Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Cell ; 62(5): 777-87, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27259208

RESUMEN

Genetic abnormalities are present in all tumor types, although the frequency and type can vary. Chromosome abnormalities include highly aberrant structures, particularly chromothriptic chromosomes. The generation of massive sequencing data has illuminated the scope of the mutational burden in cancer genomes, identifying patterns of mutations (mutation signatures), which have the potential to shed light on the relatedness and etiologies of cancers and impact therapy response. Some mutation patterns are clearly attributable to disruptions in pathways that maintain genomic integrity. Here we review recent advances in our understanding of genetic changes occurring in cancers and the roles of genome maintenance pathways.


Asunto(s)
Aberraciones Cromosómicas , Daño del ADN , Reparación del ADN , ADN/genética , Genoma , Mutación , Animales , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Cromotripsis , ADN/biosíntesis , ADN/química , Resistencia a Antineoplásicos/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/terapia , Fenotipo , Transcriptoma
2.
Proc Natl Acad Sci U S A ; 114(29): 7665-7670, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28659469

RESUMEN

BRCA1 is essential for homology-directed repair (HDR) of DNA double-strand breaks in part through antagonism of the nonhomologous end-joining factor 53BP1. The ATM kinase is involved in various aspects of DNA damage signaling and repair, but how ATM participates in HDR and genetically interacts with BRCA1 in this process is unclear. To investigate this question, we used the Brca1S1598F mouse model carrying a mutation in the BRCA1 C-terminal domain of BRCA1. Whereas ATM loss leads to a mild HDR defect in adult somatic cells, we find that ATM inhibition leads to severely reduced HDR in Brca1S1598F cells. Consistent with a critical role for ATM in HDR in this background, loss of ATM leads to synthetic lethality of Brca1S1598F mice. Whereas both ATM and BRCA1 promote end resection, which can be regulated by 53BP1, 53bp1 deletion does not rescue the HDR defects of Atm mutant cells, in contrast to Brca1 mutant cells. These results demonstrate that ATM has a role in HDR independent of the BRCA1-53BP1 antagonism and that its HDR function can become critical in certain contexts.


Asunto(s)
Reparación del ADN , Mutaciones Letales Sintéticas , Proteínas Supresoras de Tumor/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteína BRCA1 , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Células Madre Embrionarias/citología , Epistasis Genética , Fibroblastos/metabolismo , Eliminación de Gen , Proteínas Fluorescentes Verdes/metabolismo , Recombinación Homóloga , Ratones , Ratones Mutantes , Mutación , Ftalazinas/farmacología , Piperazinas/farmacología , Proteína 1 de Unión al Supresor Tumoral P53/genética
3.
Proc Natl Acad Sci U S A ; 110(14): 5564-9, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23509290

RESUMEN

Homology-directed repair (HDR) is a critical pathway for the repair of DNA double-strand breaks (DSBs) in mammalian cells. Efficient HDR is thought to be crucial for maintenance of genomic integrity during organismal development and tumor suppression. However, most mammalian HDR studies have focused on transformed and immortalized cell lines. We report here the generation of a Direct Repeat (DR)-GFP reporter-based mouse model to study HDR in primary cell types derived from diverse lineages. Embryonic and adult fibroblasts from these mice as well as cells derived from mammary epithelium, ovary, and neonatal brain were observed to undergo HDR at I-SceI endonuclease-induced DSBs at similar frequencies. When the DR-GFP reporter was crossed into mice carrying a hypomorphic mutation in the breast cancer susceptibility gene Brca1, a significant reduction in HDR was detected, showing that BRCA1 is critical for HDR in somatic cell types. Consistent with an HDR defect, Brca1 mutant mice are highly sensitive to the cross-linking agent mitomycin C. By contrast, loss of the DSB signaling ataxia telangiectasia-mutated (ATM) kinase did not significantly alter HDR levels, indicating that ATM is dispensable for HDR. Notably, chemical inhibition of ATM interfered with HDR. The DR-GFP mouse provides a powerful tool for dissecting the genetic requirements of HDR in a diverse array of somatic cell types in a normal, nontransformed cellular milieu.


Asunto(s)
Proteína BRCA1/metabolismo , Roturas del ADN de Doble Cadena , Modelos Animales , Reparación del ADN por Recombinación/fisiología , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II , Electroporación , Fibroblastos , Citometría de Flujo , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos/genética , Proteínas de Saccharomyces cerevisiae , Proteínas Supresoras de Tumor/metabolismo
4.
PLoS Genet ; 9(11): e1003945, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24244200

RESUMEN

ATP-dependent chromatin remodelers control DNA access for transcription, recombination, and other processes. Acf1 (also known as BAZ1A in mammals) is a defining subunit of the conserved ISWI-family chromatin remodelers ACF and CHRAC, first purified over 15 years ago from Drosophila melanogaster embryos. Much is known about biochemical properties of ACF and CHRAC, which move nucleosomes in vitro and in vivo to establish ordered chromatin arrays. Genetic studies in yeast, flies and cultured human cells clearly implicate these complexes in transcriptional repression via control of chromatin structures. RNAi experiments in transformed mammalian cells in culture also implicate ACF and CHRAC in DNA damage checkpoints and double-strand break repair. However, their essential in vivo roles in mammals are unknown. Here, we show that Baz1a-knockout mice are viable and able to repair developmentally programmed DNA double-strand breaks in the immune system and germ line, I-SceI endonuclease-induced breaks in primary fibroblasts via homologous recombination, and DNA damage from mitomycin C exposure in vivo. However, Baz1a deficiency causes male-specific sterility in accord with its high expression in male germ cells, where it displays dynamic, stage-specific patterns of chromosomal localization. Sterility is caused by pronounced defects in sperm development, most likely a consequence of massively perturbed gene expression in spermatocytes and round spermatids in the absence of BAZ1A: the normal spermiogenic transcription program is largely intact but more than 900 other genes are mis-regulated, primarily reflecting inappropriate up-regulation. We propose that large-scale changes in chromatin composition that occur during spermatogenesis create a window of vulnerability to promiscuous transcription changes, with an essential function of ACF and/or CHRAC chromatin remodeling activities being to safeguard against these alterations.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Roturas del ADN de Doble Cadena , Espermatogénesis/genética , Factores de Transcripción/genética , Adenosina Trifosfato/metabolismo , Animales , Cromatina/metabolismo , Reparación del ADN/genética , Drosophila/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Infertilidad Masculina/genética , Masculino , Ratones , Ratones Noqueados , Nucleosomas/metabolismo , Cultivo Primario de Células , Factores de Transcripción/biosíntesis
5.
Annu Rev Cancer Biol ; 2: 313-336, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30345412

RESUMEN

Germ-line and somatic mutations in genes that promote homology-directed repair (HDR), especially BRCA1 and BRCA2, are frequently observed in several cancers, in particular, breast and ovary but also prostate and other cancers. HDR is critical for the error-free repair of DNA double-strand breaks and other lesions, and HDR factors also protect stalled replication forks. As a result, loss of BRCA1 or BRCA2 poses significant risks to genome integrity, leading not only to cancer predisposition but also to sensitivity to DNA-damaging agents, affecting therapeutic approaches. Here we review recent advances in our understanding of BRCA1 and BRCA2, including how they genetically interact with other repair factors, how they protect stalled replication forks, how they affect the response to aldehydes, and how loss of their functions links to mutation signatures. Importantly, given the recent advances with poly(ADP-ribose) polymerase inhibitors (PARPi) for the treatment of HDR-deficient tumors, we discuss mechanisms by which BRCA-deficient tumors acquire resistance to PARPi and other agents.

6.
Cancer Discov ; 7(9): 984-998, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28588062

RESUMEN

High-grade epithelial ovarian carcinomas containing mutated BRCA1 or BRCA2 (BRCA1/2) homologous recombination (HR) genes are sensitive to platinum-based chemotherapy and PARP inhibitors (PARPi), while restoration of HR function due to secondary mutations in BRCA1/2 has been recognized as an important resistance mechanism. We sequenced core HR pathway genes in 12 pairs of pretreatment and postprogression tumor biopsy samples collected from patients in ARIEL2 Part 1, a phase II study of the PARPi rucaparib as treatment for platinum-sensitive, relapsed ovarian carcinoma. In 6 of 12 pretreatment biopsies, a truncation mutation in BRCA1, RAD51C, or RAD51D was identified. In five of six paired postprogression biopsies, one or more secondary mutations restored the open reading frame. Four distinct secondary mutations and spatial heterogeneity were observed for RAD51CIn vitro complementation assays and a patient-derived xenograft, as well as predictive molecular modeling, confirmed that resistance to rucaparib was associated with secondary mutations.Significance: Analyses of primary and secondary mutations in RAD51C and RAD51D provide evidence for these primary mutations in conferring PARPi sensitivity and secondary mutations as a mechanism of acquired PARPi resistance. PARPi resistance due to secondary mutations underpins the need for early delivery of PARPi therapy and for combination strategies. Cancer Discov; 7(9); 984-98. ©2017 AACR.See related commentary by Domchek, p. 937See related article by Quigley et al., p. 999See related article by Goodall et al., p. 1006This article is highlighted in the In This Issue feature, p. 920.


Asunto(s)
Proteínas de Unión al ADN/genética , Resistencia a Antineoplásicos/genética , Indoles/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Animales , Células CHO , Línea Celular Tumoral , Cricetulus , Femenino , Células HEK293 , Humanos , Mutación , Neoplasias Ováricas/genética
7.
Nat Commun ; 7: 13241, 2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27779185

RESUMEN

The mammary gland undergoes significant proliferative stages after birth, but little is known about how the developmental changes impact DNA double-strand break (DSB) repair. Mutations in multiple genes involved in homology-directed repair (HDR), considered a particularly accurate pathway for repairing DSBs, are linked to breast cancer susceptibility, including BRCA2. Using reporter mice that express an inducible endonuclease, we find that HDR is particularly robust in mammary tissue during puberty and pregnancy, accounting for 34-40% of detected repair events, more than in other tissues examined. Brca2 hypomorphic mutation leads to HDR defects in mammary epithelium during puberty and pregnancy, including in different epithelial lineages. Notably, a similar dependence on Brca2 is observed in other proliferative tissues, including small intestine epithelium. Our results suggest that the greater reliance on HDR in the proliferating mammary gland, rather than a specific dependence on BRCA2, may increase its susceptibility to tumorigenesis incurred by BRCA2 mutation.


Asunto(s)
Proteína BRCA2/genética , Roturas del ADN de Doble Cadena , Glándulas Mamarias Animales/metabolismo , Reparación del ADN por Recombinación , Animales , Proteína BRCA2/metabolismo , Células Cultivadas , Femenino , Glándulas Mamarias Animales/citología , Ratones Noqueados , Ratones Transgénicos , Mutación , Embarazo , Maduración Sexual/genética
8.
Cancer Discov ; 3(11): 1245-53, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24027196

RESUMEN

UNLABELLED: We demonstrate that the androgen receptor (AR) regulates a transcriptional program of DNA repair genes that promotes prostate cancer radioresistance, providing a potential mechanism by which androgen deprivation therapy synergizes with ionizing radiation. Using a model of castration-resistant prostate cancer, we show that second-generation antiandrogen therapy results in downregulation of DNA repair genes. Next, we demonstrate that primary prostate cancers display a significant spectrum of AR transcriptional output, which correlates with expression of a set of DNA repair genes. Using RNA-seq and ChIP-seq, we define which of these DNA repair genes are both induced by androgen and represent direct AR targets. We establish that prostate cancer cells treated with ionizing radiation plus androgen demonstrate enhanced DNA repair and decreased DNA damage and furthermore that antiandrogen treatment causes increased DNA damage and decreased clonogenic survival. Finally, we demonstrate that antiandrogen treatment results in decreased classical nonhomologous end-joining. SIGNIFICANCE: We demonstrate that the AR regulates a network of DNA repair genes, providing a potential mechanism by which androgen deprivation synergizes with radiotherapy for prostate cancer.


Asunto(s)
Reparación del ADN , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata/tratamiento farmacológico , Receptores Androgénicos/metabolismo , Antagonistas de Andrógenos/uso terapéutico , Animales , Antineoplásicos Hormonales/uso terapéutico , Línea Celular Tumoral , Daño del ADN/efectos de la radiación , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Metribolona/uso terapéutico , Ratones , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/radioterapia , Radiación Ionizante , Transducción de Señal/genética , Ensayos Antitumor por Modelo de Xenoinjerto
9.
FEBS Lett ; 584(17): 3703-8, 2010 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-20691183

RESUMEN

DNA double-strand breaks resulting from normal cellular processes including replication and exogenous sources such as ionizing radiation pose a serious risk to genome stability, and cells have evolved different mechanisms for their efficient repair. The two major pathways involved in the repair of double-strand breaks in eukaryotic cells are non-homologous end joining and homologous recombination. Numerous factors affect the decision to repair a double-strand break via these pathways, and accumulating evidence suggests these major repair pathways both cooperate and compete with each other at double-strand break sites to facilitate efficient repair and promote genomic integrity.


Asunto(s)
Daño del ADN/genética , Reparación del ADN/genética , Animales , Secuencia de Bases , Encéfalo/fisiología , Ciclo Celular/genética , Secuencia Conservada , Roturas del ADN de Doble Cadena , Replicación del ADN/genética , Anemia de Fanconi/genética , Genes BRCA1 , Genes BRCA2 , Homeostasis/genética , Humanos , Mutación , Recombinación Genética/genética , Saccharomyces cerevisiae/genética
10.
Cancer Cell ; 17(5): 423-5, 2010 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-20478525

RESUMEN

Mutations in BRCA1 predispose to tumorigenesis presumably from the inability to accurately repair DNA double-strand breaks by homologous recombination. Two new papers shed light on how loss of the DNA damage response protein 53BP1 reverses phenotypes of BRCA1 mutant cells, with potential clinical implications.

11.
Cell Cycle ; 9(19): 3956-64, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20948288

RESUMEN

The mechanisms that control E2F-1 activity are complex. We previously showed that Chk1 and Chk2 are required for E2F1 stabilization and p73 target gene induction following DNA damage. To gain further insight into the processes regulating E2F1 protein stability, we focused our investigation on the mechanisms responsible for regulating E2F1 turnover. Here we show that E2F1 is a substrate of the anaphase promoting complex or cyclosome (APC/C), a ubiquitin ligase that plays an important role in cell cycle progression. Ectopic expression of the APC/C activators Cdh1 and Cdc20 reduced the levels of co-expressed E2F-1 protein. Co-expression of DP1 with E2F1 blocked APC/C-induced E2F1 degradation, suggesting that the E2F1/DP1 heterodimer is protected from APC/C regulation. Following Cdc20 knockdown, E2F1 levels increased and remained stable in extracts over a time course, indicating that APC/C(Cdc20) is a primary regulator of E2F1 stability in vivo. Moreover, cell synchronization experiments showed that siRNA directed against Cdc20 induced an accumulation of E2F1 protein in prometaphase cells. These data suggest that APC/C(Cdc20) specifically targets E2F1 for degradation in early mitosis and reveal a novel mechanism for limiting free E2F1 levels in cells, failure of which may compromise cell survival and/or homeostasis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Factor de Transcripción E2F1/metabolismo , Prometafase/fisiología , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Secuencia de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase , Antígenos CD , Cadherinas/genética , Cadherinas/metabolismo , Proteínas Cdc20 , Proteínas de Ciclo Celular/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2 , Factor de Transcripción E2F1/genética , Células HeLa , Humanos , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Factor de Transcripción DP1/genética , Factor de Transcripción DP1/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/genética
12.
Cell Cycle ; 8(3): 430-7, 2009 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19176998

RESUMEN

We have previously shown that Chk2 stability, which is increased after DNA damage in some cells, is regulated in part through phosphorylation at S456 and that a mutant Chk2 (S456A) is hyperubiquitinated and turned over more rapidly than wild-type Chk2.(1) Here we show that the S456A mutant preferentially binds to Mdm2 compared to wild-type Chk2 and downregulation of Mdm2 with siRNA can rescue the observed destabilization of S456A Chk2 following DNA damage. Ubiquitination of wild-type Chk2 is increased by co-expression of Mdm2, and increasing amounts of Mdm2 enhance degradation of both wild-type and mutant S456A Chk2. Surprisingly, however, an E3 ligase defective version of Mdm2 (DeltaC7) also increases ubiquitination and degradation of Chk2 when transfected into cells, suggesting that the ability of Mdm2 to affect Chk2 turnover is independent of its intrinsic E3 ligase function. Recently the acetyltransferase PCAF was shown to have intrinsic E3 ligase activity against itself and Mdm2. We found that PCAF interacts with both Mdm2 and Chk2 and that PCAF increases Chk2 ubiquitination and degradation. Interestingly as well, a PCAF deletion mutant that lacks E3 ligase activity towards Mdm2 also enhances Chk2 degradation. We hypothesize that Mdm2 and PCAF may function as part of a multi-subunit E3 complex in their regulation of Chk2 turnover.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Animales , Línea Celular , Quinasa de Punto de Control 2 , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-mdm2/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Factores de Transcripción p300-CBP/genética
13.
J Biol Chem ; 282(41): 30311-21, 2007 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-17715138

RESUMEN

Checkpoint kinase 2 (Chk2), a DNA damage-activated protein kinase, is phosphorylated at Thr-68 by ataxia telangiectasia mutated leading to its activation by phosphorylation at several additional sites. Using mass spectrometry we identified a new Chk2 phosphorylation site at Ser-456. We show that phosphorylation of Ser-456 plays a role in the regulation of Chk2 stability particularly after DNA damage. Mutation of Ser-456 to alanine results in hyperubiquitination of Chk2 and dramatically reduced Chk2 stability. Furthermore, cells expressing S456A Chk2 show a reduction in the apoptotic response to DNA damage. These findings suggest a mechanism for stabilization of Chk2 in response to DNA damage via phosphorylation at Ser-456 and proteasome-dependent turnover of Chk2 protein via dephosphorylation of the same residue.


Asunto(s)
Proteínas Serina-Treonina Quinasas/química , Serina/química , Secuencia de Aminoácidos , Apoptosis , Línea Celular Tumoral , Separación Celular , Quinasa de Punto de Control 2 , Daño del ADN , Citometría de Flujo , Humanos , Espectrometría de Masas , Conformación Molecular , Datos de Secuencia Molecular , Mutación , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA