Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant J ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990624

RESUMEN

Enhancing maize kernel oil is vital for improving the bioavailability of fat-soluble vitamins. Here, we combined favourable alleles of dgat1-2 and fatb into parental lines of four multi-nutrient-rich maize hybrids (APTQH1, APTQH4, APTQH5 and APTQH7) using marker-assisted selection (MAS). Parental lines possessed favourable alleles of crtRB1, lcyE, vte4 and opaque2 genes. Gene-specific markers enabled successful foreground selection in BC1F1, BC2F1 and BC2F2, while background selection using genome-wide microsatellite markers (127-132) achieved 93% recurrent parent genome recovery. Resulting inbreds exhibited significantly higher oil (6.93%) and oleic acid (OA, 40.49%) and lower palmitic acid (PA, 14.23%) compared to original inbreds with elevated provitamin A (11.77 ppm), vitamin E (16.01 ppm), lysine (0.331%) and tryptophan (0.085%). Oil content significantly increased from 4.80% in original hybrids to 6.73% in reconstituted hybrids, making them high-oil maize hybrids. These hybrids displayed 35.70% increment in oil content and 51.56% increase in OA with 36.32% reduction in PA compared to original hybrids, while maintaining higher provitamin A (two-fold), vitamin E (nine-fold), lysine (two-fold) and tryptophan (two-fold) compared to normal hybrids. Lipid health indices showed improved atherogenicity, thrombogenicity, cholesterolaemic, oxidability, peroxidizability and nutritive values in MAS-derived genotypes over original versions. Besides, the MAS-derived inbreds and hybrids exhibited comparable grain yield and phenotypic characteristics to the original versions. The maize hybrids developed in the study possessed high-yielding ability with high kernel oil and OA, low PA, better fatty acid health and nutritional properties, higher multi-vitamins and balanced amino acids, which hold immense significance to address malnutrition and rising demand for oil sustainably in a fast-track manner.

2.
Food Res Int ; 191: 114676, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059938

RESUMEN

Popcorn is a specialty corn with worldwide popularity as a snack. Despite having great market demand, genetic improvement in popping quality is limited, which is caused by the limited germplasm utilization and narrow genetic base. An assortment of diverse germplasm, their effective characterization, and integration into popcorn breeding pipeline is the foundation for an efficient breeding program. Here, kernel characteristics, popping quality traits, and agro-morphological traits were evaluated across three locations on a diverse panel of 48 popcorn inbreds derived from diverse landraces and populations of exotic and indigenous origin. The variations due to genotypes, locations, and genotype × location interaction were highly significant. The popping quality traits recorded wide variation with a high coefficient of genotypic determination. The kernel dimensions, kernel density, test weight, and grain yield were negatively correlated with popping quality traits. Genotypes with rice-type kernels exhibited better popping quality than pearl-type kernels. Analysis of genotype × location (G×L) interaction identified two target locations for the key popping quality trait, popping expansion volume. PMI-PC-175, PMI-PC-187, PMI-PC-188, and PMI-PC-189 were identified as superior genotypes over checks for desirable popping quality, agronomic performance, and high grain yield. The contrasting inbreds for popping quality and flake shape (mushroom vs. butterfly) can be utilized for developing mapping populations to enhance our understanding of molecular aspects of popping quality traits. Further, the promising inbreds can be utilized in the genetic improvement of popcorn and crossed to develop superior popcorn hybrids. The results suggest a potential opportunity to establish an efficient popcorn breeding program.


Asunto(s)
Genotipo , Fitomejoramiento , Semillas , Zea mays , Zea mays/genética , Semillas/genética , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA