Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(19): e2317954121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38683976

RESUMEN

Several microbial genomes lack textbook-defined essential genes. If an essential gene is absent from a genome, then an evolutionarily independent gene of unknown function complements its function. Here, we identified frequent nonhomologous replacement of an essential component of DNA replication initiation, a replicative helicase loader gene, in Vibrionaceae. Our analysis of Vibrionaceae genomes revealed two genes with unknown function, named vdhL1 and vdhL2, that were substantially enriched in genomes without the known helicase-loader genes. These genes showed no sequence similarities to genes with known function but encoded proteins structurally similar with a viral helicase loader. Analyses of genomic syntenies and coevolution with helicase genes suggested that vdhL1/2 encodes a helicase loader. The in vitro assay showed that Vibrio harveyi VdhL1 and Vibrio ezurae VdhL2 promote the helicase activity of DnaB. Furthermore, molecular phylogenetics suggested that vdhL1/2 were derived from phages and replaced an intrinsic helicase loader gene of Vibrionaceae over 20 times. This high replacement frequency implies the host's advantage in acquiring a viral helicase loader gene.


Asunto(s)
ADN Helicasas , Replicación del ADN , Filogenia , Vibrionaceae , Vibrionaceae/genética , Vibrionaceae/enzimología , ADN Helicasas/metabolismo , ADN Helicasas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Bacteriófagos/genética , Bacteriófagos/enzimología , Evolución Molecular , Genoma Bacteriano , AdnB Helicasas/metabolismo , AdnB Helicasas/genética , Vibrio/genética , Vibrio/enzimología
2.
Nucleic Acids Res ; 51(12): 6286-6306, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37178000

RESUMEN

The Escherichia coli replication origin oriC contains the initiator ATP-DnaA-Oligomerization Region (DOR) and its flanking duplex unwinding element (DUE). In the Left-DOR subregion, ATP-DnaA forms a pentamer by binding to R1, R5M and three other DnaA boxes. The DNA-bending protein IHF binds sequence-specifically to the interspace between R1 and R5M boxes, promoting DUE unwinding, which is sustained predominantly by binding of R1/R5M-bound DnaAs to the single-stranded DUE (ssDUE). The present study describes DUE unwinding mechanisms promoted by DnaA and IHF-structural homolog HU, a ubiquitous protein in eubacterial species that binds DNA sequence-non-specifically, preferring bent DNA. Similar to IHF, HU promoted DUE unwinding dependent on ssDUE binding of R1/R5M-bound DnaAs. Unlike IHF, HU strictly required R1/R5M-bound DnaAs and interactions between the two DnaAs. Notably, HU site-specifically bound the R1-R5M interspace in a manner stimulated by ATP-DnaA and ssDUE. These findings suggest a model that interactions between the two DnaAs trigger DNA bending within the R1/R5M-interspace and initial DUE unwinding, which promotes site-specific HU binding that stabilizes the overall complex and DUE unwinding. Moreover, HU site-specifically bound the replication origin of the ancestral bacterium Thermotoga maritima depending on the cognate ATP-DnaA. The ssDUE recruitment mechanism could be evolutionarily conserved in eubacteria.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN , Proteínas de Escherichia coli , Origen de Réplica , Adenosina Trifosfato/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Unión Proteica , Proteínas de Escherichia coli/metabolismo , Proteínas de Unión al ADN/metabolismo
3.
J Biol Chem ; 299(7): 104888, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37276959

RESUMEN

Initiation of chromosomal replication requires dynamic nucleoprotein complexes. In most eubacteria, the origin oriC contains multiple DnaA box sequences to which the ubiquitous DnaA initiators bind. In Escherichia coli oriC, DnaA boxes sustain construction of higher-order complexes via DnaA-DnaA interactions, promoting the unwinding of the DNA unwinding element (DUE) within oriC and concomitantly binding the single-stranded (ss) DUE to install replication machinery. Despite the significant sequence homologies among DnaA proteins, oriC sequences are highly diverse. The present study investigated the design of oriC (tma-oriC) from Thermotoga maritima, an evolutionarily ancient eubacterium. The minimal tma-oriC sequence includes a DUE and a flanking region containing five DnaA boxes recognized by the cognate DnaA (tmaDnaA). This DUE was comprised of two distinct functional modules, an unwinding module and a tmaDnaA-binding module. Three direct repeats of the trinucleotide TAG within DUE were essential for both unwinding and ssDUE binding by tmaDnaA complexes constructed on the DnaA boxes. Its surrounding AT-rich sequences stimulated only duplex unwinding. Moreover, head-to-tail oligomers of ATP-bound tmaDnaA were constructed within tma-oriC, irrespective of the directions of the DnaA boxes. This binding mode was considered to be induced by flexible swiveling of DnaA domains III and IV, which were responsible for DnaA-DnaA interactions and DnaA box binding, respectively. Phasing of specific tmaDnaA boxes in tma-oriC was also responsible for unwinding. These findings indicate that a ssDUE recruitment mechanism was responsible for unwinding and would enhance understanding of the fundamental molecular nature of the origin sequences present in evolutionarily divergent bacteria.


Asunto(s)
Proteínas de Unión al ADN , Origen de Réplica , Thermotoga maritima , Proteínas Bacterianas/metabolismo , Sitios de Unión , Replicación del ADN , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Thermotoga maritima/genética , Thermotoga maritima/metabolismo
4.
Org Biomol Chem ; 22(35): 7231-7239, 2024 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-39163382

RESUMEN

We designed 6-dimethylamino 3-methyleneisoindolin-1-one as an environment-sensitive fluorophore, examining its applications for protein labeling. Synthesized 3-methyleneisoindolin-1-one exhibits solvatochromic fluorescence (λemmax; 472 nm in 2-PrOH, 512 nm in H2O). A positive linear dependence between λemmax and solvent dielectric constant (DC), as well as between Stokes shift and DC, and a negative correlation between fluorescence quantum yield and DC are observed in protic solvents. These properties are similar to those of the oxygen isosteric fluorophore, 4-dimethylaminophthalimide, a slovatochromic fluorophore utilized for labeling oligodeoxynucleotides (ODNs) and peptides. Notably, fluorescence intensity of 3-methyleneisoindolin-1-one is higher than the phthalimide in protic solvents used in this study. The 3-methyleneisoindolin-1-one demonstrated the higher stability in pH 8 solution than in pH 6 solution in contrast to the stability profile of the phthalimide, which was stable at pH 6 but was hydrolyzed at pH 8. We also synthesized an o-keto benzaldehyde derivative that converts a primary amine to 6-dimethylamino 3-methyleneisoindolin-1-one under biocompatible conditions and introduced it into ODNs for turn-on fluorescent protein labeling. The synthesized ODN with a protein-binding sequence of Escherichia coli DnaA was employed to modify the DNA-binding domain of DnaA, and the fluorescent properties of the modified protein were investigated.


Asunto(s)
Colorantes Fluorescentes , Isoindoles , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Isoindoles/química , Isoindoles/síntesis química , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/química , Diseño de Fármacos , Estructura Molecular , Concentración de Iones de Hidrógeno
5.
Nucleic Acids Res ; 50(22): 12896-12912, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36484102

RESUMEN

The replicative DNA helicase translocates on single-stranded DNA to drive replication forks during chromosome replication. In most bacteria the ubiquitous replicative helicase, DnaB, co-evolved with the accessory subunit DciA, but how they function remains incompletely understood. Here, using the model bacterium Caulobacter crescentus, we demonstrate that DciA plays a prominent role in DNA replication fork maintenance. Cell cycle analyses using a synchronized Caulobacter cell population showed that cells devoid of DciA exhibit a severe delay in fork progression. Biochemical characterization revealed that the DnaB helicase in its default state forms a hexamer that inhibits self-loading onto single-stranded DNA. We found that upon binding to DciA, the DnaB hexamer undergoes conformational changes required for encircling single-stranded DNA, thereby establishing the replication fork. Further investigation of the functional structure of DciA revealed that the C-terminus of DciA includes conserved leucine residues responsible for DnaB binding and is essential for DciA in vivo functions. We propose that DciA stimulates loading of DnaB onto single strands through topological isomerization of the DnaB structure, thereby ensuring fork progression. Given that the DnaB-DciA modules are widespread among eubacterial species, our findings suggest that a common mechanism underlies chromosome replication.


Asunto(s)
Proteínas Bacterianas , Caulobacter crescentus , Cromosomas Bacterianos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Replicación del ADN/genética , ADN de Cadena Simple/metabolismo , AdnB Helicasas/metabolismo , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo
6.
J Biol Chem ; 298(6): 102051, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35598828

RESUMEN

Unwinding of the replication origin and loading of DNA helicases underlie the initiation of chromosomal replication. In Escherichia coli, the minimal origin oriC contains a duplex unwinding element (DUE) region and three (Left, Middle, and Right) regions that bind the initiator protein DnaA. The Left/Right regions bear a set of DnaA-binding sequences, constituting the Left/Right-DnaA subcomplexes, while the Middle region has a single DnaA-binding site, which stimulates formation of the Left/Right-DnaA subcomplexes. In addition, a DUE-flanking AT-cluster element (TATTAAAAAGAA) is located just outside of the minimal oriC region. The Left-DnaA subcomplex promotes unwinding of the flanking DUE exposing TT[A/G]T(T) sequences that then bind to the Left-DnaA subcomplex, stabilizing the unwound state required for DnaB helicase loading. However, the role of the Right-DnaA subcomplex is largely unclear. Here, we show that DUE unwinding by both the Left/Right-DnaA subcomplexes, but not the Left-DnaA subcomplex only, was stimulated by a DUE-terminal subregion flanking the AT-cluster. Consistently, we found the Right-DnaA subcomplex-bound single-stranded DUE and AT-cluster regions. In addition, the Left/Right-DnaA subcomplexes bound DnaB helicase independently. For only the Left-DnaA subcomplex, we show the AT-cluster was crucial for DnaB loading. The role of unwound DNA binding of the Right-DnaA subcomplex was further supported by in vivo data. Taken together, we propose a model in which the Right-DnaA subcomplex dynamically interacts with the unwound DUE, assisting in DUE unwinding and efficient loading of DnaB helicases, while in the absence of the Right-DnaA subcomplex, the AT-cluster assists in those processes, supporting robustness of replication initiation.


Asunto(s)
Proteínas Bacterianas , Proteínas de Unión al ADN , AdnB Helicasas , Complejo de Reconocimiento del Origen , Origen de Réplica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Replicación del ADN , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , AdnB Helicasas/genética , AdnB Helicasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Complejo de Reconocimiento del Origen/genética
7.
Nucleic Acids Res ; 49(22): 12820-12835, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34871419

RESUMEN

In Escherichia coli, the replication initiator DnaA oscillates between an ATP- and an ADP-bound state in a cell cycle-dependent manner, supporting regulation for chromosome replication. ATP-DnaA cooperatively assembles on the replication origin using clusters of low-affinity DnaA-binding sites. After initiation, DnaA-bound ATP is hydrolyzed, producing initiation-inactive ADP-DnaA. For the next round of initiation, ADP-DnaA binds to the chromosomal locus DARS2, which promotes the release of ADP, yielding the apo-DnaA to regain the initiation activity through ATP binding. This DnaA reactivation by DARS2 depends on site-specific binding of IHF (integration host factor) and Fis proteins and IHF binding to DARS2 occurs specifically during pre-initiation. Here, we reveal that Fis binds to an essential region in DARS2 specifically during pre-initiation. Further analyses demonstrate that ATP-DnaA, but not ADP-DnaA, oligomerizes on a cluster of low-affinity DnaA-binding sites overlapping the Fis-binding region, which competitively inhibits Fis binding and hence the DARS2 activity. DiaA (DnaA initiator-associating protein) stimulating ATP-DnaA assembly enhances the dissociation of Fis. These observations lead to a negative feedback model where the activity of DARS2 is repressed around the time of initiation by the elevated ATP-DnaA level and is stimulated following initiation when the ATP-DnaA level is reduced.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Factor Proteico para Inverción de Estimulación/metabolismo , Proteínas Bacterianas/genética , Secuencia de Bases , Sitios de Unión/genética , Ciclo Celular/genética , Cromosomas Bacterianos/genética , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Factor Proteico para Inverción de Estimulación/genética , Retroalimentación Fisiológica , Factores de Integración del Huésped/genética , Factores de Integración del Huésped/metabolismo , Modelos Genéticos , Unión Proteica , Origen de Réplica/genética , Homología de Secuencia de Ácido Nucleico
8.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37511331

RESUMEN

This review summarizes current knowledge about the mechanisms of timely binding and dissociation of two nucleoid proteins, IHF and Fis, which play fundamental roles in the initiation of chromosomal DNA replication in Escherichia coli. Replication is initiated from a unique replication origin called oriC and is tightly regulated so that it occurs only once per cell cycle. The timing of replication initiation at oriC is rigidly controlled by the timely binding of the initiator protein DnaA and IHF to oriC. The first part of this review presents up-to-date knowledge about the timely stabilization of oriC-IHF binding at oriC during replication initiation. Recent advances in our understanding of the genome-wide profile of cell cycle-coordinated IHF binding have revealed the oriC-specific stabilization of IHF binding by ATP-DnaA oligomers at oriC and by an initiation-specific IHF binding consensus sequence at oriC. The second part of this review summarizes the mechanism of the timely regulation of DnaA activity via the chromosomal loci DARS2 (DnaA-reactivating sequence 2) and datA. The timing of replication initiation at oriC is controlled predominantly by the phosphorylated form of the adenosine nucleotide bound to DnaA, i.e., ATP-DnaA, but not ADP-ADP, is competent for initiation. Before initiation, DARS2 increases the level of ATP-DnaA by stimulating the exchange of ADP for ATP on DnaA. This DARS2 function is activated by the site-specific and timely binding of both IHF and Fis within DARS2. After initiation, another chromosomal locus, datA, which inactivates ATP-DnaA by stimulating ATP hydrolysis, is activated by the timely binding of IHF. A recent study has shown that ATP-DnaA oligomers formed at DARS2-Fis binding sites competitively dissociate Fis via negative feedback, whereas IHF regulation at DARS2 and datA still remains to be investigated. This review summarizes the current knowledge about the specific role of IHF and Fis in the regulation of replication initiation and proposes a mechanism for the regulation of timely IHF binding and dissociation at DARS2 and datA.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Factores de Integración del Huésped/genética , Factores de Integración del Huésped/metabolismo , Origen de Réplica , Replicación del ADN , Ciclo Celular , Adenosina Trifosfato/metabolismo , ADN Bacteriano/genética , Factor Proteico para Inverción de Estimulación/genética , Factor Proteico para Inverción de Estimulación/metabolismo
9.
J Biol Chem ; 295(32): 11131-11143, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32540966

RESUMEN

The DNA replication protein DnaA in Escherichia coli constructs higher-order complexes on the origin, oriC, to unwind this region. DnaB helicase is loaded onto unwound oriC via interactions with the DnaC loader and the DnaA complex. The DnaB-DnaC complex is recruited to the DnaA complex via stable binding of DnaB to DnaA domain I. The DnaB-DnaC complex is then directed to unwound oriC via a weak interaction between DnaB and DnaA domain III. Previously, we showed that Phe46 in DnaA domain I binds to DnaB. Here, we searched for the DnaA domain I-binding site in DnaB. The DnaB L160A variant was impaired in binding to DnaA complex on oriC but retained its DnaC-binding and helicase activities. DnaC binding moderately stimulated DnaA binding of DnaB L160A, and loading of DnaB L160A onto oriC was consistently and moderately inhibited. In a helicase assay with partly single-stranded DNA bearing a DnaA-binding site, DnaA stimulated DnaB loading, which was strongly inhibited in DnaB L160A even in the presence of DnaC. DnaB L160A was functionally impaired in vivo On the basis of these findings, we propose that DnaB Leu160 interacts with DnaA domain I Phe46 DnaB Leu160 is exposed on the lateral surface of the N-terminal domain, which can explain unobstructed interactions of DnaA domain I-bound DnaB with DnaC, DnaG primase, and DnaA domain III. We propose a probable structure for the DnaA-DnaB-DnaC complex, which could be relevant to the process of DnaB loading onto oriC.


Asunto(s)
AdnB Helicasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Origen de Réplica , Secuencia de Aminoácidos , Sitios de Unión , AdnB Helicasas/química , Proteínas de Escherichia coli/química , Modelos Moleculares , Dominios Proteicos
10.
Nucleic Acids Res ; 47(21): 11209-11224, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31535134

RESUMEN

ATP-DnaA is temporally increased to initiate replication during the cell cycle. Two chromosomal loci, DARS (DnaA-reactivating sequences) 1 and 2, promote ATP-DnaA production by nucleotide exchange of ADP-DnaA for timely initiation. ADP-DnaA complexes are constructed on DARS1 and DARS2, bearing a cluster of three DnaA-binding sequences (DnaA boxes I-III), promoting ADP dissociation. Although DnaA has an AAA+ domain, which ordinarily directs construction of oligomers in a head-to-tail manner, DnaA boxes I and II are oriented oppositely. In this study, we constructed a structural model of a head-to-head dimer of DnaA AAA+ domains, and analyzed residues residing on the interface of the model dimer. Gln208 was specifically required for DARS-dependent ADP dissociation in vitro, and in vivo analysis yielded consistent results. Additionally, ADP release from DnaA protomers bound to DnaA boxes I and II was dependent on Gln208 of the DnaA protomers, and DnaA box III-bound DnaA did not release ADP nor require Gln208 for ADP dissociation by DARS-DnaA complexes. Based on these and other findings, we propose a model for DARS-DnaA complex dynamics during ADP dissociation, and provide novel insight into the regulatory mechanisms of DnaA and the interaction modes of AAA+ domains.


Asunto(s)
Adenosina Difosfato/metabolismo , Proteínas Bacterianas/metabolismo , Replicación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Complejo de Reconocimiento del Origen/metabolismo , Multimerización de Proteína/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , ADN Bacteriano/química , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Complejo de Reconocimiento del Origen/química , Unión Proteica , Estructura Cuaternaria de Proteína
11.
Genes Cells ; 24(9): 608-618, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31233675

RESUMEN

Replication initiation at specific genomic loci dictates precise duplication and inheritance of genetic information. In eukaryotic cells, ATP-bound origin recognition complexes (ORCs) stably bind to double-stranded (ds) DNA origins to recruit the replicative helicase onto the origin DNA. To achieve these processes, an essential region of the origin DNA must be recognized by the eukaryotic origin sensor (EOS) basic patch within the disordered domain of the largest ORC subunit, Orc1. Although ORC also binds single-stranded (ss) DNA in an EOS-independent manner, it is unknown whether EOS regulates ORC on ssDNA. We found that, in budding yeast, ORC multimerizes on ssDNA in vitro independently of adenine nucleotides. We also found that the ORC multimers form in an EOS-dependent manner and stimulate the ORC ATPase activity. An analysis of genomics data supported the idea that ORC-ssDNA binding occurs in vivo at specific genomic loci outside of replication origins. These results suggest that EOS function is differentiated by ORC-bound ssDNA, which promotes ORC self-assembly and ATP hydrolysis. These mechanisms could modulate ORC activity at specific genomic loci and could be conserved among eukaryotes.


Asunto(s)
Adenosina Trifosfato/metabolismo , ADN de Cadena Simple/metabolismo , Complejo de Reconocimiento del Origen/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Replicación del ADN , Unión Proteica , Multimerización de Proteína , Origen de Réplica , Saccharomyces cerevisiae
12.
Nucleic Acids Res ; 45(21): 12354-12373, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29040689

RESUMEN

In Escherichia coli, the level of the ATP-DnaA initiator is increased temporarily at the time of replication initiation. The replication origin, oriC, contains a duplex-unwinding element (DUE) flanking a DnaA-oligomerization region (DOR), which includes twelve DnaA-binding sites (DnaA boxes) and the DNA-bending protein IHF-binding site (IBS). Although complexes of IHF and ATP-DnaA assembly on the DOR unwind the DUE, the configuration of the crucial nucleoprotein complexes remains elusive. To resolve this, we analyzed individual DnaA protomers in the complex and here demonstrate that the DUE-DnaA-box-R1-IBS-DnaA-box-R5M region is essential for DUE unwinding. R5M-bound ATP-DnaA predominantly promotes ATP-DnaA assembly on the DUE-proximal DOR, and R1-bound DnaA has a supporting role. This mechanism might support timely assembly of ATP-DnaA on oriC. DnaA protomers bound to R1 and R5M directly bind to the unwound DUE strand, which is crucial in replication initiation. Data from in vivo experiments support these results. We propose that the DnaA assembly on the IHF-bent DOR directly binds to the unwound DUE strand, and timely formation of this ternary complex regulates replication initiation. Structural features of oriC support the idea that these mechanisms for DUE unwinding are fundamentally conserved in various bacterial species including pathogens.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Origen de Réplica , Adenosina Trifosfato/metabolismo , Sitios de Unión , Proteínas Portadoras/genética , ADN de Cadena Simple/metabolismo , Escherichia coli/metabolismo , Factores de Integración del Huésped/metabolismo , Mutación , Unión Proteica
13.
Nucleic Acids Res ; 45(20): 11525-11534, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29036468

RESUMEN

Propagation of genetic information is a fundamental property of living organisms. Escherichia coli has a 4.6 Mb circular chromosome with a replication origin, oriC. While the oriC replication has been reconstituted in vitro more than 30 years ago, continuous repetition of the replication cycle has not yet been achieved. Here, we reconstituted the entire replication cycle with 14 purified enzymes (25 polypeptides) that catalyze initiation at oriC, bidirectional fork progression, Okazaki-fragment maturation and decatenation of the replicated circular products. Because decatenation provides covalently closed supercoiled monomers that are competent for the next round of replication initiation, the replication cycle repeats autonomously and continuously in an isothermal condition. This replication-cycle reaction (RCR) propagates ∼10 kb circular DNA exponentially as intact covalently closed molecules, even from a single DNA molecule, with a doubling time of ∼8 min and extremely high fidelity. Very large DNA up to 0.2 Mb is successfully propagated within 3 h. We further demonstrate a cell-free cloning in which RCR selectively propagates circular molecules constructed by a multi-fragment assembly reaction. Our results define the minimum element necessary for the repetition of the chromosome-replication cycle, and also provide a powerful in vitro tool to generate large circular DNA molecules without relying on conventional biological cloning.


Asunto(s)
Replicación del ADN/genética , ADN Circular/síntesis química , Escherichia coli/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Complejo de Reconocimiento del Origen/genética , Sistema Libre de Células/microbiología , ADN Bacteriano/biosíntesis , ADN Bacteriano/genética , ADN Circular/biosíntesis , ADN Circular/genética , Origen de Réplica/genética
14.
Proc Natl Acad Sci U S A ; 113(50): E8021-E8030, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27911788

RESUMEN

Upon DNA replication initiation in Escherichia coli, the initiator protein DnaA forms higher-order complexes with the chromosomal origin oriC and a DNA-bending protein IHF. Although tertiary structures of DnaA and IHF have previously been elucidated, dynamic structures of oriC-DnaA-IHF complexes remain unknown. Here, combining computer simulations with biochemical assays, we obtained models at almost-atomic resolution for the central part of the oriC-DnaA-IHF complex. This complex can be divided into three subcomplexes; the left and right subcomplexes include pentameric DnaA bound in a head-to-tail manner and the middle subcomplex contains only a single DnaA. In the left and right subcomplexes, DnaA ATPases associated with various cellular activities (AAA+) domain III formed helices with specific structural differences in interdomain orientations, provoking a bend in the bound DNA. In the left subcomplex a continuous DnaA chain exists, including insertion of IHF into the DNA looping, consistent with the DNA unwinding function of the complex. The intervening spaces in those subcomplexes are crucial for DNA unwinding and loading of DnaB helicases. Taken together, this model provides a reasonable near-atomic level structural solution of the initiation complex, including the dynamic conformations and spatial arrangements of DnaA subcomplexes.


Asunto(s)
Replicación del ADN , ADN Bacteriano/química , Escherichia coli/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Simulación por Computador , Replicación del ADN/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Factores de Integración del Huésped/química , Factores de Integración del Huésped/metabolismo , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejo de Reconocimiento del Origen/química , Complejo de Reconocimiento del Origen/metabolismo , Dominios y Motivos de Interacción de Proteínas
15.
J Biol Chem ; 292(4): 1251-1266, 2017 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-27941026

RESUMEN

Timely initiation of replication in Escherichia coli requires functional regulation of the replication initiator, ATP-DnaA. The cellular level of ATP-DnaA increases just before initiation, after which its level decreases through hydrolysis of DnaA-bound ATP, yielding initiation-inactive ADP-DnaA. Previously, we reported a novel DnaA-ATP hydrolysis system involving the chromosomal locus datA and named it datA-dependent DnaA-ATP hydrolysis (DDAH). The datA locus contains a binding site for a nucleoid-associating factor integration host factor (IHF) and a cluster of three known DnaA-binding sites, which are important for DDAH. However, the mechanisms underlying the formation and regulation of the datA-IHF·DnaA complex remain unclear. We now demonstrate that a novel DnaA box within datA is essential for ATP-DnaA complex formation and DnaA-ATP hydrolysis. Specific DnaA residues, which are important for interaction with bound ATP and for head-to-tail inter-DnaA interaction, were also required for ATP-DnaA-specific oligomer formation on datA Furthermore, we show that negative DNA supercoiling of datA stabilizes ATP-DnaA oligomers, and stimulates datA-IHF interaction and DnaA-ATP hydrolysis. Relaxation of DNA supercoiling by the addition of novobiocin, a DNA gyrase inhibitor, inhibits datA function in cells. On the basis of these results, we propose a mechanistic model of datA-IHF·DnaA complex formation and DNA supercoiling-dependent regulation for DDAH.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , ADN Superhelicoidal/metabolismo , Proteínas de Unión al ADN/metabolismo , Escherichia coli/metabolismo , Sitios Genéticos/fisiología , Adenosina Trifosfato/genética , Proteínas Bacterianas/genética , Girasa de ADN/genética , Girasa de ADN/metabolismo , ADN Bacteriano/genética , ADN Superhelicoidal/genética , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidrólisis , Factores de Integración del Huésped/genética , Factores de Integración del Huésped/metabolismo , Novobiocina/farmacología
16.
Genes Cells ; 21(9): 1015-23, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27452301

RESUMEN

In Escherichia coli, the initiator protein ATP-DnaA promotes initiation of chromosome replication in a timely manner. After initiation, DnaA-bound ATP is hydrolyzed to yield ADP-DnaA, which is inactive in initiation. DnaA-reactivating sequences (DARS1 and DARS2) on the chromosome have predominant roles in catalysis of nucleotide exchange, producing ATP-DnaA from ADP-DnaA, which is prerequisite for timely initiation. Both DARS sequences have a core region containing a cluster of three DnaA-binding sites. DARS2 is more effective in vivo than DARS1, and timely activation of DARS2 depends on binding of two nucleoid-associated proteins, IHF and Fis. DARS2 is located centrally between the chromosomal replication origin oriC and the terminus region terC. We constructed mutants in which DARS2 was translocated to several chromosomal loci, including sites proximal to oriC and to terC. Replication initiation was inhibited in cells in which DARS2 was translocated to terC-proximal sites when the cells were grown at 42 °C, although overall binding efficiency of IHF and Fis to the translocated DARS2 was not affected. Inhibition was largely sustained even in cells lacking MatP, a DNA-binding protein responsible for terC-specific subchromosomal structure. These results suggest that functional regulation of DARS2 is correlated with its chromosomal location under certain conditions.


Asunto(s)
Proteínas Bacterianas/genética , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Sitios de Unión , Mapeo Cromosómico , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Escherichia coli/metabolismo , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Origen de Réplica
17.
Genes Cells ; 21(2): 136-45, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26738888

RESUMEN

Long inverted repeats (LIRs), often found in eukaryotic genomes, are unstable in Escherichia coli where they are recognized by the SbcCD (the bacterial Mre11/Rad50 homologue), an endonuclease/exonuclease capable of cleaving hairpin DNA. It has long been postulated that LIRs form hairpin structures exclusively on the lagging-strand template during DNA replication, and SbcCD cleaves these hairpin-containing lagging strands to generate DNA double-strand breaks. Using a reconstituted oriC plasmid DNA replication system, we have examined how a replication fork behaves when it meets a LIR on DNA. We have shown that leading-strand synthesis stalls transiently within the upstream half of the LIR. Pausing of lagging-strand synthesis at the LIR was not clearly observed, but the pattern of priming sites for Okazaki fragment synthesis was altered within the downstream half of the LIR. We have found that the LIR on a replicating plasmid was cleaved by SbcCD with almost equal frequency on both the leading- and lagging-strand templates. These data strongly suggest that the LIR is readily converted to a cruciform DNA, before the arrival of the fork, creating SbcCD-sensitive hairpin structures on both leading and lagging strands. We propose a model for the replication-dependent extrusion of LIRs to form cruciform structures that transiently impede replication fork movement.


Asunto(s)
Replicación del ADN , ADN Bacteriano/química , Escherichia coli/genética , Secuencias Invertidas Repetidas , ADN/metabolismo , ADN Bacteriano/metabolismo , Desoxirribonucleasas/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Exonucleasas/metabolismo , Modelos Genéticos , Plásmidos/genética
18.
Biosci Biotechnol Biochem ; 81(10): 1937-1940, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28820009

RESUMEN

A toxin-antitoxin system, vp1842/vp1843, locates within a superintegron on the Vibrio parahaemolyticus genome chromosome I whose toxin gene vp1843 encodes a DNA nicking endonuclease. We found that the vp1843 expression in Escherichia coli cells strongly induced chromosomal DNA degradation. On the basis of these observations, we discuss a possible physiological role of vp1842/vp1843 in V. parahaemolyticus.


Asunto(s)
Cromosomas Bacterianos/genética , ADN Bacteriano/metabolismo , Escherichia coli/genética , Toxinas Biológicas/genética , Vibrio parahaemolyticus/genética , Escherichia coli/metabolismo , Expresión Génica , Toxinas Biológicas/metabolismo
19.
Adv Exp Med Biol ; 1042: 79-98, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29357054

RESUMEN

The Escherichia coli chromosomal origin consists of a duplex-unwinding region and a region bearing a DNA-bending protein, IHF-binding site, and clusters of binding sites for the initiator protein DnaA. ATP-DnaA molecules form highly organized oligomers in a process stimulated by DiaA, a DnaA-binding protein. The resultant ATP-DnaA complexes promote local unwinding of oriC with the aid of IHF, for which specific interaction of DnaA with the single-stranded DNA is crucial. DnaA complexes also interact with DnaB helicases bound to DnaC loaders, promoting loading of DnaB onto the unwound DNA strands for bidirectional replication. Initiation of replication is strictly regulated during the cell cycle by multiple regulatory systems for oriC and DnaA. The activity of oriC is regulated by its methylation state, whereas that of DnaA depends on the form of the bound nucleotide. ATP-DnaA can be yielded from initiation-inactive ADP-DnaA in a timely manner depending on specific chromosomal DNA elements termed DARS (DnaA-reactivating sequences). After initiation, DnaA-bound ATP is hydrolyzed by two systems, yielding ADP-DnaA. In this review, these and other mechanisms of initiation and its regulation in E. coli are described.


Asunto(s)
Replicación del ADN/fisiología , Escherichia coli/genética , Complejo de Reconocimiento del Origen/metabolismo , Origen de Réplica/genética , Sitios de Unión , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo , ADN Bacteriano/genética , Complejo de Reconocimiento del Origen/genética
20.
Genes Dev ; 23(10): 1221-33, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19401329

RESUMEN

In Escherichia coli, ATP-DnaA, unlike ADP-DnaA, can initiate chromosomal replication at oriC. The level of cellular ATP-DnaA fluctuates, peaking at around the time of replication initiation. However, it remains unknown how the ATP-DnaA level increases coordinately with the replication cycle. In this study, we show that two chromosomal intergenic regions, herein termed DnaA-reactivating sequence 1 (DARS1) and DnaA-reactivating sequence 2 (DARS2), directly promote regeneration of ATP-DnaA from ADP-DnaA by nucleotide exchange, resulting in the promotion of replication initiation in vitro and in vivo. Coordination of initiation with the cell cycle requires DARS activity and its regulation. Oversupply of DARSs results in increase in the ATP-DnaA level and enhancement of replication initiation, which can inhibit cell growth in an oriC-dependent manner. Deletion of DARSs results in decrease in the ATP-DnaA level and inhibition of replication initiation, which can cause synthetic lethality with a temperature-sensitive mutant dnaA and suppression of overinitiation by the lack of seqA or datA, negative regulators for initiation. DARSs bear a cluster of DnaA-binding sites. DnaA molecules form specific homomultimers on DARS1, which causes specific interactions among the protomers, reducing their affinity for ADP. Our findings reveal a novel regulatory pathway that promotes the initiation of chromosomal replication via DnaA reactivation.


Asunto(s)
Adenosina Difosfato/metabolismo , Proteínas Bacterianas/metabolismo , ADN Intergénico/metabolismo , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano/fisiología , Adenosina Trifosfatasas/metabolismo , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Replicación del ADN/genética , ADN Intergénico/genética , Proteínas de Drosophila/metabolismo , Endodesoxirribonucleasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Genoma Bacteriano/genética , Nucleótidos/genética , Estabilidad Proteica , Estructura Terciaria de Proteína , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA