Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 29(2): 518-528, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38114631

RESUMEN

The Drd2 gene, encoding the dopamine D2 receptor (D2R), was recently indicated as a potential target in the etiology of lowered sociability (i.e., social withdrawal), a symptom of several neuropsychiatric disorders such as Schizophrenia and Major Depression. Many animal species show social withdrawal in response to stimuli, including the vinegar fly Drosophila melanogaster and mice, which also share most human disease-related genes. Here we will test for causality between Drd2 and sociability and for its evolutionary conserved function in these two distant species, as well as assess its mechanism as a potential therapeutic target. During behavioral observations in groups of freely interacting D. melanogaster, Drd2 homologue mutant showed decreased social interactions and locomotor activity. After confirming Drd2's social effects in flies, conditional transgenic mice lacking Drd2 in dopaminergic cells (autoreceptor KO) or in serotonergic cells (heteroreceptor KO) were studied in semi-natural environments, where they could freely interact. Autoreceptor KOs showed increased sociability, but reduced activity, while no overall effect of Drd2 deletion was observed in heteroreceptor KOs. To determine acute effects of D2R signaling on sociability, we also showed that a direct intervention with the D2R agonist Sumanirole decreased sociability in wild type mice, while the antagonist showed no effects. Using a computational ethological approach, this study demonstrates that Drd2 regulates sociability across evolutionary distant species, and that activation of the mammalian D2R autoreceptor, in particular, is necessary for social functioning.


Asunto(s)
Drosophila melanogaster , Receptores de Dopamina D2 , Conducta Social , Animales , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Ratones , Humanos , Drosophila melanogaster/genética , Masculino , Ratones Noqueados , Ratones Transgénicos , Conducta Animal/fisiología , Ratones Endogámicos C57BL , Femenino , Neuronas Dopaminérgicas/metabolismo , Trastornos Mentales/genética
2.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38771240

RESUMEN

In vitro and ex vivo studies have shown consistent indications of hyperexcitability in the Fragile X Messenger Ribonucleoprotein 1 (Fmr1) knockout mouse model of autism spectrum disorder. We recently introduced a method to quantify network-level functional excitation-inhibition ratio from the neuronal oscillations. Here, we used this measure to study whether the implicated synaptic excitation-inhibition disturbances translate to disturbances in network physiology in the Fragile X Messenger Ribonucleoprotein 1 (Fmr1) gene knockout model. Vigilance-state scoring was used to extract segments of inactive wakefulness as an equivalent behavioral condition to the human resting-state and, subsequently, we performed high-frequency resolution analysis of the functional excitation-inhibition biomarker, long-range temporal correlations, and spectral power. We corroborated earlier studies showing increased high-frequency power in Fragile X Messenger Ribonucleoprotein 1 (Fmr1) knockout mice. Long-range temporal correlations were higher in the gamma frequency ranges. Contrary to expectations, functional excitation-inhibition was lower in the knockout mice in high frequency ranges, suggesting more inhibition-dominated networks. Exposure to the Gamma-aminobutyric acid (GABA)-agonist clonazepam decreased the functional excitation-inhibition in both genotypes, confirming that increasing inhibitory tone results in a reduction of functional excitation-inhibition. In addition, clonazepam decreased electroencephalogram power and increased long-range temporal correlations in both genotypes. These findings show applicability of these new resting-state electroencephalogram biomarkers to animal for translational studies and allow investigation of the effects of lower-level disturbances in excitation-inhibition balance.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Inhibición Neural , Neuronas , Animales , Ratones , Electroencefalografía , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Inhibición Neural/fisiología , Inhibición Neural/efectos de los fármacos , Neuronas/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo
3.
Cereb Cortex ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38602737

RESUMEN

Sensory differences are a core feature of autism spectrum disorders (ASD) and are predictive of other ASD core symptoms such as social difficulties. However, the neurobiological substrate underlying the functional relationship between sensory and social functioning is poorly understood. Here, we examined whether misregulation of structural plasticity in the somatosensory cortex modulates aberrant social functioning in BTBR mice, a mouse model for autism spectrum disorder-like phenotypes. By locally expressing a dominant-negative form of Cofilin (CofilinS3D; a key regulator of synaptic structure) in the somatosensory cortex, we tested whether somatosensory suppression of Cofilin activity alters social functioning in BTBR mice. Somatosensory Cofilin suppression altered social contact and nest-hide behavior of BTBR mice in a social colony, assessed for seven consecutive days. Subsequent behavioral testing revealed that altered social functioning is related to altered tactile sensory perception; CofilinS3D-treated BTBR mice showed a time-dependent difference in the sensory bedding preference task. These findings show that Cofilin suppression in the somatosensory cortex alters social functioning in BTBR mice and that this is associated with tactile sensory processing, a critical indicator of somatosensory functioning.


Asunto(s)
Trastorno del Espectro Autista , Corteza Somatosensorial , Animales , Ratones , Modelos Animales de Enfermedad , Factores Despolimerizantes de la Actina , Tacto
4.
Mol Psychiatry ; 28(1): 28-33, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35858991

RESUMEN

Many psychiatric and neurological disorders present deficits in both the social and cognitive domain. In this perspectives article, we provide an overview and the potential of the existence of an extensive neurobiological substrate underlying the close relationship between these two domains. By mapping the rodent brain regions involved in the social and/or cognitive domain, we show that the vast majority of brain regions involved in the cognitive domain are also involved in the social domain. The identified neuroanatomical overlap has an evolutionary basis, as complex social behavior requires cognitive skills, and aligns with the reported functional interactions of processes underlying cognitive and social performance. Based on the neuroanatomical mapping, recent (pre-)clinical findings, and the evolutionary perspective, we emphasize that the social domain requires more focus as an important treatment target and/or biomarker, especially considering the presently limited treatment strategies for these disorders.


Asunto(s)
Encefalopatías , Encéfalo , Humanos , Conducta Social , Cognición , Mapeo Encefálico
5.
Behav Res Methods ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112740

RESUMEN

Passive smartphone measures hold significant potential and are increasingly employed in psychological and biomedical research to capture an individual's behavior. These measures involve the near-continuous and unobtrusive collection of data from smartphones without requiring active input from participants. For example, GPS sensors are used to determine the (social) context of a person, and accelerometers to measure movement. However, utilizing passive smartphone measures presents methodological challenges during data collection and analysis. Researchers must make multiple decisions when working with such measures, which can result in different conclusions. Unfortunately, the transparency of these decision-making processes is often lacking. The implementation of open science practices is only beginning to emerge in digital phenotyping studies and varies widely across studies. Well-intentioned researchers may fail to report on some decisions due to the variety of choices that must be made. To address this issue and enhance reproducibility in digital phenotyping studies, we propose the adoption of preregistration as a way forward. Although there have been some attempts to preregister digital phenotyping studies, a template for registering such studies is currently missing. This could be problematic due to the high level of complexity that requires a well-structured template. Therefore, our objective was to develop a preregistration template that is easy to use and understandable for researchers. Additionally, we explain this template and provide resources to assist researchers in making informed decisions regarding data collection, cleaning, and analysis. Overall, we aim to make researchers' choices explicit, enhance transparency, and elevate the standards for studies utilizing passive smartphone measures.

6.
Neurobiol Dis ; 187: 106309, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37748620

RESUMEN

In humans, social factors (e.g., loneliness) have been linked to the risk of developing Alzheimer's Disease (AD). To date, AD pathology is primarily characterized by amyloid-ß plaques and tau tangles. We aimed to assess the effect of single- and group-housing on AD-related pathology in a mouse model for amyloid pathology (J20, and WT controls) and a mouse model for tau pathology (P301L) with and without seeding of synthetic human tau fragments (K18). Female mice were either single housed (SH) or group housed (GH) from the age of 6-7 weeks onwards. In 12-week-old P301L mice, tau pathology was induced through seeding by injecting K18 into the dorsal hippocampus (P301LK18), while control mice received a PBS injection (P301LPBS). P301L mice were sacrificed at 4 months of age and J20 mice at 10 months of age. In all mice brain pathology was histologically assessed by examining microglia, the CA1 pyramidal cell layer and specific AD pathology: analysis of plaques in J20 mice and tau hyperphosphorylation in P301L mice. Contrary to our expectation, SH-J20 mice interestingly displayed fewer plaques in the hippocampus compared to GH-J20 mice. However, housing did not affect tau hyperphosphorylation at Ser202/Thr205 of P301L mice, nor neuronal cell death in the CA1 region in any of the mice. The number of microglia was increased by the J20 genotype, and their activation (based on cell body to cell size ratio) in the CA1 was affected by genotype and housing condition (interaction effect). Single housing of P301L mice was linked to the development of stereotypic behavior (i.e. somersaulting and circling behavior). In P301LK18 mice, an increased number of microglia were observed, among which were rod microglia. Taken together, our findings point to a significant effect of social housing conditions on amyloid plaques and microglia in J20 mice and on the development of stereotypic behavior in P301L mice, indicating that the social environment can modulate AD-related pathology.

7.
Eur J Neurosci ; 56(8): 5260-5273, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36017614

RESUMEN

Sensory sensitivity symptoms are common in autism spectrum disorders and fragile X syndrome. Mainly in the auditory modality, disturbed processing has been found in both fragile X patients and the corresponding genetic mouse model, the Fmr1 knockout mouse. Here, we tried to replicate the auditory deficits and assess whether also visual processing is affected, using electroencephalography readouts under freely behaving conditions in the second-generation Fmr1 knockout mice. No differences between wild-type and knockout animals were found in single auditory and visual evoked potentials in response to pure sine tones and full-field light flashes. Visual sensory gating was enhanced in the early but not the late components of the evoked potentials, but no changes were found in auditory sensory gating. The higher harmonics of the synchronisation response to flickering visual stimuli seemed to be reduced with 10, but not 20 or 40 Hz, stimulation. However, this effect was not reproduced in an independent second cohort of animals. No synchronisation differences were found in response to a chirp stimulus, of which the frequency steadily increased. Taken together, this study could not reproduce earlier reported increased amplitudes in auditory responses, nor could it convincingly show that synchronisation deficits found to be present in the auditory modality also existed in the visual modality. The discrepancies within this study as well as between various studies assessing sensory processing in the Fmr1 KO raise questions about the external validity of these phenotypes and warrant careful interpretation of these phenotypes.


Asunto(s)
Potenciales Evocados , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Estimulación Acústica , Animales , Electroencefalografía , Potenciales Evocados Auditivos , Potenciales Evocados Visuales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Ratones , Ratones Noqueados , Fenotipo , Percepción Visual
8.
Cereb Cortex ; 29(2): 586-597, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29300891

RESUMEN

Contactin-associated protein-like 2 (Caspr2) is found at the nodes of Ranvier and has been associated with physiological properties of white matter conductivity. Genetic variation in CNTNAP2, the gene encoding Caspr2, has been linked to several neurodevelopmental conditions, yet pathophysiological effects of CNTNAP2 mutations on axonal physiology and brain myelination are unknown. Here, we have investigated mouse mutants for Cntnap2 and found profound deficiencies in the clustering of Kv1-family potassium channels in the juxtaparanodes of brain myelinated axons. These deficits are associated with a change in the waveform of axonal action potentials and increases in postsynaptic excitatory responses. We also observed that the normal process of myelination is delayed in Cntnap2 mutant mice. This later phenotype is a likely modulator of the developmental expressivity of the stereotyped motor behaviors that characterize Cntnap2 mutant mice. Altogether, our results reveal a mechanism linked to white matter conductivity through which mutation of CNTNAP2 may affect neurodevelopmental outcomes.


Asunto(s)
Axones/metabolismo , Corteza Cerebral/metabolismo , Discapacidades del Desarrollo/metabolismo , Proteínas de la Membrana/deficiencia , Fibras Nerviosas Mielínicas/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Trastorno de Movimiento Estereotipado/metabolismo , Potenciales de Acción/fisiología , Animales , Axones/patología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/patología , Cuerpo Calloso/crecimiento & desarrollo , Cuerpo Calloso/metabolismo , Cuerpo Calloso/patología , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fibras Nerviosas Mielínicas/patología , Proteínas del Tejido Nervioso/genética , Trastorno de Movimiento Estereotipado/genética , Trastorno de Movimiento Estereotipado/patología , Transmisión Sináptica/fisiología
9.
Eur J Neurosci ; 44(11): 2950-2957, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27690330

RESUMEN

Febrile seizures (FS) are the most common seizure type in children. Recurrent FS are a risk factor for developing temporal lobe epilepsy later in life and are known to have a strong genetic component. Experimental FS (eFS) can be elicited in mice by warm-air induced hyperthermia. We used this model to screen the chromosome substitution strain (CSS) panel derived from C57BL/6J and A/J for FS susceptibility and identified C57BL/6J-Chr2A /NaJ (CSS2), as the strain with the strongest FS susceptibility phenotype. The aim of this study was to map FS susceptibility loci and select candidate genes on mouse chromosome 2. We generated an F2 population by intercrossing the hybrids (F1 ) that were derived from CSS2 and C57BL/6J mice. All CSS2-F2 individuals were genotyped and phenotyped for eFS susceptibility, and QTL analysis was performed. Candidate gene selection was based on bioinformatics analyses and differential brain expression between CSS2 and C57BL/6J strains determined by microarray analysis. Genetic mapping of the eFS susceptibility trait identified two significant loci: FS-QTL2a (LOD-score 3.6) and FS-QTL2b (LOD-score 6.2). FS-QTL2a contained 44 genes expressed in the brain at post natal day 14. Four of these (Arl6ip6, Cytip, Fmnl2 Ifih1) contained a non-synonymous SNP comparing CSS2 and C57BL/6J, six genes (March7, Nr4a2, Gpd2, Grb14, Scn1a, Scn3a) were differentially expressed between these strains. A region within FS-QTL2a is homologous to the human FEB3 locus. The fact that we identify mouse FS-QTL2a with high FEB3 homology is strong support for the validity of the eFS mouse model to study genetics of human FS.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.3/genética , Sitios de Carácter Cuantitativo , Convulsiones Febriles/genética , Animales , Cromosomas/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Polimorfismo de Nucleótido Simple , Homología de Secuencia
10.
J Neurosci Methods ; 405: 110084, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38401804

RESUMEN

The EQIPD Quality System (QS) was conceptualized and established by an international consortium consisting of academic and industrial partners to ensure that non-regulated biomedical research will be conducted according to Good Research Practice expectations. The QS supports researchers to reflect on and improve internal practices by providing a systematic framework and guidance for implementing the EQIPD QS in a time and cost effective manner. This report describes the content of the EQIPD QS with its key features and 18 Core Requirements (CR) in more detail. It gives a short background on each CR and hands on examples on how they were addressed by two different research labs in their respective laboratory environments. Thereby, this article provides examples and direction for other research labs who aim to implement the QS as well. The final paragraphs discuss the potential benefits of the QS in respect to different user groups and stakeholders within the scientific community and summarize the overall governance structure of the EQIPD framework.


Asunto(s)
Investigación Biomédica , Investigación Biomédica/normas
11.
Neurosci Biobehav Rev ; 164: 105839, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39097251

RESUMEN

Our intricate social brain is implicated in a range of brain disorders, where social dysfunction emerges as a common neuropsychiatric feature cutting across diagnostic boundaries. Understanding the neurocircuitry underlying social dysfunction and exploring avenues for its restoration could present a transformative and transdiagnostic approach to overcoming therapeutic challenges in these disorders. The brain's default mode network (DMN) plays a crucial role in social functioning and is implicated in various neuropsychiatric conditions. By thoroughly examining the current understanding of DMN functionality, we propose that the DMN integrates diverse social processes, and disruptions in brain communication at regional and network levels due to disease hinder the seamless integration of these social functionalities. Consequently, this leads to an altered balance between self-referential and attentional processes, alongside a compromised ability to adapt to social contexts and anticipate future social interactions. Looking ahead, we explore how adopting an integrated neurocircuitry perspective on social dysfunction could pave the way for innovative therapeutic approaches to address brain disorders.


Asunto(s)
Red en Modo Predeterminado , Humanos , Red en Modo Predeterminado/fisiopatología , Red en Modo Predeterminado/diagnóstico por imagen , Encefalopatías/fisiopatología , Encefalopatías/diagnóstico por imagen , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Conducta Social
12.
Transl Psychiatry ; 14(1): 253, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862462

RESUMEN

There is growing evidence of a shared pathogenesis between Alzheimer's disease and depression. Therefore, we aimed to further investigate their shared disease mechanisms. We made use of publicly available brain-specific eQTL data and gene co-expression networks of previously reported genetic loci associated with these highly comorbid disorders. No direct genetic overlap was observed between Alzheimer's disease and depression in our dataset, but we did detect six shared brain-specific eQTL genes: SRA1, MICA, PCDHA7, PCDHA8, PCDHA10 and PCDHA13. Several pathways were identified as shared between Alzheimer's disease and depression by conducting clustering pathway analysis on hippocampal co-expressed genes; synaptic signaling and organization, myelination, development, and the immune system. This study highlights trans-synaptic signaling and synaptoimmunology in the hippocampus as main shared pathomechanisms of Alzheimer's disease and depression.


Asunto(s)
Enfermedad de Alzheimer , Predisposición Genética a la Enfermedad , Hipocampo , Enfermedad de Alzheimer/genética , Humanos , Hipocampo/metabolismo , Comorbilidad , Sitios de Carácter Cuantitativo , Redes Reguladoras de Genes , Depresión/genética , Depresión/epidemiología , Trastorno Depresivo/genética
13.
Eur Neuropsychopharmacol ; 86: 35-42, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38917772

RESUMEN

Many individuals with autism spectrum disorder (ASD) experience various degrees of impairment in social interaction and communication, restricted, repetitive behaviours, interests/activities. These impairments make a significant contribution to poorer everyday adaptive functioning. Yet, there are no pharmacological therapies to effectively treat the core symptoms of ASD. Since symptoms of ASD likely emerge from a complex interplay of vulnerabilities, environmental factors and compensatory mechanisms during the early developmental period, pharmacological interventions arguably would have the greatest impact to improve long-term outcomes when implemented at a young age. It is essential therefore, that clinical development programmes of investigational drugs in ASD include the paediatric population early on in clinical trials. Such trials need to offer the prospect of direct benefit (PDB) for participants. In most cases in drug development this prospect is supported by evidence of efficacy in adults. However, the effectiveness of treatment approaches may be age-dependent, so that clinical trials in adults may not provide sufficient evidence for a PDB in children. In this white paper, we consolidate recommendations from regulatory guidelines, as well as advice from the Food and Drug Administration, USA (FDA) and the Committee for Human Medicinal Products (CHMP) consultations on various development programmes on: 1) elements to support a PDB to participants in early paediatric clinical trials in ASD, including single-gene neurodevelopment disorders, 2) aspects of study design to allow for a PDB. This white paper is intended to be complementary to existing regulatory guidelines in guiding industry and academic sponsors in their conduct of early paediatric clinical trials in ASD.


Asunto(s)
Trastorno del Espectro Autista , Niño , Humanos , Trastorno del Espectro Autista/terapia , Ensayos Clínicos como Asunto/métodos , Desarrollo de Medicamentos/métodos
14.
PLoS One ; 19(8): e0301406, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39121107

RESUMEN

Recently the 1/f signal of human electroencephalography has attracted attention, as it could potentially reveal a quantitative measure of neural excitation and inhibition in the brain, that may be relevant in a clinical setting. The purpose of this short article is to show that the 1/f signal depends on the vigilance state of the brain in both humans and mice. Therefore, proper labelling of the EEG signal is important as improper labelling may obscure disease-related changes in the 1/f signal. We demonstrate this by comparing EEG results from a longitudinal study in a genetic mouse model for synaptic dysfunction in schizophrenia and autism spectrum disorders to results from a large European cohort study with schizophrenia and mild Alzheimer's disease patients. The comparison shows when the 1/f is corrected for vigilance state there is a difference between groups, and this effect disappears when vigilance state is not corrected for. In conclusion, more attention should be paid to the vigilance state during analysis of EEG signals regardless of the species.


Asunto(s)
Encéfalo , Electroencefalografía , Animales , Ratones , Humanos , Masculino , Encéfalo/fisiopatología , Esquizofrenia/fisiopatología , Femenino , Enfermedad de Alzheimer/fisiopatología , Anciano , Nivel de Alerta/fisiología , Persona de Mediana Edad , Trastorno del Espectro Autista/fisiopatología , Estudios Longitudinales
15.
Eur Neuropsychopharmacol ; 78: 3-12, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37864982

RESUMEN

The current neuropsychiatric nosological categories underlie pragmatic treatment choice, regulation and clinical research but does not encompass biological rationale. However, subgroups of patients suffering from schizophrenia or Alzheimer's disease have more in common than the neuropsychiatric nature of their condition, such as the expression of social dysfunction. The PRISM project presents here initial quantitative biological insights allowing the first steps toward a novel trans-diagnostic classification of psychiatric and neurological symptomatology intended to reinvigorate drug discovery in this area. In this study, we applied spectral clustering on digital behavioural endpoints derived from passive smartphone monitoring data in a subgroup of Schizophrenia and Alzheimer's disease patients, as well as age matched healthy controls, as part of the PRISM clinical study. This analysis provided an objective social functioning characterization with three differential clusters that transcended initial diagnostic classification and was shown to be linked to quantitative neurobiological parameters assessed. This emerging quantitative framework will both offer new ways to classify individuals in biologically homogenous clusters irrespective of their initial diagnosis, and also offer insights into the pathophysiological mechanisms underlying these clusters.


Asunto(s)
Enfermedad de Alzheimer , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico , Enfermedad de Alzheimer/diagnóstico
16.
Pharmaceuticals (Basel) ; 17(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38399366

RESUMEN

(1) Background Pharmacological treatment for psychiatric disorders has shown to only be effective in about one-third of patients, as it is associated with frequent treatment failure, often because of side effects, and a long process of trial-and-error pharmacotherapy until an effective and tolerable treatment is found. This notion emphasizes the urgency for a personalized medicine approach in psychiatry. (2) Methods This prospective patient- and rater-blinded, randomized, controlled study will investigate the effect of dose-adjustment of antidepressants escitalopram and sertraline or antipsychotics risperidone and aripiprazole according to the latest state-of-the-art international dosing recommendations for CYP2C19 and CYP2D6 metabolizer status in patients with mood, anxiety, and psychotic disorders. A total sample of N = 2500 will be recruited at nine sites in seven countries (expected drop-out rate of 30%). Patients will be randomized to a pharmacogenetic group or a dosing-as-usual group and treated over a 24-week period with four study visits. The primary outcome is personal recovery using the Recovery Assessment Scale as assessed by the patient (RAS-DS), with secondary outcomes including clinical effects (response or symptomatic remission), side effects, general well-being, digital phenotyping, and psychosocial functioning. (3) Conclusions This is, to our knowledge, the first international, multi-center, non-industry-sponsored randomized controlled trial (RCT) that may provide insights into the effectiveness and utility of implementing pharmacogenetic-guided treatment of psychiatric disorders, and as such, results will be incorporated in already available dosing guidelines.

17.
Open Biol ; 14(5): 240018, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38745463

RESUMEN

The neuronal cell adhesion molecule contactin-4 (CNTN4) is genetically associated with autism spectrum disorder (ASD) and other psychiatric disorders. Cntn4-deficient mouse models have previously shown that CNTN4 plays important roles in axon guidance and synaptic plasticity in the hippocampus. However, the pathogenesis and functional role of CNTN4 in the cortex has not yet been investigated. Our study found a reduction in cortical thickness in the motor cortex of Cntn4 -/- mice, but cortical cell migration and differentiation were unaffected. Significant morphological changes were observed in neurons in the M1 region of the motor cortex, indicating that CNTN4 is also involved in the morphology and spine density of neurons in the motor cortex. Furthermore, mass spectrometry analysis identified an interaction partner for CNTN4, confirming an interaction between CNTN4 and amyloid-precursor protein (APP). Knockout human cells for CNTN4 and/or APP revealed a relationship between CNTN4 and APP. This study demonstrates that CNTN4 contributes to cortical development and that binding and interplay with APP controls neural elongation. This is an important finding for understanding the physiological function of APP, a key protein for Alzheimer's disease. The binding between CNTN4 and APP, which is involved in neurodevelopment, is essential for healthy nerve outgrowth.


Asunto(s)
Precursor de Proteína beta-Amiloide , Contactinas , Neuronas , Animales , Humanos , Ratones , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Movimiento Celular , Contactinas/metabolismo , Contactinas/genética , Ratones Noqueados , Corteza Motora/metabolismo , Neuronas/metabolismo , Unión Proteica
18.
J Alzheimers Dis ; 93(1): 211-224, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36970900

RESUMEN

BACKGROUND: Altered social behavior is one of the symptoms of Alzheimer's disease (AD) that results in social withdrawal and loneliness and provides a major burden on patients and their relatives. Furthermore, loneliness is associated with an increased risk to develop AD and related dementias. OBJECTIVE: We aimed to investigate if altered social behavior is an early indicator of amyloid-ß (Aß) pathology in J20 mice, and if co-housing with wild type (WT) mice can positively influence this social phenotype. METHODS: The social phenotype of group-housed mice was assessed using an automated behavioral scoring system for longitudinal recordings. Female mice were housed in a same-genotype (4 J20 or WT mice per colony) or mixed-genotype (2 J20 mice + 2 WT mice) colony. At 10 weeks of age, their behavior was assessed for five consecutive days. RESULTS: J20 mice showed increased locomotor activity and social sniffing, and reduced social contact compared to WT mice housed in same-genotype colonies. Mixed-genotype housing reduced the social sniffing duration of J20 mice, increased social contact frequency of J20 mice, and increased nest hide by WT mice. CONCLUSION: Thus, altered social behavior can be used as an early indicator of Aß-pathology in female J20 mice. Additionally, when co-housed with WT mice, their social sniffing phenotype is not expressed and their social contact phenotype is reduced. Our findings highlight the presence of a social phenotype in the early stages of AD and indicate a role for social environment variation in the expression of social behavior of WT and J20 mice.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Ratones , Femenino , Animales , Ratones Transgénicos , Precursor de Proteína beta-Amiloide/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Fenotipo , Modelos Animales de Enfermedad
19.
Front Neurol ; 14: 1174079, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37521302

RESUMEN

The Innovative Medicines Initiative (IMI), was a European public-private partnership (PPP) undertaking intended to improve the drug development process, facilitate biomarker development, accelerate clinical trial timelines, improve success rates, and generally increase the competitiveness of European pharmaceutical sector research. Through the IMI, pharmaceutical research interests and the research agenda of the EU are supported by academic partnership and financed by both the pharmaceutical companies and public funds. Since its inception, the IMI has funded dozens of research partnerships focused on solving the core problems that have consistently obstructed the translation of research into clinical success. In this post-mortem review paper, we focus on six research initiatives that tackled foundational challenges of this nature: Aetionomy, EMIF, EPAD, EQIPD, eTRIKS, and PRISM. Several of these initiatives focused on neurodegenerative diseases; we therefore discuss the state of neurodegenerative research both at the start of the IMI and now, and the contributions that IMI partnerships made to progress in the field. Many of the initiatives we review had goals including, but not limited to, the establishment of translational, data-centric initiatives and the implementation of trans-diagnostic approaches that move beyond the candidate disease approach to assess symptom etiology without bias, challenging the construct of disease diagnosis. We discuss the successes of these initiatives, the challenges faced, and the merits and shortcomings of the IMI approach with participating senior scientists for each. Here, we distill their perspectives on the lessons learned, with an aim to positively impact funding policy and approaches in the future.

20.
Biology (Basel) ; 12(4)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37106815

RESUMEN

The function and regulation of rapid-eye-movement (REM) sleep is a topic of ongoing debate. It is often assumed that REM sleep is a homeostatically regulated process and that a need for REM sleep builds up, either during prior wakefulness or during preceding slow wave sleep. In the current study, we tested this hypothesis in six diurnal tree shrews (Tupaia belangeri), small mammals closely related to primates. All animals were individually housed and kept under a 12:12 light-dark cycle with an ambient temperature of 24 °C. We recorded sleep and temperature in the tree shrews for 3 consecutive 24 h days. During the second night, we exposed the animals to a low ambient temperature of 4 °C, a procedure that is known to suppress REM sleep. Cold exposure caused a significant drop in brain temperature and body temperature and also resulted in a strong and selective suppression of REM sleep by 64.9%. However, contrary to our expectation, the loss of REM sleep was not recovered during the subsequent day and night. These findings in a diurnal mammal confirm that the expression of REM sleep is highly sensitive to environmental temperature but do not support the view that REM sleep is homeostatically regulated in this species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA