. This study thus provides a mechanism for how the essential tetrapyrrole, cobalamin controls the synthesis of bacteriochlorophyll, an essential component of the photosystem.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacterioclorofilas/biosíntesis , Proteínas de Unión al ADN/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Expresión Génica , Proteínas Represoras/metabolismo , Rhodobacter capsulatus/genética , Factores de Transcripción/metabolismo , Vitamina B 12/metabolismo , Centrifugación , Huella de ADN , Unión Proteica , Mapeo de Interacción de Proteínas , Rhodobacter capsulatus/metabolismo
15.
Org Biomol Chem ; 13(35): 9323, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26289493

RESUMEN

Correction for 'Synergism between genome sequencing, tandem mass spectrometry and bio-inspired synthesis reveals insights into nocardioazine B biogenesis' by Norah Alqahtani et al., Org. Biomol. Chem., 2015, 13, 7177-7192.

16.
Org Biomol Chem ; 13(26): 7177-92, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26022437

RESUMEN

Marine actinomycete-derived natural products continue to inspire chemical and biological investigations. Nocardioazines A and B (3 and 4), from Nocardiopsis sp. CMB-M0232, are structurally unique alkaloids featuring a 2,5-diketopiperazine (DKP) core functionalized with indole C3-prenyl as well as indole C3- and N-methyl groups. The logic of their assembly remains cryptic. Bioinformatics analyses of the Nocardiopsis sp. CMB-M0232 draft genome afforded the noz cluster, split across two regions of the genome, and encoding putative open reading frames with roles in nocardioazine biosynthesis, including cyclodipeptide synthase (CDPS), prenyltransferase, methyltransferase, and cytochrome P450 homologs. Heterologous expression of a twelve gene contig from the noz cluster in Streptomyces coelicolor resulted in accumulation of cyclo-l-Trp-l-Trp DKP (5). This experimentally connected the noz cluster to indole alkaloid natural product biosynthesis. Results from bioinformatics analyses of the noz pathway along with challenges in actinomycete genetics prompted us to use asymmetric synthesis and mass spectrometry to determine biosynthetic intermediates in the noz pathway. The structures of hypothesized biosynthetic intermediates 5 and 12-17 were firmly established through chemical synthesis. LC-MS and MS-MS comparison of these synthetic compounds with metabolites present in chemical extracts from Nocardiopsis sp. CMB-M0232 revealed which of these hypothesized intermediates were relevant in the nocardioazine biosynthetic pathway. This established the early and mid-stages of the biosynthetic pathway, demonstrating that Nocardiopsis performs indole C3-methylation prior to indole C3-normal prenylation and indole N1'-methylation in nocardioazine B assembly. These results highlight the utility of merging bioinformatics analyses, asymmetric synthetic approaches, and mass spectrometric metabolite profiling in probing natural product biosynthesis.


Asunto(s)
Dicetopiperazinas/metabolismo , Genómica , Análisis de Secuencia , Dicetopiperazinas/química , Genoma Bacteriano/genética , Modelos Moleculares , Conformación Molecular , Familia de Multigenes/genética , Nocardiosis/enzimología , Nocardiosis/genética , Nocardiosis/metabolismo , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Espectrometría de Masas en Tándem
17.
Proc Natl Acad Sci U S A ; 109(49): 20136-41, 2012 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-23161909

RESUMEN

The marine cyanobacterium Synechococcus is the second most abundant phytoplanktonic organism in the world's oceans. The ubiquity of this genus is in large part due to its use of a diverse set of photosynthetic light-harvesting pigments called phycobiliproteins, which allow it to efficiently exploit a wide range of light colors. Here we uncover a pivotal molecular mechanism underpinning a widespread response among marine Synechococcus cells known as "type IV chromatic acclimation" (CA4). During this process, the pigmentation of the two main phycobiliproteins of this organism, phycoerythrins I and II, is reversibly modified to match changes in the ambient light color so as to maximize photon capture for photosynthesis. CA4 involves the replacement of three molecules of the green light-absorbing chromophore phycoerythrobilin with an equivalent number of the blue light-absorbing chromophore phycourobilin when cells are shifted from green to blue light, and the reverse after a shift from blue to green light. We have identified and characterized MpeZ, an enzyme critical for CA4 in marine Synechococcus. MpeZ attaches phycoerythrobilin to cysteine-83 of the α-subunit of phycoerythrin II and isomerizes it to phycourobilin. mpeZ RNA is six times more abundant in blue light, suggesting that its proper regulation is critical for CA4. Furthermore, mpeZ mutants fail to normally acclimate in blue light. These findings provide insights into the molecular mechanisms controlling an ecologically important photosynthetic process and identify a unique class of phycoerythrin lyase/isomerases, which will further expand the already widespread use of phycoerythrin in biotechnology and cell biology applications.


Asunto(s)
Aclimatación/fisiología , Pigmentos Biliares/metabolismo , Luz , Liasas/metabolismo , Ficoeritrina/metabolismo , Synechococcus/fisiología , Aclimatación/efectos de la radiación , Biotecnología/métodos , Cromatografía Líquida de Alta Presión , Color , Electroforesis en Gel de Poliacrilamida , Escherichia coli , Fluorescencia , Océano Índico , Plásmidos/genética , Synechococcus/enzimología , Espectrometría de Masas en Tándem
18.
J Biol Chem ; 288(7): 4755-62, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23306201

RESUMEN

RegB/RegA comprise a global redox-sensing signal transduction system utilized by a wide range of proteobacteria to sense environmental changes in oxygen tension. The conserved cysteine 265 in the sensor kinase RegB was previously reported to form an intermolecular disulfide bond under oxidizing conditions that converts RegB from an active dimer into an inactive tetramer. In this study, we demonstrate that a stable sulfenic acid (-SOH) derivative also forms at Cys-265 in vitro and in vivo when RegB is exposed to oxygen. This sulfenic acid modification is reversible and stable in the air. Autophosphorylation assay shows that reduction of the SOH at Cys-265 to a free thiol (SH) can increase RegB kinase activity in vitro. Our results suggest that a sulfenic acid modification at Cys-265 performs a regulatory role in vivo and that it may be the major oxidation state of Cys-265 under aerobic conditions. Cys-265 thus functions as a complex redox switch that can form multiple thiol modifications in response to different redox signals to control the kinase activity of RegB.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cisteína/química , Regulación Enzimológica de la Expresión Génica , Oxígeno/química , Proteínas Quinasas/metabolismo , Ácidos Sulfénicos/química , Biotinilación , Histidina Quinasa , Espectrometría de Masas/métodos , Modelos Biológicos , Oxidación-Reducción , Fosforilación , Unión Proteica , Proteínas Quinasas/química , Rhodobacter capsulatus/enzimología , Transducción de Señal , Compuestos de Sulfhidrilo/química , Factores de Tiempo , Ubiquinona/química
19.
Mol Microbiol ; 85(4): 734-46, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22715852

RESUMEN

CrtJ from Rhodobacter capsulatus is a regulator of genes involved in the biosynthesis of haem, bacteriochlorophyll, carotenoids as well as structural proteins of the light harvesting-II complex. Fluorescence anisotropy-based DNA-binding analysis demonstrates that oxidized CrtJ exhibits ~20-fold increase in binding affinity over that of reduced CrtJ. Liquid chromatography electrospray tandem ionization mass spectrometric analysis using DAz-2, a sulfenic acid (-SOH)-specific probe, demonstrates that exposure of CrtJ to oxygen or to hydrogen peroxide leads to significant accumulation of a sulfenic acid derivative of Cys420 which is located in the helix-turn-helix (HTH) motif. In vivo labelling with 4-(3-azidopropyl)cyclohexane-1,3-dione (DAz-2) shows that Cys420 also forms a sulfenic acid modification in vivo when cells are exposed to oxygen. Moreover, a Cys420 to Ala mutation leads to a ~60-fold reduction of DNA binding activity while a Cys to Ser substitution at position 420 that mimics a cysteine sulfenic acid results in a ~4-fold increase in DNA binding activity. These results provide the first example where sulfenic acid oxidation of a cysteine in a HTH-motif leads to differential effects on gene expression.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cisteína/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Rhodobacter capsulatus/enzimología , Factores de Transcripción/metabolismo , Cromatografía Liquida , Secuencias Hélice-Giro-Hélice , Peróxido de Hidrógeno/metabolismo , Modelos Biológicos , Oxidación-Reducción , Oxígeno/metabolismo , Unión Proteica , Espectrometría de Masas en Tándem , Tetrapirroles/metabolismo
20.
Proteomes ; 11(1)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36810564

RESUMEN

Staphylococcus aureus is one of the major community-acquired human pathogens, with growing multidrug-resistance, leading to a major threat of more prevalent infections to humans. A variety of virulence factors and toxic proteins are secreted during infection via the general secretory (Sec) pathway, which requires an N-terminal signal peptide to be cleaved from the N-terminus of the protein. This N-terminal signal peptide is recognized and processed by a type I signal peptidase (SPase). SPase-mediated signal peptide processing is the crucial step in the pathogenicity of S. aureus. In the present study, the SPase-mediated N-terminal protein processing and their cleavage specificity were evaluated using a combination of N-terminal amidination bottom-up and top-down proteomics-based mass spectrometry approaches. Secretory proteins were found to be cleaved by SPase, specifically and non-specifically, on both sides of the normal SPase cleavage site. The non-specific cleavages occur at the relatively smaller residues that are present next to the -1, +1, and +2 locations from the original SPase cleavage site to a lesser extent. Additional random cleavages at the middle and near the C-terminus of some protein sequences were also observed. This additional processing could be a part of some stress conditions and unknown signal peptidase mechanisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA