Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Stroke ; 55(6): 1641-1649, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38572660

RESUMEN

BACKGROUND: The current management of patients with stroke with intravenous thrombolysis and endovascular thrombectomy is effective only when it is timely performed on an appropriately selected but minor fraction of patients. The development of novel adjunctive therapy is highly desired to reduce morbidity and mortality with stroke. Since endothelial dysfunction is implicated in the pathogenesis of stroke and is featured with suppressed endothelial nitric oxide synthase (eNOS) with concomitant nitric oxide deficiency, restoring endothelial nitric oxide represents a promising approach to treating stroke injury. METHODS: This is a preclinical proof-of-concept study to determine the therapeutic effect of transcranial treatment with a low-power near-infrared laser in a mouse model of ischemic stroke. The laser treatment was performed before the middle cerebral artery occlusion with a filament. To determine the involvement of eNOS phosphorylation, unphosphorylatable eNOS S1176A knock-in mice were used. Each measurement was analyzed by a 2-way ANOVA to assess the effect of the treatment on cerebral blood flow with laser Doppler flowmetry, eNOS phosphorylation by immunoblot analysis, and stroke outcomes by infarct volumes and neurological deficits. RESULTS: Pretreatment with a 1064-nm laser at an irradiance of 50 mW/cm2 improved cerebral blood flow, eNOS phosphorylation, and stroke outcomes. CONCLUSIONS: Near-infrared II photobiomodulation could offer a noninvasive and low-risk adjunctive therapy for stroke injury. This new modality using a physical parameter merits further consideration to develop innovative therapies to prevent and treat a wide array of cardiovascular diseases.


Asunto(s)
Terapia por Luz de Baja Intensidad , Óxido Nítrico Sintasa de Tipo III , Animales , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ratones , Fosforilación , Terapia por Luz de Baja Intensidad/métodos , Masculino , Accidente Cerebrovascular , Ratones Endogámicos C57BL , Infarto de la Arteria Cerebral Media , Circulación Cerebrovascular/fisiología , Accidente Cerebrovascular Isquémico/metabolismo , Modelos Animales de Enfermedad
2.
FASEB J ; 36(9): e22490, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35929438

RESUMEN

There is solid evidence of the beneficial effect of photobiomodulation (PBM) with low-power near-infrared (NIR) light in the NIR-I window in increasing bioavailable nitric oxide (NO). However, it is not established whether this effect can be extended to NIR-II light, limiting broader applications of this therapeutic modality. Since we have demonstrated PBM with NIR laser in the NIR-II window, we determined the causal relationship between NIR-II irradiation and its specific biological effects on NO bioavailability. We analyzed the impact of NIR-II irradiation on NO release in cultured human endothelial cells using a NO-sensitive fluorescence probe and single-cell live imaging. Two distinct wavelengths of NIR-II laser (1064 and 1270 nm) and NIR-I (808 nm) at an irradiance of 10 mW/cm2 induced NO release from endothelial cells. These lasers also enhanced Akt phosphorylation at Ser 473, endothelial nitric oxide synthase (eNOS) phosphorylation at Ser 1177, and endothelial cell migration. Moreover, the NO release and phosphorylation of eNOS were abolished by inhibiting mitochondrial respiration, suggesting that Akt activation caused by NIR-II laser exposure involves mitochondrial retrograde signaling. Other inhibitors that inhibit known Akt activation pathways, including a specific inhibitor of PI3K, Src family PKC, did not affect this response. These two wavelengths of NIR-II laser induced no appreciable NO generation in cultured neuronal cells expressing neuronal NOS (nNOS). In short, NIR-II laser enhances bioavailable NO in endothelial cells. Since a hallmark of endothelial dysfunction is suppressed eNOS with concomitant NO deficiency, NIR-II laser technology could be broadly used to restore endothelial NO and treat or prevent cardiovascular diseases.


Asunto(s)
Óxido Nítrico Sintasa de Tipo III , Óxido Nítrico , Células Cultivadas , Células Endoteliales/metabolismo , Humanos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo
3.
FASEB J ; 36(10): e22521, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36052742

RESUMEN

Immunotherapy, including immune checkpoint inhibitors, has revolutionized cancer treatment, but only a minor fraction of patients shows durable responses. A new approach to overcome this limitation is yet to be identified. Recently, we have shown that photobiomodulation (PBM) with near-infrared (NIR) light in the NIR-II window reduces oxidative stress and supports the proliferation of CD8+ T cells, suggesting that PBM with NIR-II light could augment anti-cancer immunity. Here, we report a novel approach to support tumor-infiltrating CD8+ T cells upon PBM with NIR-II laser with high tissue penetration depth. Brief treatments of a murine model of breast cancer with dual 1064 and 1270 nm lasers reduced the expression of the programmed cell death protein 1 (PD-1) in CD8+ T cells in a syngeneic mouse model of breast cancer. The direct effect of the NIR-II laser treatment on T cells was confirmed by the enhanced tumor growth delay by the adoptive transfer of laser-treated CD8+ T cells ex vivo against a model tumor antigen. We further demonstrated that specific NIR-II laser parameters augmented the effect of the immune checkpoint inhibitor on tumor growth. PBM with NIR-II light augments the efficacy of cancer immunotherapy by supporting CD8+ T cells. Unlike the current immunotherapy with risks of undesirable drug-drug interactions and severe adverse events, the laser is safe and low-cost. It can be broadly combined with other therapy without modification to achieve clinical significance. In addition, our study established a path to develop a novel laser-based therapy to treat cancer effectively.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Animales , Inmunoterapia , Rayos Láser , Ratones , Neoplasias/terapia , Oxidación-Reducción
4.
Nitric Oxide ; 130: 58-68, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36462596

RESUMEN

Nitric oxide (NO) is a well-known gaseous mediator that maintains vascular homeostasis. Extensive evidence supports that a hallmark of endothelial dysfunction, which leads to cardiovascular diseases, is endothelial NO deficiency. Thus, restoring endothelial NO represents a promising approach to treating cardiovascular complications. Despite many therapeutic agents having been shown to augment NO bioavailability under various pathological conditions, success in resulting clinical trials has remained elusive. There is solid evidence of diverse beneficial effects of the treatment with low-power near-infrared (NIR) light, defined as photobiomodulation (PBM). Although the precise mechanisms of action of PBM are still elusive, recent studies consistently report that PBM improves endothelial dysfunction via increasing bioavailable NO in a dose-dependent manner and open a feasible path to the use of PBM for treating cardiovascular diseases via augmenting NO bioavailability. In particular, the use of NIR light in the NIR-II window (1000-1700 nm) for PBM, which has reduced scattering and minimal tissue absorption with the largest penetration depth, is emerging as a promising therapy. In this review, we update recent findings on PBM and NO.


Asunto(s)
Enfermedades Cardiovasculares , Terapia por Luz de Baja Intensidad , Humanos , Terapia por Luz de Baja Intensidad/métodos , Óxido Nítrico , Transducción de Señal
5.
Int J Mol Sci ; 25(1)2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38203730

RESUMEN

Small molecule fluorophores often face challenges such as short blood half-life, limited physicochemical and optical stability, and poor pharmacokinetics. To overcome these limitations, we conjugated the zwitterionic near-infrared fluorophore ZW800-PEG to human serum albumin (HSA), creating HSA-ZW800-PEG. This conjugation notably improves chemical, physical, and optical stability under physiological conditions, addressing issues commonly encountered with small molecules in biological applications. Additionally, the high molecular weight and extinction coefficient of HSA-ZW800-PEG enhances biodistribution and tumor targeting through the enhanced permeability and retention effect. The unique distribution and elimination dynamics, along with the significantly extended blood half-life of HSA-ZW800-PEG, contribute to improved tumor targetability in both subcutaneous and orthotopic xenograft tumor-bearing animal models. This modification not only influences the pharmacokinetic profile, affecting retention time and clearance patterns, but also enhances bioavailability for targeting tissues. Our study guides further development and optimization of targeted imaging agents and drug-delivery systems.


Asunto(s)
Neoplasias , Albúmina Sérica Humana , Animales , Humanos , Distribución Tisular , Neoplasias/diagnóstico por imagen , Disponibilidad Biológica , Sistemas de Liberación de Medicamentos , Colorantes Fluorescentes , Ionóforos
6.
Angew Chem Int Ed Engl ; 61(17): e202117330, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35150468

RESUMEN

The residual tumor after surgery is the most significant prognostic factor of patients with epithelial ovarian cancer. Near-infrared (NIR) fluorescence-guided surgery is actively utilized for tumor localization and complete resection during surgery. However, currently available contrast-enhancing agents display low on-target binding, unfavorable pharmacokinetics, and toxicity, thus not ideal for clinical use. Here we report ultrabright and stable squaraine fluorophores with optimal pharmacokinetics by introducing an asymmetric molecular conformation and surface charges for rapid transporter-mediated cellular uptake. Among the tested, OCTL14 shows low serum binding and rapid distribution into cancer tissue via organic cation transporters (OCTs). Additionally, the charged squaraine fluorophores are retained in lysosomes, providing durable intraoperative imaging in a preclinical murine model of ovarian cancer up to 24 h post-injection. OCTL14 represents a significant departure from the current bioconjugation approach of using a non-targeted fluorophore and would provide surgeons with an indispensable tool to achieve optimal resection.


Asunto(s)
Ciclobutanos , Neoplasias Ováricas , Animales , Carcinoma Epitelial de Ovario/diagnóstico por imagen , Medios de Contraste , Ciclobutanos/química , Colorantes Fluorescentes/química , Humanos , Ionóforos , Ratones , Imagen Óptica/métodos , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/patología , Neoplasias Ováricas/cirugía , Fenoles
7.
FASEB J ; 34(3): 3485-3500, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31994227

RESUMEN

The use of an immunologic adjuvant to augment the immune response is essential for modern vaccines which are relatively ineffective on their own. In the past decade, researchers have been consistently reporting that skin treatment with a physical parameter, namely laser light, augments the immune response to vaccine and functions as an immunologic adjuvant. This "laser adjuvant" has numerous advantages over the conventional chemical or biological agents; it is free from cold chain storage, hypodermic needles, biohazardous sharp waste, irreversible formulation with vaccine antigen, undesirable biodistribution in vital organs, or unknown long-term toxicity. Since vaccine formulations are given to healthy populations, these characteristics render the "laser adjuvant" significant advantages for clinical use and open a new developmental path for a safe and effective vaccine. In addition, laser technology has been used in the clinic for more than three decades and is therefore technically matured and has been proved to be safe. Currently, four classes of laser adjuvant have been reported; ultrashort pulsed, non-pulsed, non-ablative fractional, and ablative fractional lasers. Since each class of the laser adjuvant shows a distinct mechanism of action, a proper choice is necessary to craft an effective vaccine formulation toward a desired clinical benefit for a clinical vaccine to maximize protection. In addition, data also suggest that further improvement in the efficacy is possible when a laser adjuvant is combined with chemical or biological adjuvant(s). To realize these goals, further efforts to uncover the molecular mechanisms of action of the laser adjuvants is warranted. This review provides a summary and comments of the recent updates in the laser adjuvant technology.


Asunto(s)
Adyuvantes Inmunológicos , Rayos Láser , Vacunación/métodos , Animales , Humanos
8.
FASEB J ; 33(2): 3074-3081, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30192655

RESUMEN

Many vaccines require adjuvants to enhance immunogenicity, but there are few safe and effective intradermal (i.d.) adjuvants. Murine studies have validated the potency of laser illumination of skin as an adjuvant for i.d. vaccination with advantages over traditional adjuvants. We report a pilot clinical trial of low-power, continuous-wave, near-infrared laser adjuvant treatment, representing the first human trial of the safety, tolerability, and cutaneous immune cell trafficking changes produced by the laser adjuvant. In this trial we demonstrated a maximum tolerable energy dose of 300 J/cm2 to a spot on the lower back. The irradiated spot was biopsied 4 h later, as was a control spot. Paired biopsies were submitted for histomorphologic and immunohistochemical evaluation in a blinded fashion as well as quantitative PCR analysis for chemokines and cytokines. Similar to prior murine studies, highly significant reductions in CD1a+ Langerhans cells in the dermis and CD11c+ dermal dendritic cells were observed, corresponding to the increased migratory activity of these cells; changes in the epidermis were not significant. There was no evidence of skin damage. The laser adjuvant is a safe, well-tolerated adjuvant for i.d. vaccination in humans and results in significant cutaneous immune cell trafficking.-Gelfand, J. A., Nazarian, R. M., Kashiwagi, S., Brauns, T., Martin, B., Kimizuka, Y., Korek, S., Botvinick, E., Elkins, K., Thomas, L., Locascio, J., Parry, B., Kelly, K. M., Poznansky, M. C. A pilot clinical trial of a near-infrared laser vaccine adjuvant: safety, tolerability, and cutaneous immune cell trafficking.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Células Dendríticas/inmunología , Rayos Láser , Piel/inmunología , Vacunas/administración & dosificación , Adolescente , Adulto , Células Cultivadas , Células Dendríticas/efectos de la radiación , Femenino , Humanos , Inyecciones Intradérmicas , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Proyectos Piloto , Piel/efectos de la radiación , Vacunación , Vacunas/inmunología , Adulto Joven
9.
J Immunol ; 201(12): 3587-3603, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30420435

RESUMEN

The treatment of skin with a low-power continuous-wave (CW) near-infrared (NIR) laser prior to vaccination is an emerging strategy to augment the immune response to intradermal vaccine, potentially substituting for chemical adjuvant, which has been linked to adverse effects of vaccines. This approach proved to be low cost, simple, small, and readily translatable compared with the previously explored pulsed-wave medical lasers. However, little is known on the mode of laser-tissue interaction eliciting the adjuvant effect. In this study, we sought to identify the pathways leading to the immunological events by examining the alteration of responses resulting from genetic ablation of innate subsets including mast cells and specific dendritic cell populations in an established model of intradermal vaccination and analyzing functional changes of skin microcirculation upon the CW NIR laser treatment in mice. We found that a CW NIR laser transiently stimulates mast cells via generation of reactive oxygen species, establishes an immunostimulatory milieu in the exposed tissue, and provides migration cues for dermal CD103+ dendritic cells without inducing prolonged inflammation, ultimately augmenting the adaptive immune response. These results indicate that use of an NIR laser with distinct wavelength and power is a safe and effective tool to reproducibly modulate innate programs in skin. These mechanistic findings would accelerate the clinical translation of this technology and warrant further explorations into the broader application of NIR lasers to the treatment of immune-related skin diseases.


Asunto(s)
Células Dendríticas/inmunología , Terapia por Láser/métodos , Mastocitos/inmunología , Piel/inmunología , Vacunas/inmunología , Inmunidad Adaptativa , Adyuvantes Inmunológicos , Animales , Movimiento Celular , Células Cultivadas , Femenino , Inmunidad Innata , Inmunización , Rayos Infrarrojos , Ratones , Ratones Endogámicos C57BL , Exposición a la Radiación , Especies Reactivas de Oxígeno/metabolismo , Piel/efectos de la radiación
10.
FASEB J ; 32(1): 5-15, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29092906

RESUMEN

Mass cytometry enables highly multiplexed profiling of cellular immune responses in limited-volume samples, advancing prospects of a new era of systems immunology. The capabilities of mass cytometry offer expanded potential for deciphering immune responses to infectious diseases and to vaccines. Several studies have used mass cytometry to profile protective immune responses, both postinfection and postvaccination, although no vaccine-development program has yet systematically employed the technology from the outset to inform both candidate design and clinical evaluation. In this article, we review published mass cytometry studies relevant to vaccine development, briefly compare immune profiling by mass cytometry to other systems-level technologies, and discuss some general considerations for deploying mass cytometry in the context of vaccine development.-Reeves, P. M., Sluder, A. E., Raju Paul, S., Scholzen, A., Kashiwagi, S., Poznansky, M. C. Application and utility of mass cytometry in vaccine development.


Asunto(s)
Citometría de Flujo/métodos , Vacunas/inmunología , Animales , Anticuerpos , Interpretación Estadística de Datos , Descubrimiento de Drogas , Citometría de Flujo/estadística & datos numéricos , Colorantes Fluorescentes , Perfilación de la Expresión Génica , Humanos , Inmunidad Celular , Vacunas contra la Influenza/inmunología , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Biología de Sistemas
11.
J Immunol ; 199(4): 1319-1332, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28710250

RESUMEN

Brief exposure of skin to near-infrared (NIR) laser light has been shown to augment the immune response to intradermal vaccination and thus act as an immunologic adjuvant. Although evidence indicates that the NIR laser adjuvant has the capacity to activate innate subsets including dendritic cells (DCs) in skin as conventional adjuvants do, the precise immunological mechanism by which the NIR laser adjuvant acts is largely unknown. In this study we sought to identify the cellular target of the NIR laser adjuvant by using an established mouse model of intradermal influenza vaccination and examining the alteration of responses resulting from genetic ablation of specific DC populations. We found that a continuous wave (CW) NIR laser adjuvant broadly modulates migratory DC (migDC) populations, specifically increasing and activating the Lang+ and CD11b-Lang- subsets in skin, and that the Ab responses augmented by the CW NIR laser are dependent on DC subsets expressing CCR2 and Langerin. In comparison, a pulsed wave NIR laser adjuvant showed limited effects on the migDC subsets. Our vaccination study demonstrated that the efficacy of the CW NIR laser is significantly better than that of the pulsed wave laser, indicating that the CW NIR laser offers a desirable immunostimulatory microenvironment for migDCs. These results demonstrate the unique ability of the NIR laser adjuvant to selectively target specific migDC populations in skin depending on its parameters, and highlight the importance of optimization of laser parameters for desirable immune protection induced by an NIR laser-adjuvanted vaccine.


Asunto(s)
Células Dendríticas/inmunología , Vacunas contra la Influenza/inmunología , Rayos Infrarrojos , Rayos Láser , Piel/inmunología , Piel/efectos de la radiación , Vacunación/métodos , Adyuvantes Inmunológicos , Animales , Antígenos de Superficie/metabolismo , Movimiento Celular , Células Dendríticas/fisiología , Vacunas contra la Influenza/administración & dosificación , Inyecciones Intradérmicas , Lectinas Tipo C/metabolismo , Lectinas de Unión a Manosa/metabolismo , Ratones , Receptores CCR2/genética , Receptores CCR2/metabolismo
12.
Nat Rev Cancer ; 6(7): 521-34, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16794635

RESUMEN

Nitric oxide (NO) and nitric oxide synthases are ubiquitous in malignant tumours and are known to exert both pro- and anti-tumour effects. We summarize our current understanding of the role of NO in tumour progression, especially in relation to angiogenesis and vascular functions. We also discuss potential strategies for cancer treatment that modulate NO production and/or its downstream signalling pathways.


Asunto(s)
Neoplasias/metabolismo , Óxido Nítrico/metabolismo , Transducción de Señal/fisiología , Animales , Progresión de la Enfermedad , Endotelio Vascular/metabolismo , Humanos , Neoplasias/irrigación sanguínea , Neovascularización Patológica/metabolismo , Óxido Nítrico Sintasa/metabolismo
13.
Angew Chem Int Ed Engl ; 53(47): 12844-8, 2014 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-25251031

RESUMEN

The naphthyridine:imidazopyridopyrimidine base pair is the first base pair containing four hydrogen bonds that can be replicated selectively and efficiently by the use of DNA polymerases. Herein we describe the synthesis of naphthyridine-C-ribonucleoside 5'-triphosphate (rNaTP) and transcription reactions catalyzed by T7 RNA polymerase with rNaTP and template DNA containing imidazopyridopyrimidine. The transcription reaction was also applied to a longer transcript containing part of the human c-Ha-Ras gene.


Asunto(s)
Emparejamiento Base , ARN Polimerasas Dirigidas por ADN/metabolismo , Naftiridinas/química , Naftiridinas/metabolismo , Pirimidinas/química , Pirimidinas/metabolismo , Proteínas Virales/metabolismo , Biocatálisis , Humanos , Enlace de Hidrógeno , Estructura Molecular
14.
Biomater Res ; 28: 0002, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38327616

RESUMEN

Background: Near-infrared (NIR) phototheranostics provide promising noninvasive imaging and treatment for head and neck squamous cell carcinoma (HNSCC), capitalizing on its adjacency to skin or mucosal surfaces. Activated by laser irradiation, targeted NIR fluorophores can selectively eradicate cancer cells, harnessing the power of synergistic photodynamic therapy and photothermal therapy. However, there is a paucity of NIR bioprobes showing tumor-specific targeting and effective phototheranosis without hurting surrounding healthy tissues. Methods: We engineered a tumor-specific bifunctional NIR bioprobe designed to precisely target HNSCC and induce phototheranosis using bioconjugation of a cyclic arginine-glycine-aspartic acid (cRGD) motif and zwitterionic polymethine NIR fluorophore. The cytotoxic effects of cRGD-ZW800-PEG were measured by assessing heat and reactive oxygen species (ROS) generation upon an 808-nm laser irradiation. We then determined the in vivo efficacy of cRGD-ZW800-PEG in the FaDu xenograft mouse model of HNSCC, as well as its biodistribution and clearance, using a customized portable NIR imaging system. Results: Real-time NIR imaging revealed that intravenously administered cRGD-ZW800-PEG targeted tumors rapidly within 4 h postintravenous injection in tumor-bearing mice. Upon laser irradiation, cRGD-ZW800-PEG produced ROS and heat simultaneously and exhibited synergistic photothermal and photodynamic effects on the tumoral tissue without affecting the neighboring healthy tissues. Importantly, all unbound bioprobes were cleared through renal excretion. Conclusions: By harnessing phototheranosis in combination with tailored tumor selectivity, our targeted bioprobe ushers in a promising paradigm in cancer treatment. It promises safer and more efficacious therapeutic avenues against cancer, marking a substantial advancement in the field.

16.
Stroke ; 44(11): 3183-8, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23988642

RESUMEN

BACKGROUND AND PURPOSE: Phosphorylation of eNOS, an important post-translational modulator of its enzymatic activity, is reduced in diabetes mellitus. We hypothesized that modulation of eNOS phosphorylation could overcome diabetic vascular dysfunction and improves the outcome to stroke. METHODS: We used the db/db mouse model of type 2 diabetes mellitus. We mated db/db mice with eNOS knock-in mice that carry single amino acid mutations at the S1176 phosphorylation site; the phosphomimetic SD mutation (serine replaced by aspartate) shows increased eNOS enzymatic activity, whereas the unphosphorylatable SA mutation (serine replaced by alanine) shows decreased eNOS activity. We characterized the vascular anatomy, baseline physiological parameters, and vascular reactivity. We used the middle cerebral artery occlusion model of stroke and measured infarct volume and neurological deficits. RESULTS: db/db mice showed diminished eNOS phosphorylation at S1176. eNOS SD and SA mutations do not change the vascular anatomy at the Circle of Willis, brain capillary density, heart rate, or arterial blood gases of db/db mice. The eNOS SD mutation, but not the SA mutation, lowers blood pressure and improves vascular reactivity to acetylcholine in db/db mice. The eNOS SD mutation reduces stroke size and neurological deficit after middle cerebral artery occlusion. CONCLUSIONS: Diminished eNOS phosphorylation is a mechanism of vascular dysfunction in db/db mice. We show here that modulation of the eNOS S1176 phosphorylation site in db/db mice is associated with improved vascular reactivity and improved outcome to stroke after middle cerebral artery occlusion.


Asunto(s)
Complicaciones de la Diabetes/metabolismo , Diabetes Mellitus Tipo 2/patología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Accidente Cerebrovascular/diagnóstico , Enfermedades Vasculares/diagnóstico , Animales , Cruzamientos Genéticos , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Óxido Nítrico/química , Óxido Nítrico Sintasa de Tipo III/genética , Fosforilación , Accidente Cerebrovascular/complicaciones , Resultado del Tratamiento , Enfermedades Vasculares/complicaciones
17.
Biochem Biophys Res Commun ; 431(2): 284-90, 2013 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-23291238

RESUMEN

Phosphorylation of endothelial nitric oxide synthase (eNOS) is an important regulator of its enzymatic activity. We generated knockin mice expressing phosphomimetic (SD) and unphosphorylatable (SA) eNOS mutations at S1176 to study the role of eNOS phosphorylation. The single amino acid SA mutation is associated with hypertension and decreased vascular reactivity, while the SD mutation results in increased basal and stimulated endothelial NO production. In addition to these vascular effects, modulation of the S1176 phosphorylation site resulted in unanticipated effects on metabolism. The eNOS SA mutation results in insulin resistance, hyperinsulinemia, adiposity, and increased weight gain on high fat. In contrast, the eNOS SD mutation is associated with decreased insulin levels and resistance to high fat-induced weight gain. These results demonstrate the importance of eNOS in regulation of insulin sensitivity, energy metabolism, and bodyweight regulation, and suggest eNOS phosphorylation as a novel target for the treatment of obesity and insulin resistance.


Asunto(s)
Adiposidad/fisiología , Resistencia a la Insulina/fisiología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Serina/metabolismo , Adiposidad/genética , Animales , Presión Sanguínea , Técnicas de Sustitución del Gen , Glucosa/metabolismo , Resistencia a la Insulina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo III/genética , Fosforilación , Serina/genética , Resistencia Vascular , Aumento de Peso/genética
18.
ACS Pharmacol Transl Sci ; 6(8): 1192-1206, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37588753

RESUMEN

Near-infrared (NIR) cyanine dyes showed enhanced properties for biomedical imaging. A systematic modification within the cyanine skeleton has been made through a facile design and synthetic route for optimal bioimaging. Herein, we report the synthesis of 11 NIR cyanine fluorophores and an investigation of their physicochemical properties, optical characteristics, photostability, and in vivo performance. All synthesized fluorophores absorb and emit within 610-817 nm in various solvents. These dyes also showed high molar extinction coefficients ranging from 27,000 to 270,000 cm-1 M-1, quantum yields 0.01 to 0.33, and molecular brightness 208-79,664 cm-1 M-1 in the tested solvents. Photostability data demonstrate that all tested fluorophores 28, 18, 20, 19, 25, and 24 are more photostable than the FDA-approved indocyanine green. In the biodistribution study, most compounds showed tissue-specific targeting to selectively accumulate in the adrenal glands, lymph nodes, or gallbladder while excreted to the hepatobiliary clearance route. Among the tested, compound 23 showed the best targetability to the bone marrow and lymph nodes. Since the safety of cyanine fluorophores is well established, rationally designed cyanine fluorophores established in the current study will expand an inventory of contrast agents for NIR imaging of not only normal tissues but also cancerous regions originating from these organs/tissues.

19.
Nat Biomed Eng ; 7(3): 270-280, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36747008

RESUMEN

Non-invasive methods for the in vivo detection of hallmarks of Alzheimer's disease can facilitate the study of the progression of the disease in mouse models and may enable its earlier diagnosis in humans. Here we show that the zwitterionic heptamethine fluorophore ZW800-1C, which has peak excitation and emission wavelengths in the near-infrared optical window, binds in vivo and at high contrast to amyloid-ß deposits and to neurofibrillary tangles, and allows for the microscopic imaging of amyloid-ß and tau aggregates through the intact skull of mice. In transgenic mouse models of Alzheimer's disease, we compare the performance of ZW800-1C with that of the two spectrally similar heptamethine fluorophores ZW800-1A and indocyanine green, and show that ZW800-1C undergoes a longer fluorescence-lifetime shift when bound to amyloid-ß and tau aggregates than when circulating in blood vessels. ZW800-1C may prove advantageous for tracking the proteinic aggregates in rodent models of amyloid-ß and tau pathologies.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Ratones , Animales , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos , Cráneo/diagnóstico por imagen , Cráneo/metabolismo , Cráneo/patología
20.
Adv Healthc Mater ; 12(12): e2203134, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36640372

RESUMEN

Two of the most pressing challenges facing bioimaging are nonspecific uptake of intravenously administered contrast agents and incomplete elimination of unbound targeted agents from the body. Designing a targeted contrast agent that shows fast clearance from background tissues and eventually the body after complete targeting is key to the success of image-guided interventions. Here, this work describes the development of renally clearable near-infrared contrast agents and their potential use for dual-channel image-guided tumor targeting. cRGD-ZW800-PEG (800 nm channel) and ZW700-PEG (700 nm channel) are able to visualize tumor margins and tumor vasculature simultaneously and respectively. These targeted agents show rapid elimination from the bloodstream, followed by renal clearance, which together significantly lower off-target background signals and potential toxicity. To demonstrate its applicability, this multispectral imaging is performed in various tumor-bearing animal models including lung cancer, pancreatic neuroendocrine tumors, breast, and ovarian cancer.


Asunto(s)
Medios de Contraste , Neoplasias Pulmonares , Animales , Imagen Óptica/métodos , Espectroscopía Infrarroja Corta , Colorantes Fluorescentes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA