Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(23): e2204557119, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35653568

RESUMEN

C-type lectin domain family 4, member a4 (Clec4a4) is a C-type lectin inhibitory receptor specific for glycans thought to be exclusively expressed on murine CD8α− conventional dendritic cells. Using newly generated Clec4a4-mCherry knock-in mice, we identify a subset of Clec4a4-expressing eosinophils uniquely localized in the small intestine lamina propria. Clec4a4+ eosinophils evinced an immunomodulatory signature, whereas Clec4a4− eosinophils manifested a proinflammatory profile. Clec4a4+ eosinophils expressed high levels of aryl hydrocarbon receptor (Ahr), which drove the expression of Clec4a4 as well as other immunomodulatory features, such as PD-L1. The abundance of Clec4a4+ eosinophils was dependent on dietary AHR ligands, increased with aging, and declined in inflammatory conditions. Mice lacking AHR in eosinophils expanded innate lymphoid cells of type 2 and cleared Nippostrongylus brasiliensis infection more effectively than did wild-type mice. These results highlight the heterogeneity of eosinophils in response to tissue cues and identify a unique AHR-dependent subset of eosinophils in the small intestine with an immunomodulatory profile.


Asunto(s)
Eosinófilos , Receptores de Hidrocarburo de Aril , Receptores de Superficie Celular , Eosinofilia/terapia , Hipersensibilidad a los Alimentos/terapia , Inmunomodulación , Intestino Delgado , Recuento de Leucocitos , Ligandos , Receptores de Hidrocarburo de Aril/genética
2.
J Immunol ; 205(3): 686-698, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32561568

RESUMEN

IL-17A is a proinflammatory cytokine produced by many types of innate immune cells and Th17 cells and is involved in the elimination of extracellularly growing microorganisms, yet the role of this cytokine in the host defense against intracellularly growing microorganisms is not well known. Cryptococcus deneoformans is an opportunistic intracellular growth fungal pathogen that frequently causes fatal meningoencephalitis in patients with impaired immune responses. In the current study, we analyzed the role of IL-17A in the host defense against C. deneoformans infection. IL-17A was quickly produced by γδT cells at an innate immune phase in infected lungs. In IL-17A gene-disrupted mice, clearance of this fungal pathogen and the host immune response mediated by Th1 cells were significantly accelerated in infected lungs compared with wild-type mice. Similarly, killing of this fungus and production of inducible NO synthase and TNF-α were significantly enhanced in IL-17A gene-disrupted mice. In addition, elimination of this fungal pathogen, Th1 response, and expression of IL-12Rß2 and IFN-γ in NK and NKT cells were significantly suppressed by treatment with rIL-17A. The production of IL-12p40 and TNF-α from bone marrow-derived dendritic cells stimulated with C. deneoformans was significantly suppressed by rIL-17A. In addition, rIL-17A attenuated Th1 cell differentiation in splenocytes from transgenic mice highly expressing TCR for mannoprotein 98, a cryptococcal Ag, upon stimulation with recombinant mannoprotein 98. These data suggest that IL-17A may be involved in the negative regulation of the local host defense against C. deneoformans infection through suppression of the Th1 response.


Asunto(s)
Criptococosis/inmunología , Cryptococcus/inmunología , Células Dendríticas/inmunología , Inmunidad Innata , Interleucina-17/inmunología , Células TH1/inmunología , Animales , Criptococosis/genética , Cryptococcus/genética , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-17/genética , Células Asesinas Naturales/inmunología , Ratones , Ratones Noqueados , Células T Asesinas Naturales/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Receptores de Interleucina-12/genética , Receptores de Interleucina-12/inmunología
3.
Infect Immun ; 89(10): e0033021, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34251289

RESUMEN

The cell walls and capsules of Cryptococcus neoformans, a yeast-type fungal pathogen, are rich in polysaccharides. Dectin-2 is a C-type lectin receptor (CLR) that recognizes high-mannose polysaccharides. Previously, we demonstrated that Dectin-2 is involved in cytokine production by bone marrow-derived dendritic cells (BM-DCs) in response to stimulation with C. neoformans. In the present study, we analyzed the role of Dectin-2 in the phagocytosis of C. neoformans by BM-DCs. The engulfment of this fungus by BM-DCs was significantly decreased in mice lacking Dectin-2 (Dectin-2 knockout [Dectin-2KO]) or caspase recruitment domain-containing protein 9 (CARD9KO), a common adapter molecule that delivers signals triggered by CLRs, compared to wild-type (WT) mice. Phagocytosis was likewise inhibited, to a similar degree, by the inhibition of Syk, a signaling molecule involved in CLR-triggered activation. A PI3K inhibitor, in contrast, completely abrogated the phagocytosis of C. neoformans. Actin polymerization, i.e., conformational changes in cytoskeletons detected at sites of contact with C. neoformans, was also decreased in BM-DCs of Dectin-2KO and CARD9KO mice. Finally, the engulfment of C. neoformans by macrophages was significantly decreased in the lungs of Dectin-2KO mice compared to WT mice. These results suggest that Dectin-2 may play an important role in the actin polymerization and phagocytosis of C. neoformans by DCs, possibly through signaling via CARD9 and a signaling pathway mediated by Syk and PI3K.


Asunto(s)
Criptococosis/microbiología , Cryptococcus neoformans/patogenicidad , Células Dendríticas/metabolismo , Lectinas Tipo C/metabolismo , Fagocitosis/fisiología , Animales , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/microbiología , Proteínas Adaptadoras de Señalización CARD/metabolismo , Criptococosis/metabolismo , Citocinas/metabolismo , Células Dendríticas/microbiología , Femenino , Pulmón/metabolismo , Pulmón/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/metabolismo
4.
J Cell Physiol ; 236(11): 7554-7564, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33973242

RESUMEN

Growing evidence suggest the association between Moyamoya disease (MMD) and immune systems, such as antigen presenting cells in particular. Rnf213 gene, a susceptibility gene for MMD, is highly expressed in immune tissues, however, its function remains unclear. In addition, the physiological role of RNF213 gene polymorphism c.14576G > A (rs112735431), susceptibility variant for MMD, is also poorly understood. By studying Rnf213-knockout (Rnf213-KO) mice with deletion of largest exon32 and Rnf213-knockin (Rnf213-KI) mice with insertion of single-nucleotide polymorphism corresponding to c.14576G > A mutation in MMD patients, we aimed to investigate the role of RNF213 in dendritic cell development, and antigen processing and presentation. First, we found a high level of Rnf213 gene expression in conventional DCs and monocytes. Second, flow cytometric and confocal microscopic analysis revealed ovalbumin protein-pulsed Rnf213-KO and Rnf213-KI DCs showed impaired antigen uptake, proteolysis and reduced numbers of endosomes and lysosomes, and thereby failed to activate and proliferate antigen-specific T cells efficiently. In addition, Rnf213-KI DCs showed a similar phenotype to that of Rnf213-KO BMDCs. In conclusion, our findings suggest the critical role of RNF213 in antigen uptake, processing and presentation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Presentación de Antígeno , Antígenos/metabolismo , Células Dendríticas/metabolismo , Activación de Linfocitos , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Adenosina Trifosfatasas/genética , Animales , Antígenos/inmunología , Proliferación Celular , Células Cultivadas , Técnicas de Cocultivo , Células Dendríticas/inmunología , Ratones Noqueados , Enfermedad de Moyamoya/genética , Enfermedad de Moyamoya/inmunología , Enfermedad de Moyamoya/metabolismo , Fenotipo , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/inmunología , Ubiquitina-Proteína Ligasas/genética
5.
Int J Mol Sci ; 22(8)2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33920301

RESUMEN

Chronic infections are considered one of the most severe problems in skin wounds, and bacteria are present in over 90% of chronic wounds. Pseudomonas aeruginosa is frequently isolated from chronic wounds and is thought to be a cause of delayed wound healing. Invariant natural killer T (iNKT) cells, unique lymphocytes with a potent regulatory ability in various inflammatory responses, accelerate the wound healing process. In the present study, we investigated the contribution of iNKT cells in the host defense against P. aeruginosa inoculation at the wound sites. We analyzed the re-epithelialization, bacterial load, accumulation of leukocytes, and production of cytokines and antimicrobial peptides. In iNKT cell-deficient (Jα18KO) mice, re-epithelialization was significantly decreased, and the number of live colonies was significantly increased, when compared with those in wild-type (WT) mice on day 7. IL-17A, and IL-22 production was significantly lower in Jα18KO mice than in WT mice on day 5. Furthermore, the administration of α-galactosylceramide (α-GalCer), a specific activator of iNKT cells, led to enhanced host protection, as shown by reduced bacterial load, and to increased production of IL-22, IL-23, and S100A9 compared that of with WT mice. These results suggest that iNKT cells promote P. aeruginosa clearance during skin wound healing.


Asunto(s)
Células T Asesinas Naturales/inmunología , Repitelización/genética , Piel/inmunología , Cicatrización de Heridas/genética , Animales , Calgranulina B/genética , Galactosilceramidas/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Interferón gamma/genética , Interleucina-17/genética , Interleucina-23/genética , Interleucinas/genética , Leucocitos/inmunología , Leucocitos/microbiología , Ratones , Proteínas Citotóxicas Formadoras de Poros/farmacología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Repitelización/inmunología , Piel/microbiología , Piel/patología , Cicatrización de Heridas/inmunología , Interleucina-22
6.
Infect Immun ; 89(1)2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33020213

RESUMEN

Streptococcus pneumoniae is a major causative bacterium of community-acquired pneumonia. Dendritic cell-associated C-type lectin-2 (dectin-2), one of the C-type lectin receptors (CLRs), was previously reported to play a pivotal role in host defense against pneumococcal infection through regulating phagocytosis by neutrophils while not being involved in neutrophil accumulation. In the present study, to elucidate the possible contribution of other CLRs to neutrophil accumulation, we examined the role of caspase recruitment domain-containing protein 9 (CARD9), a common adaptor molecule for signal transduction triggered by CLRs, in neutrophilic inflammatory response against pneumococcal infection. Wild-type (WT), CARD9 knockout (KO), and dectin-2 KO mice were infected intratracheally with pneumococcus, and the infected lungs were histopathologically analyzed to assess neutrophil accumulation at 24 h postinfection. Bronchoalveolar lavage fluids (BALFs) were collected at the same time point to count the neutrophils and assess the production of inflammatory cytokines and chemokines. Neutrophil accumulation was significantly decreased in CARD9 KO mice, but not in dectin-2 KO mice. Tumor necrosis factor alpha (TNF-α), keratinocyte-derived chemokine (KC), and macrophage inflammatory protein-2 (MIP-2) production in BALFs were also attenuated in CARD9 KO mice, but not in dectin-2 KO mice. Production of TNF-α and KC by alveolar macrophages stimulated with pneumococcal culture supernatants was significantly attenuated in CARD9 KO mice, but not in dectin-2 KO mice, compared to that in each group's respective control mice. In addition, pneumococcus-infected CARD9 KO mice showed larger bacterial burdens in the lungs than did WT mice. These data indicate that CARD9 is required for neutrophil migration after pneumococcal infection, as well as inflammatory cytokine and chemokine production by alveolar macrophages, and suggest that a CLR distinct from dectin-2 may be involved in this response.


Asunto(s)
Candidiasis Mucocutánea Crónica/complicaciones , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Neutrófilos/inmunología , Neumonía Neumocócica/etiología , Streptococcus pneumoniae , Animales , Biopsia , Quimiocinas/metabolismo , Citocinas/metabolismo , Susceptibilidad a Enfermedades , Inmunoglobulina G/inmunología , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Ratones , Neutrófilos/metabolismo , Neumonía Neumocócica/metabolismo , Neumonía Neumocócica/patología
7.
Infect Immun ; 88(11)2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-32868343

RESUMEN

Cryptococcus deneoformans is an opportunistic fungal pathogen that frequently causes fatal meningoencephalitis in patients with impaired cell-mediated immune responses such as AIDS. Caspase-associated recruitment domain 9 (CARD9) plays a critical role in the host defense against cryptococcal infection, suggesting the involvement of one or more C-type lectin receptors (CLRs). In the present study, we analyzed the role of macrophage-inducible C-type lectin (Mincle), one of the CLRs, in the host defense against C. deneoformans infection. Mincle expression in the lungs of wild-type (WT) mice was increased in the early stage of cryptococcal infection in a CARD9-dependent manner. In Mincle gene-disrupted (Mincle KO) mice, the clearance of this fungus, pathological findings, Th1/Th2 response, and antimicrobial peptide production in the infected lungs were nearly comparable to those in WT mice. However, the production of interleukin-22 (IL-22), tumor necrosis factor alpha (TNF-α), and IL-6 and the expression of AhR were significantly decreased in the lungs of Mincle KO mice compared to those of WT mice. In in vitro experiments, TNF-α production by bone marrow-derived dendritic cells was significantly decreased in Mincle KO mice. In addition, the disrupted lysates of C. deneoformans, but not those of whole yeast cells, activated Mincle-triggered signaling in an assay with a nuclear factor of activated T cells (NFAT)-green fluorescent protein (GFP) reporter cells expressing this receptor. These results suggest that Mincle may be involved in the production of Th22-related cytokines at the early stage of cryptococcal infection, although its role may be limited in the host defense against infection with C. deneoformans.


Asunto(s)
Criptococosis/inmunología , Cryptococcus neoformans/inmunología , Lectinas Tipo C/inmunología , Proteínas de la Membrana/inmunología , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
8.
Int Arch Allergy Immunol ; 181(9): 651-664, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32585675

RESUMEN

INTRODUCTION: The enhanced type 2 helper (Th2) immune response is responsible for the pathogenesis of allergic asthma. To suppress the enhanced Th2 immune response, activation of the Th1 immune response has been an alternative strategy for anti-asthma therapy. In this context, effective Th1-inducing adjuvants that inhibit the development of allergic asthma but do not flare the side effects of the primary agent are required in clinical treatment and preventive medicine. OBJECTIVE: In this study, we aimed to determine the regulation of the Th2 type immune response in asthma by a novel immunostimulatory oligodeoxynucleotide (ODN) derived from Cryptococcus neoformans, termed ODN112, which contains a cytosine-guanine (CG) sequence but not canonical CpG motifs. METHODS: Using an ovalbumin-induced asthma mouse model, we assessed the effect of ODN112 on prototypical asthma-related features in the lung and on the Th1/Th2 profile in the lymph nodes and lung of mice treated with ODN112 during sensitization. RESULTS AND CONCLUSION: ODN112 treatment attenuated asthma features in mice. In the bronchial lymph nodes of the lungs and in the spleen, ODN112 increased interferon-γ production and attenuated Th2 recall responses. In dendritic cells (DCs) after allergen sensitization, ODN112 enhanced cluster of differentiation (CD) 40 and CD80 expression but did not alter CD86 expression. Interleukin-12p40 production from DCs was also increased in a Th2-polarizing condition. Our results suggest that ODN112 is a potential Th1-inducing adjuvant during Th2 cell differentiation in the sensitization phase.


Asunto(s)
Asma/tratamiento farmacológico , Cryptococcus neoformans/metabolismo , Células Dendríticas/inmunología , Hipersensibilidad/tratamiento farmacológico , Oligodesoxirribonucleótidos/uso terapéutico , Células Th2/inmunología , Receptor Toll-Like 9/agonistas , Alérgenos/inmunología , Animales , Diferenciación Celular , Islas de CpG/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Oligodesoxirribonucleótidos/genética , Ovalbúmina/inmunología , Balance Th1 - Th2
9.
Int J Mol Sci ; 20(22)2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31726690

RESUMEN

Interferon (IFN)-γ is mainly secreted by CD4+ T helper 1 (Th1), natural killer (NK) and NKT cells after skin injury. Although IFN-γ is well known regarding its inhibitory effects on collagen synthesis by fibroblasts in vitro, information is limited regarding its role in wound healing in vivo. In the present study, we analyzed how the defect of IFN-γ affects wound healing. Full-thickness wounds were created on the backs of wild type (WT) C57BL/6 and IFN-γ-deficient (KO) mice. We analyzed the percent wound closure, wound breaking strength, accumulation of leukocytes, and expression levels of COL1A1, COL3A1, and matrix metalloproteinases (MMPs). IFN-γKO mice exhibited significant attenuation in wound closure on Day 10 and wound breaking strength on Day 14 after wound creation, characteristics that are associated with prolonged neutrophil accumulation. Expression levels of COL1A1 and COL3A1 mRNA were lower in IFN-γKO than in WT mice, whereas expression levels of MMP-2 (gelatinase) mRNA were significantly greater in IFN-γKO than in WT mice. Moreover, under neutropenic conditions created with anti-Gr-1 monoclonal antibodies, wound closure in IFN-γKO mice was recovered through low MMP-2 expression levels. These results suggest that IFN-γ may be involved in the proliferation and maturation stages of wound healing through the regulation of neutrophilic inflammatory responses.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/inmunología , Interferón gamma/deficiencia , Metaloproteinasa 2 de la Matriz/inmunología , Neutrófilos/inmunología , Cicatrización de Heridas/inmunología , Animales , Colágeno Tipo I/genética , Colágeno Tipo I/inmunología , Cadena alfa 1 del Colágeno Tipo I , Colágeno Tipo III/genética , Colágeno Tipo III/inmunología , Activación Enzimática/genética , Activación Enzimática/inmunología , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Interferón gamma/inmunología , Metaloproteinasa 2 de la Matriz/genética , Ratones , Ratones Noqueados , Neutrófilos/patología , Cicatrización de Heridas/genética
10.
BMC Immunol ; 17(1): 9, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27141827

RESUMEN

BACKGROUND: Triggering receptors expressed on myeloid cells (Trem) proteins are a family of cell surface receptors used to control innate immune responses such as proinflammatory cytokine production in mice. Trem genes belong to a rapidly expanding family of receptors that include activating and inhibitory paired-isoforms. RESULTS: By comparative genomic analysis, we found that Trem4, Trem5 and Trem-like transcript-6 (Treml6) genes typically paired receptors. These paired Trem genes were murine-specific and originated from an immunoreceptor tyrosine-based inhibition motif (ITIM)-containing gene. Treml6 encoded ITIM, whereas Trem4 and Trem5 lacked the ITIM but possessed positively-charged residues to associate with DNAX activating protein of 12 kDa (DAP12). DAP12 was directly associated with Trem4 and Trem5, and DAP12 coupling was mandatory for their expression on the cell surface. In bone marrow-derived dendritic cells (BMDCs) and macrophages (BMDMs), and splenic DC subsets, polyinosinic-polycytidylic acid (polyI:C) followed by type I interferon (IFN) production induced Trem4 and Treml6 whereas polyI:C or other TLR agonists failed to induce the expression of Trem5. PolyI:C induced Treml6 and Trem4 more efficiently in BMDMs than BMDCs. Treml6 was more potentially up-regulated in conventional DC (cDCs) and plasmacytoid DC (pDCs) than Trem4 in mice upon in vivo stimulation with polyI:C. DISCUSSION: Treml6-dependent inhibitory signal would be dominant in viral infection compared to resting state. Though no direct ligands of these Trem receptors have been determined, the results infer that a set of Trem receptors are up-regulated in response to viral RNA to regulate myeloid cell activation through modulation of DAP12-associated Trem4 and ITIM-containing Treml6.


Asunto(s)
Células Dendríticas/inmunología , Macrófagos/inmunología , Receptores Inmunológicos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Inmunidad Innata , Interferón Tipo I/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Dominios Proteicos/genética , ARN Bicatenario/inmunología , Receptor de Interferón alfa y beta/genética , Receptores Inmunológicos/genética
11.
J Immunol ; 193(10): 5199-207, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25320282

RESUMEN

Polyinosinic-polycytidylic acid strongly promotes the antitumor activity of NK cells via TLR3/Toll/IL-1R domain-containing adaptor molecule 1 and melanoma differentiation-associated protein-5/mitochondrial antiviral signaling protein pathways. Polyinosinic-polycytidylic acid acts on accessory cells such as dendritic cells (DCs) and macrophages (Mφs) to secondarily activate NK cells. In a previous study in this context, we identified a novel NK-activating molecule, named IFN regulatory factor 3-dependent NK-activating molecule (INAM), a tetraspanin-like membrane glycoprotein (also called Fam26F). In the current study, we generated INAM-deficient mice and investigated the in vivo function of INAM. We found that cytotoxicity against NK cell-sensitive tumor cell lines was barely decreased in Inam(-/-) mice, whereas the number of IFN-γ-producing cells was markedly decreased in the early phase. Notably, deficiency of INAM in NK and accessory cells, such as CD8α(+) conventional DCs and Mφs, led to a robust decrease in IFN-γ production. In conformity with this phenotype, INAM effectively suppressed lung metastasis of B16F10 melanoma cells, which is controlled by NK1.1(+) cells and IFN-γ. These results suggest that INAM plays a critical role in NK-CD8α(+) conventional DC (and Mφ) interaction leading to IFN-γ production from NK cells in vivo. INAM could therefore be a novel target molecule for cancer immunotherapy against IFN-γ-suppressible metastasis.


Asunto(s)
Interferón gamma/inmunología , Células Asesinas Naturales/inmunología , Neoplasias Pulmonares/inmunología , Melanoma Experimental/genética , Glicoproteínas de Membrana/inmunología , Poli I-C/farmacología , Animales , Antígenos CD8/genética , Antígenos CD8/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Diferenciación Celular , Línea Celular Tumoral , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/patología , Regulación de la Expresión Génica , Interferón gamma/genética , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/patología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Activación de Linfocitos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/patología , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Metástasis de la Neoplasia , Trasplante de Neoplasias , Transducción de Señal
12.
Microbiol Immunol ; 57(1): 1-12, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22924515

RESUMEN

Because jawless vertebrates are the most primitive vertebrates, they have been studied to gain understanding of the evolutionary processes that gave rise to the innate and adaptive immune systems in vertebrates. Jawless vertebrates have developed lymphocyte-like cells that morphologically resemble the T and B cells of jawed vertebrates, but they express variable lymphocyte receptors (VLRs) instead of the T and B cell receptors that specifically recognize antigens in jawed vertebrates. These VLRs act as antigen receptors, diversity being generated in their antigen-binding sites by assembly of highly diverse leucine-rich repeat modules. Therefore, jawless vertebrates have developed adaptive immune systems based on the VLRs. Although pattern recognition receptors, including Toll-like receptors (TLRs) and Rig-like receptors (RLRs), and their adaptor genes are conserved in jawless vertebrates, some transcription factor and inflammatory cytokine genes in the TLR and RLR pathways are not present. However, like jawed vertebrates, the initiation of adaptive immune responses in jawless vertebrates appears to require prior activation of the innate immune system. These observations imply that the innate immune systems of jawless vertebrates have a unique molecular basis that is distinct from that of jawed vertebrates. Altogether, although the molecular details of the innate and adaptive immune systems differ between jawless and jawed vertebrates, jawless vertebrates have developed versions of these immune systems that are similar to those of jawed vertebrates.


Asunto(s)
Inmunidad Adaptativa , Evolución Biológica , Inmunidad Innata , Vertebrados/genética , Vertebrados/inmunología , Animales
13.
Proc Natl Acad Sci U S A ; 107(32): 14304-8, 2010 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-20660745

RESUMEN

Jawless vertebrates such as lamprey and hagfish lack T-cell and B-cell receptors; instead, they have unique antigen receptors known as variable lymphocyte receptors (VLRs). VLRs generate diversity by recombining highly diverse leucine-rich repeat modules and are expressed clonally on lymphocyte-like cells (LLCs). Thus far, two types of receptors, VLRA and VLRB, have been identified in lampreys and hagfish. Recent evidence indicates that VLRA and VLRB are expressed on distinct populations of LLCs that resemble T cells and B cells of jawed vertebrates, respectively. Here we identified a third VLR, designated VLRC, in the lamprey. None of the approximately 100 VLRC cDNA clones subjected to sequencing had an identical sequence, indicating that VLRC can generate sufficient diversity to function as antigen receptors. Notably, the C-terminal cap of VLRC exhibits only limited diversity and has important structural differences relative to VLRA and VLRB. Single-cell PCR analysis identified LLCs that rearranged VLRC but not VLRA or VLRB, suggesting the presence of a unique population of LLCs that express only VLRC.


Asunto(s)
Petromyzon/inmunología , Receptores de Antígenos/genética , Animales , ADN Complementario , Reordenamiento Génico , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
14.
Biomedicines ; 9(11)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34829749

RESUMEN

Lactic acid bacteria (LAB) are known to have beneficial effects on immune responses when they are orally administered as bacterial products. Although the beneficial effects of LAB have been reported for the genera Lactobacillus and Lactococcus, little has been uncovered on the effects of the genus Enterococcus on skin wound-healing. In this study, we aimed to clarify the effect of heat-killed Enterococcus faecalis KH2 (heat-killed KH2) strain on the wound-healing process and to evaluate the therapeutic potential in chronic skin wounds. We analyzed percent wound closure, re-epithelialization, and granulation area, and cytokine and growth factor production. We found that heat-killed KH2 contributed to the acceleration of re-epithelialization and the formation of granulation tissue by inducing tumor necrosis factor-α, interleukin-6, basic fibroblast growth factor, transforming growth factor (TGF)-ß1, and vascular endothelial growth factor production. In addition, heat-killed KH2 also improved wound closure, which was accompanied by the increased production of TGF-ß1 in diabetic mice. Topical administration of heat-killed KH2 might have therapeutic potential for the treatment of chronic skin wounds in diabetes mellitus. In the present study, we concluded that heat-killed KH2 promoted skin wound-healing through the formation of granulation tissues and the production of inflammatory cytokines and growth factors.

15.
Biomed Res ; 42(2): 53-66, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33840686

RESUMEN

Antigen-presenting cells express pattern recognition receptors (PRRs), which sense pathogen-associated molecular patterns from microorganisms and lead to the induction of inflammatory responses. C-type lectin receptors (CLRs), the representative PRRs, bind to microbial polysaccharides, among which Dectin-2 and Mincle recognize mannose-containing polysaccharides. Because influenza virus (IFV) hemagglutinin (HA) is rich in mannose polysaccharides, Dectin-2 or Mincle may contribute to the recognition of HA. In this study, we addressed the possible involvement of Dectin-2 and Mincle in the viral recognition and the initiation of cytokine production. Interleukin (IL)-12p40 and IL-6 production by bone marrow-derived dendritic cells (BM-DCs) upon stimulation with HA was significantly reduced in Dectin-2 knockout (KO) mice compared to wild-type (WT) mice whereas there was no difference between WT mice and Mincle KO mice. BM-DCs that were treated with Syk inhibitor resulted in a significant reduction of cytokine production upon stimulation with HA. The treatment of BM-DCs with methyl-α-D-mannopyranoside (ManP) also led to a significant reduction in cytokine production by BM-DCs that were stimulated with HA, except for the A/H1N1pdm09 subtype. IL-12p40 and IL-6 synthesis by BM-DCs was completely diminished upon stimulation with HA treated with concanavalin A (ConA)-bound sepharose beads. Finally, GFP expression was detected in reporter cells that were transfected with the Dectin-2 gene, but not with the Mincle gene, when stimulated with HA derived from the A/H3N2 subtype. These data suggested that Dectin-2 may be a key molecule as the sensor for IFV to initiate the immune response and regulate the pathogenesis of IFV infection.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Sistema Inmunológico/metabolismo , Gripe Humana/inmunología , Lectinas Tipo C/fisiología , Proteínas de la Membrana/fisiología , Animales , Células Presentadoras de Antígenos/metabolismo , Células de la Médula Ósea/metabolismo , Concanavalina A/química , Citocinas/metabolismo , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Gripe Humana/metabolismo , Subunidad p40 de la Interleucina-12/biosíntesis , Interleucina-6/biosíntesis , Lectinas Tipo C/metabolismo , Ligandos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Transcripción NFATC/metabolismo , Sefarosa/química , Quinasa Syk/metabolismo
16.
Sci Rep ; 11(1): 21110, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34702961

RESUMEN

Cryptococcus deneoformans is an opportunistic fungal pathogen that infects the lungs via airborne transmission and frequently causes fatal meningoencephalitis. Claudins (Cldns), a family of proteins with 27 members found in mammals, form the tight junctions within epithelial cell sheets. Cldn-4 and 18 are highly expressed in airway tissues, yet the roles of these claudins in respiratory infections have not been clarified. In the present study, we analyzed the roles of Cldn-4 and lung-specific Cldn-18 (luCldn-18) in host defense against C. deneoformans infection. luCldn-18-deficient mice exhibited increased susceptibility to pulmonary infection, while Cldn-4-deficient mice had normal fungal clearance. In luCldn-18-deficient mice, production of cytokines including IFN-γ was significantly decreased compared to wild-type mice, although infiltration of inflammatory cells including CD4+ T cells into the alveolar space was significantly increased. In addition, luCldn-18 deficiency led to high K+ ion concentrations in bronchoalveolar lavage fluids and also to alveolus acidification. The fungal replication was significantly enhanced both in acidic culture conditions and in the alveolar spaces of luCldn-18-deficient mice, compared with physiological pH conditions and those of wild-type mice, respectively. These results suggest that luCldn-18 may affect the clinical course of cryptococcal infection indirectly through dysregulation of the alveolar space microenvironment.


Asunto(s)
Microambiente Celular/inmunología , Claudinas/deficiencia , Criptococosis/inmunología , Cryptococcus/inmunología , Pulmón/inmunología , Neumonía/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Microambiente Celular/genética , Claudinas/inmunología , Criptococosis/genética , Interferón gamma/genética , Interferón gamma/inmunología , Pulmón/microbiología , Ratones , Ratones Noqueados , Especificidad de Órganos/genética , Especificidad de Órganos/inmunología , Neumonía/genética , Neumonía/microbiología
17.
J Invest Dermatol ; 141(1): 164-176.e8, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32511980

RESUMEN

C-type lectin receptors recognize microbial polysaccharides. The C-type lectin receptors such as dendritic cell-associated C-type lectin (Dectin)-1 and Dectin-2, which are triggered by ß-glucan and α-mannan, respectively, contribute to upregulation of the inflammatory response. Recently, we demonstrated that activation of the Dectin-2 signal delayed wound healing; in previous studies, triggering the Dectin-1 signal promoted this response. However, the precise roles of these C-type lectin receptors in skin wound healing remain unclear. This study was conducted to determine the roles of Dectin-1 and Dectin-2 in skin wound healing, with a particular focus on the kinetics of neutrophilic inflammatory response. Full-thickness wounds were created on the backs of C57BL/6 mice, and the effects of Dectin-1 or Dectin-2 deficiency and those of ß-glucan or α-mannan administration were examined. We also analyzed wound closure, histological findings, and neutrophilic inflammatory response, including neutrophil extracellular trap formation at the wound sites. We found that Dectin-1 contributed to the acceleration of wound healing by inducing early-phase neutrophil accumulation, whereas Dectin-2 was involved in prolonged neutrophilic responses and neutrophil extracellular trap formation, leading to delayed wound healing. Dectin-2 deficiency also improved collagen deposition and TGF-ß1 expression. These results suggest that Dectin-1 and Dectin-2 have different roles in wound healing through their different effects on the neutrophilic response.


Asunto(s)
Inflamación/metabolismo , Lectinas Tipo C/metabolismo , Neutrófilos/metabolismo , Cicatrización de Heridas/fisiología , Animales , Modelos Animales de Enfermedad , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/patología
18.
Immunogenetics ; 62(7): 441-50, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20376438

RESUMEN

NKG2D is a major activating receptor of natural killer cells. Its ligands are major histocompatibility complex (MHC) class I-like molecules whose expression is induced by cellular stresses such as infections and tumorigenesis. Humans have two families of NKG2D ligands (NKG2DL): MHC class I-related chains (MIC) encoded in the MHC and UL16-binding proteins (ULBP) encoded outside the MHC. By contrast, mice have only the latter family of ligands; instead, they have non-MHC-encoded MILL molecules that are closely related to MIC, but do not function as NKG2DL. To gain insights into the origin and evolution of MIC, ULBP, and MILL gene families, we conducted comparative genomic analysis of NKG2DL family genes in five mammalian species. In the opossum MHC, we identified a ULBP-like gene adjacent to a previously described MIC-like gene, suggesting that ULBP genes were originally encoded in the MHC. The opossum genome also contained a transcribed MILL-like gene in a region syntenic to the rodent regions encoding MILL molecules. These observations indicate that MIC-, ULBP-, and MILL-like genes emerged before the divergence of placental and marsupial mammals. Comparison of the human, cattle, rat, mouse, and opossum genomes indicates that after emigration from the MHC, ULBP genes underwent extensive duplications in each species. In mice, some of the ULBP genes appear to have been translocated telomerically on the same chromosome, forming a major cluster of existent NKG2DL genes.


Asunto(s)
Evolución Molecular , Genoma , Mamíferos/genética , Subfamília D de Receptores Similares a Lectina de las Células NK/genética , Secuencia de Aminoácidos , Animales , Bovinos , Biología Computacional , Proteínas Ligadas a GPI , Factor 15 de Diferenciación de Crecimiento/genética , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ligandos , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Ratones , Datos de Secuencia Molecular , Zarigüeyas/genética , Filogenia , Ratas
19.
Zoolog Sci ; 25(10): 969-75, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19267632

RESUMEN

Extant jawless vertebrates, represented by lampreys and hagfishes, have innate immune receptors with variable domains structurally resembling those of T/B-cell receptors. However, they appear to lack cardinal elements of adaptive immunity shared by all jawed vertebrates: major histocompatibility complex molecules and T/B-cell receptors. Thus, it was widely believed that adaptive immunity is unique to jawed vertebrates. Recently, this belief was overturned by the discovery of agnathan antigen receptors named variable lymphocyte receptors. These receptors generate diversity in their antigen-binding sites through assembling highly diverse leucine-rich repeat modules. The crystal structures of hagfish variable lymphocyte receptor monomers indicate that they adopt a horseshoe-shaped structure and likely bind antigens through the hypervariable concave surface. Secreted variable lymphocyte receptors form pentamers or tetramers of dimers and bind antigens with high specificity and avidity. The fact that variable lymphocyte receptors are structurally unrelated to T/B-cell receptors indicates that jawed and jawless vertebrates have developed antigen receptors independently.


Asunto(s)
Anguila Babosa/inmunología , Lampreas/inmunología , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos T/genética , Animales , Evolución Biológica , Anguila Babosa/genética , Lampreas/genética , Receptores de Antígenos de Linfocitos B/inmunología , Receptores de Antígenos de Linfocitos T/inmunología
20.
Immunobiology ; 220(1): 74-82, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25257859

RESUMEN

CD4(+) T cell effectors are crucial for establishing antitumor immunity. Dendritic cell maturation by immune adjuvants appears to facilitate subset-specific CD4(+) T cell proliferation, but the adjuvant effect for CD4 T on induction of cytotoxic T lymphocytes (CTLs) is largely unknown. Self-antigenic determinants with low avidity are usually CD4 epitopes in mutated proteins with tumor-associated class I-antigens (TAAs). In this study, we made a chimeric version of survivin, a target of human CTLs. The chimeric survivin, where human survivin-2B containing a TAA was embedded in the mouse survivin frame (MmSVN2B), was used to immunize HLA-A-2402/K(b)-transgenic (HLA24(b)-Tg) mice. Subcutaneous administration of MmSVN2B or xenogeneic human survivin (control HsSNV2B) to HLA24(b)-Tg mice failed to induce an immune response without co-administration of an RNA adjuvant polyI:C, which was required for effector induction in vivo. Although HLA-A-2402/K(b) presented the survivin-2B peptide in C57BL/6 mice, 2B-specific tetramer assays showed that no CD8(+) T CTLs specific to survivin-2B proliferated above the detection limit in immunized mice, even with polyI:C treatment. However, the CD4(+) T cell response, as monitored by IFN-γ, was significantly increased in mice given polyI:C+MmSVN2B. The Th1 response and antibody production were enhanced in the mice with polyI:C. The CD4 epitope responsible for effector function was not Hs/MmSNV13-27, a nonconserved region between human and mouse survivin, but region 53-67, which was identical between human and mouse survivin. These results suggest that activated, self-reactive CD4(+) helper T cells proliferate in MmSVN2B+polyI:C immunization and contribute to Th1 polarization followed by antibody production, but hardly participate in CTL induction.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Proteínas Inhibidoras de la Apoptosis/inmunología , Fragmentos de Péptidos/inmunología , Poli I-C/inmunología , Proteínas Recombinantes de Fusión/inmunología , Proteínas Represoras/inmunología , Secuencia de Aminoácidos , Animales , Formación de Anticuerpos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Epítopos de Linfocito T/química , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Exones , Expresión Génica , Orden Génico , Sitios Genéticos , Antígeno HLA-A24/genética , Humanos , Proteínas Inhibidoras de la Apoptosis/genética , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Fragmentos de Péptidos/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Represoras/genética , Survivin
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA