Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Am J Hum Genet ; 111(1): 133-149, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181730

RESUMEN

Bulk-tissue molecular quantitative trait loci (QTLs) have been the starting point for interpreting disease-associated variants, and context-specific QTLs show particular relevance for disease. Here, we present the results of mapping interaction QTLs (iQTLs) for cell type, age, and other phenotypic variables in multi-omic, longitudinal data from the blood of individuals of diverse ancestries. By modeling the interaction between genotype and estimated cell-type proportions, we demonstrate that cell-type iQTLs could be considered as proxies for cell-type-specific QTL effects, particularly for the most abundant cell type in the tissue. The interpretation of age iQTLs, however, warrants caution because the moderation effect of age on the genotype and molecular phenotype association could be mediated by changes in cell-type composition. Finally, we show that cell-type iQTLs contribute to cell-type-specific enrichment of diseases that, in combination with additional functional data, could guide future functional studies. Overall, this study highlights the use of iQTLs to gain insights into the context specificity of regulatory effects.


Asunto(s)
Regulación de la Expresión Génica , Sitios de Carácter Cuantitativo , Humanos , Sitios de Carácter Cuantitativo/genética , Genotipo , Fenotipo
2.
BMC Genomics ; 24(1): 790, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114913

RESUMEN

Transcriptome studies disentangle functional mechanisms of gene expression regulation and may elucidate the underlying biology of disease processes. However, the types of tissues currently collected typically assay a single post-mortem timepoint or are limited to investigating cell types found in blood. Noninvasive tissues may improve disease-relevant discovery by enabling more complex longitudinal study designs, by capturing different and potentially more applicable cell types, and by increasing sample sizes due to reduced collection costs and possible higher enrollment from vulnerable populations. Here, we develop methods for sampling noninvasive biospecimens, investigate their performance across commercial and in-house library preparations, characterize their biology, and assess the feasibility of using noninvasive tissues in a multitude of transcriptomic applications. We collected buccal swabs, hair follicles, saliva, and urine cell pellets from 19 individuals over three to four timepoints, for a total of 300 unique biological samples, which we then prepared with replicates across three library preparations, for a final tally of 472 transcriptomes. Of the four tissues we studied, we found hair follicles and urine cell pellets to be most promising due to the consistency of sample quality, the cell types and expression profiles we observed, and their performance in disease-relevant applications. This is the first study to thoroughly delineate biological and technical features of noninvasive samples and demonstrate their use in a wide array of transcriptomic and clinical analyses. We anticipate future use of these biospecimens will facilitate discovery and development of clinical applications.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Humanos , Estudios Longitudinales , Regulación de la Expresión Génica , Saliva
3.
Lancet Reg Health Eur ; 41: 100914, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38707868

RESUMEN

Background: Schizophrenia (SCZ) patients exhibit 30% higher prevalence of metabolic syndrome (MetS) compared to the general population with its suboptimal management contributing to increased mortality. Large-scale studies providing real-world evidence of the underlying causes remain limited. Methods: To address this gap, we used real-world health data from the Estonian Biobank, spanning a median follow-up of ten years, to investigate the impact of genetic predisposition and antipsychotic treatment on the development of MetS in SCZ patients. Specifically, we set out to characterize antipsychotic treatment patterns, genetic predisposition of MetS traits, MetS prognosis, and body mass index (BMI) trajectories, comparing SCZ cases (n = 677) to age- and sex-matched controls (n = 2708). Findings: SCZ cases exhibited higher genetic predisposition to SCZ (OR = 1.75, 95% CI 1.58-1.94), but lower polygenic burden for increased BMI (OR = 0.88, 95% CI 0.88-0.96) and C-reactive protein (OR = 0.88, 95% CI 0.81-0.97) compared to controls. While SCZ cases showed worse prognosis of MetS (HR 1.95, 95% CI 1.54-2.46), higher antipsychotic adherence within the first treatment year was associated with reduced long-term MetS incidence. Linear mixed modelling, incorporating multiple BMI timepoints, underscored the significant contribution of both, antipsychotic medication, and genetic predisposition to higher BMI, driving the substantially upward trajectory of BMI in SCZ cases. Interpretation: These findings contribute to refining clinical risk prediction and prevention strategies for MetS among SCZ patients and emphasize the significance of incorporating genetic information, long-term patient tracking, and employing diverse perspectives when analyzing real-world health data. Funding: EU Horizon 2020, Swedish Research Council, Estonian Research Council, Estonian Ministry of Education and Research, University of Tartu.

4.
Epigenetics ; 19(1): 2333668, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38571307

RESUMEN

Systemic low-grade inflammation is a feature of chronic disease. C-reactive protein (CRP) is a common biomarker of inflammation and used as an indicator of disease risk; however, the role of inflammation in disease is not completely understood. Methylation is an epigenetic modification in the DNA which plays a pivotal role in gene expression. In this study we evaluated differential DNA methylation patterns associated with blood CRP level to elucidate biological pathways and genetic regulatory mechanisms to improve the understanding of chronic inflammation. The racially and ethnically diverse participants in this study were included as 50% White, 41% Black or African American, 7% Hispanic or Latino/a, and 2% Native Hawaiian, Asian American, American Indian, or Alaska Native (total n = 13,433) individuals. We replicated 113 CpG sites from 87 unique loci, of which five were novel (CADM3, NALCN, NLRC5, ZNF792, and cg03282312), across a discovery set of 1,150 CpG sites associated with CRP level (p < 1.2E-7). The downstream pathways affected by DNA methylation included the identification of IFI16 and IRF7 CpG-gene transcript pairs which contributed to the innate immune response gene enrichment pathway along with NLRC5, NOD2, and AIM2. Gene enrichment analysis also identified the nuclear factor-kappaB transcription pathway. Using two-sample Mendelian randomization (MR) we inferred methylation at three CpG sites as causal for CRP levels using both White and Black or African American MR instrument variables. Overall, we identified novel CpG sites and gene transcripts that could be valuable in understanding the specific cellular processes and pathogenic mechanisms involved in inflammation.


Asunto(s)
Proteína C-Reactiva , Metilación de ADN , Humanos , Proteína C-Reactiva/genética , Epigénesis Genética , ADN , Inflamación/genética , Estudio de Asociación del Genoma Completo , Islas de CpG , Péptidos y Proteínas de Señalización Intracelular/genética
5.
Sci Rep ; 14(1): 17757, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-39085340

RESUMEN

Chronic kidney disease (CKD) impacts about 1 in 7 adults in the United States, but African Americans (AAs) carry a disproportionately higher burden of disease. Epigenetic modifications, such as DNA methylation at cytosine-phosphate-guanine (CpG) sites, have been linked to kidney function and may have clinical utility in predicting the risk of CKD. Given the dynamic relationship between the epigenome, environment, and disease, AAs may be especially sensitive to environment-driven methylation alterations. Moreover, risk models incorporating CpG methylation have been shown to predict disease across multiple racial groups. In this study, we developed a methylation risk score (MRS) for CKD in cohorts of AAs. We selected nine CpG sites that were previously reported to be associated with estimated glomerular filtration rate (eGFR) in epigenome-wide association studies to construct a MRS in the Hypertension Genetic Epidemiology Network (HyperGEN). In logistic mixed models, the MRS was significantly associated with prevalent CKD and was robust to multiple sensitivity analyses, including CKD risk factors. There was modest replication in validation cohorts. In summary, we demonstrated that an eGFR-based CpG score is an independent predictor of prevalent CKD, suggesting that MRS should be further investigated for clinical utility in evaluating CKD risk and progression.


Asunto(s)
Islas de CpG , Metilación de ADN , Tasa de Filtración Glomerular , Insuficiencia Renal Crónica , Humanos , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/epidemiología , Masculino , Femenino , Persona de Mediana Edad , Factores de Riesgo , Negro o Afroamericano/genética , Anciano , Estudio de Asociación del Genoma Completo , Epigénesis Genética , Adulto , Predisposición Genética a la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA