Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Haematologica ; 106(5): 1354-1367, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32327499

RESUMEN

Hematopoietic development is spatiotemporally tightly regulated by defined cell-intrinsic and extrinsic modifiers. The role of cytokines has been intensively studied in adult hematopoiesis; however, their role in embryonic hematopoietic specification remains largely unexplored. Here, we used induced pluripotent stem cell (iPSC) technology and established a 3-dimensional, organoid-like differentiation system (hemanoid) maintaining the structural cellular integrity to evaluate the effect of cytokines on embryonic hematopoietic development. We show, that defined stages of early human hematopoietic development were recapitulated within the generated hemanoids. We identified KDR+/CD34high/CD144+/CD43-/CD45- hemato-endothelial progenitor cells (HEPs) forming organized, vasculature-like structures and giving rise to CD34low/CD144-/CD43+/CD45+ hematopoietic progenitor cells. We demonstrate that the endothelial to hematopoietic transition of HEPs is dependent on the presence of interleukin 3 (IL-3). Inhibition of IL-3 signalling blocked hematopoietic differentiation and arrested the cells in the HEP stage. Thus, our data suggest an important role for IL-3 in early human hematopoiesis by supporting the endothelial to hematopoietic transition of hemato-endothelial progenitor cells and highlight the potential of a hemanoid-based model to study human hematopoietic development.


Asunto(s)
Células Madre Pluripotentes Inducidas , Interleucina-3 , Células Madre Pluripotentes , Adulto , Diferenciación Celular , Hematopoyesis , Humanos
2.
Nature ; 520(7548): 549-52, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25707806

RESUMEN

Haematopoietic stem cells (HSCs) are responsible for the lifelong production of blood cells. The accumulation of DNA damage in HSCs is a hallmark of ageing and is probably a major contributing factor in age-related tissue degeneration and malignant transformation. A number of accelerated ageing syndromes are associated with defective DNA repair and genomic instability, including the most common inherited bone marrow failure syndrome, Fanconi anaemia. However, the physiological source of DNA damage in HSCs from both normal and diseased individuals remains unclear. Here we show in mice that DNA damage is a direct consequence of inducing HSCs to exit their homeostatic quiescent state in response to conditions that model physiological stress, such as infection or chronic blood loss. Repeated activation of HSCs out of their dormant state provoked the attrition of normal HSCs and, in the case of mice with a non-functional Fanconi anaemia DNA repair pathway, led to a complete collapse of the haematopoietic system, which phenocopied the highly penetrant bone marrow failure seen in Fanconi anaemia patients. Our findings establish a novel link between physiological stress and DNA damage in normal HSCs and provide a mechanistic explanation for the universal accumulation of DNA damage in HSCs during ageing and the accelerated failure of the haematopoietic system in Fanconi anaemia patients.


Asunto(s)
Ciclo Celular , Daño del ADN , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Animales , Médula Ósea/patología , Muerte Celular , Proliferación Celular , Anemia de Fanconi/metabolismo , Ratones , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico
3.
Cell Stem Cell ; 29(8): 1273-1284.e8, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35858618

RESUMEN

Hematopoietic stem cells (HSCs) mediate regeneration of the hematopoietic system following injury, such as following infection or inflammation. These challenges impair HSC function, but whether this functional impairment extends beyond the duration of inflammatory exposure is unknown. Unexpectedly, we observed an irreversible depletion of functional HSCs following challenge with inflammation or bacterial infection, with no evidence of any recovery up to 1 year afterward. HSCs from challenged mice demonstrated multiple cellular and molecular features of accelerated aging and developed clinically relevant blood and bone marrow phenotypes not normally observed in aged laboratory mice but commonly seen in elderly humans. In vivo HSC self-renewal divisions were absent or extremely rare during both challenge and recovery periods. The progressive, irreversible attrition of HSC function demonstrates that temporally discrete inflammatory events elicit a cumulative inhibitory effect on HSCs. This work positions early/mid-life inflammation as a mediator of lifelong defects in tissue maintenance and regeneration.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas , Anciano , Envejecimiento , Animales , Médula Ósea , Humanos , Inflamación , Ratones
4.
Cell Stem Cell ; 24(1): 166-182.e13, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30581079

RESUMEN

We report the direct reprogramming of both adult human fibroblasts and blood cells into induced neural plate border stem cells (iNBSCs) by ectopic expression of four neural transcription factors. Self-renewing, clonal iNBSCs can be robustly expanded in defined media while retaining multilineage differentiation potential. They generate functional cell types of neural crest and CNS lineages and could be used to model a human pain syndrome via gene editing of SCN9A in iNBSCs. NBSCs can also be derived from human pluripotent stem cells and share functional and molecular features with NBSCs isolated from embryonic day 8.5 (E8.5) mouse neural folds. Single-cell RNA sequencing identified the anterior hindbrain as the origin of mouse NBSCs, with human iNBSCs sharing a similar regional identity. In summary, we identify embryonic NBSCs and report their generation by direct reprogramming in human, which may facilitate insights into neural development and provide a neural stem cell source for applications in regenerative medicine.


Asunto(s)
Diferenciación Celular , Reprogramación Celular , Células Madre Embrionarias/citología , Placa Neural/citología , Células-Madre Neurales/citología , Células Madre Pluripotentes/citología , Adulto , Animales , Células Sanguíneas , Células Cultivadas , Células Madre Embrionarias/metabolismo , Humanos , Masculino , Ratones , Placa Neural/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Células Madre Pluripotentes/metabolismo , Adulto Joven
5.
Cell Cycle ; 14(17): 2734-42, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26178207

RESUMEN

Within regenerating tissues, aging is characterized by a progressive general deterioration of organ function, thought to be driven by the gradual depletion of functional adult stem cells. Although there are probably multifactorial mechanisms that result in compromized stem cell functionality with advancing age, the accumulation of DNA damage within the stem cell compartment is likely to make a major contribution to this process. However, the physiologic source of DNA damage within the different tissue specific stem cell compartments remains to be determined, as does the fate of stem cells exposed to such damage. Using the haematopoietic system as a model organ, we have recently shown that certain forms of physiologic stress, such as infection-associated inflammation and extensive blood loss, leads to the induction of biologically relevant levels of DNA damage in haematopoietic stem cells (HSCs) by dramatically increasing the proliferative index of this normally quiescent cell population. (1) We were also able to demonstrate that such stress-associated DNA damage was sufficient to completely deplete HSCs and promote severe aplastic anemia (SAA) in the Fanconi anemia (FA) knockout mouse model, which has compromized replication-associated DNA repair. In this "Extra Views" article, we extend this previous work to show that FA mice do not spontaneously develop a haematopoietic phenotype consistent with SAA, even at extreme old age. This suggests that HSC quiescence restricts the acquisition of DNA damage during aging and preserves the functional integrity of the stem cell pool. In line with this hypothesis, we provide an extended time course analysis of the response of FA knockout mice to chronic inflammatory stress and show that enforced HSC proliferation leads to a highly penetrant SAA phenotype, which closely resembles the progression of the disease in FA patients.


Asunto(s)
Daño del ADN/fisiología , Reparación del ADN/fisiología , Anemia de Fanconi/metabolismo , Células Madre Hematopoyéticas/metabolismo , Estrés Oxidativo/fisiología , Transducción de Señal/fisiología , Animales , Anemia de Fanconi/genética , Anemia de Fanconi/patología , Células Madre Hematopoyéticas/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA