Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int Immunol ; 36(6): 261-278, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38364321

RESUMEN

Adoptive cell therapy (ACT) is an immunotherapeutic approach that involves isolating T cells from a patient, culturing them ex vivo, then reinfusing the cells back into the patient. Although this strategy has shown remarkable efficacy in hematological malignancies, the solid-tumour microenvironment (TME) has presented serious challenges for therapy efficacy. Particularly, the TME has immunosuppressive signalling and presents a metabolically challenging environment that leads to T-cell suppression. T-cell metabolism is an expanding field of research with a focus on understanding its inherent link to T-cell function. Here, we review the current model of T-cell metabolism from naïve cells through effector and memory life stages, as well as updates to the model from recent literature. These models of metabolism have provided us with the tools and understanding to explore T-cell metabolic and mitochondrial insufficiency in the TME. We discuss manipulations that can be made to these mitochondrial and metabolic pathways to enhance the persistence of infused T cells, overcome the metabolically challenging TME and improve the efficacy of therapy in ACT models. Further understanding and investigation of the impact of metabolic pathways on T-cell performance could contribute to improving therapy efficacy for patients.


Asunto(s)
Inmunoterapia Adoptiva , Linfocitos T , Humanos , Inmunoterapia Adoptiva/métodos , Animales , Linfocitos T/inmunología , Microambiente Tumoral/inmunología , Reprogramación Celular/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Mitocondrias/metabolismo , Mitocondrias/inmunología
2.
Cell Rep Med ; 5(3): 101465, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38460518

RESUMEN

The manipulation of T cell metabolism to enhance anti-tumor activity is an area of active investigation. Here, we report that activating the amino acid starvation response in effector CD8+ T cells ex vivo using the general control non-depressible 2 (GCN2) agonist halofuginone (halo) enhances oxidative metabolism and effector function. Mechanistically, we identified autophagy coupled with the CD98-mTOR axis as key downstream mediators of the phenotype induced by halo treatment. The adoptive transfer of halo-treated CD8+ T cells into tumor-bearing mice led to robust tumor control and curative responses. Halo-treated T cells synergized in vivo with a 4-1BB agonistic antibody to control tumor growth in a mouse model resistant to immunotherapy. Importantly, treatment of human CD8+ T cells with halo resulted in similar metabolic and functional reprogramming. These findings demonstrate that activating the amino acid starvation response with the GCN2 agonist halo can enhance T cell metabolism and anti-tumor activity.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Humanos , Animales , Ratones , Inmunoterapia Adoptiva/métodos , Neoplasias/patología , Inmunoterapia , Aminoácidos
3.
Cell Metab ; 33(12): 2415-2427.e6, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34879240

RESUMEN

Metabolic programming is intricately linked to the anti-tumor properties of T cells. To study the metabolic pathways associated with increased anti-tumor T cell function, we utilized a metabolomics approach to characterize three different CD8+ T cell subsets with varying degrees of anti-tumor activity in murine models, of which IL-22-producing Tc22 cells displayed the most robust anti-tumor activity. Tc22s demonstrated upregulation of the pantothenate/coenzyme A (CoA) pathway and a requirement for oxidative phosphorylation (OXPHOS) for differentiation. Exogenous administration of CoA reprogrammed T cells to increase OXPHOS and adopt the CD8+ Tc22 phenotype independent of polarizing conditions via the transcription factors HIF-1α and the aryl hydrocarbon receptor (AhR). In murine tumor models, treatment of mice with the CoA precursor pantothenate enhanced the efficacy of anti-PDL1 antibody therapy. In patients with melanoma, pre-treatment plasma pantothenic acid levels were positively correlated with the response to anti-PD1 therapy. Collectively, our data demonstrate that pantothenate and its metabolite CoA drive T cell polarization, bioenergetics, and anti-tumor immunity.


Asunto(s)
Coenzima A , Subgrupos de Linfocitos T , Animales , Linfocitos T CD8-positivos , Diferenciación Celular , Coenzima A/metabolismo , Humanos , Activación de Linfocitos , Ratones , Subgrupos de Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA