Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell ; 154(2): 430-41, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23870130

RESUMEN

NAD(+) is an important cofactor regulating metabolic homeostasis and a rate-limiting substrate for sirtuin deacylases. We show that NAD(+) levels are reduced in aged mice and Caenorhabditis elegans and that decreasing NAD(+) levels results in a further reduction in worm lifespan. Conversely, genetic or pharmacological restoration of NAD(+) prevents age-associated metabolic decline and promotes longevity in worms. These effects are dependent upon the protein deacetylase sir-2.1 and involve the induction of mitonuclear protein imbalance as well as activation of stress signaling via the mitochondrial unfolded protein response (UPR(mt)) and the nuclear translocation and activation of FOXO transcription factor DAF-16. Our data suggest that augmenting mitochondrial stress signaling through the modulation of NAD(+) levels may be a target to improve mitochondrial function and prevent or treat age-associated decline.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Longevidad , Mitocondrias/metabolismo , NAD/metabolismo , Transducción de Señal , Respuesta de Proteína Desplegada , Envejecimiento , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Hepatocitos/metabolismo , Ratones , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo , Factores de Transcripción/metabolismo
2.
Nature ; 563(7731): 354-359, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30356218

RESUMEN

Nicotinamide adenine dinucleotide (NAD+) is a co-substrate for several enzymes, including the sirtuin family of NAD+-dependent protein deacylases. Beneficial effects of increased NAD+ levels and sirtuin activation on mitochondrial homeostasis, organismal metabolism and lifespan have been established across species. Here we show that α-amino-ß-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD), the enzyme that limits spontaneous cyclization of α-amino-ß-carboxymuconate-ε-semialdehyde in the de novo NAD+ synthesis pathway, controls cellular NAD+ levels via an evolutionarily conserved mechanism in Caenorhabditis elegans and mouse. Genetic and pharmacological inhibition of ACMSD boosts de novo NAD+ synthesis and sirtuin 1 activity, ultimately enhancing mitochondrial function. We also characterize two potent and selective inhibitors of ACMSD. Because expression of ACMSD is largely restricted to kidney and liver, these inhibitors may have therapeutic potential for protection of these tissues from injury. In summary, we identify ACMSD as a key modulator of cellular NAD+ levels, sirtuin activity and mitochondrial homeostasis in kidney and liver.


Asunto(s)
Carboxiliasas/metabolismo , Secuencia Conservada , Evolución Molecular , Salud , Mitocondrias/fisiología , NAD/biosíntesis , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/metabolismo , Carboxiliasas/antagonistas & inhibidores , Carboxiliasas/química , Carboxiliasas/deficiencia , Línea Celular , Colina , Modelos Animales de Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Homeostasis/efectos de los fármacos , Humanos , Riñón/citología , Riñón/efectos de los fármacos , Hígado/citología , Hígado/efectos de los fármacos , Longevidad/efectos de los fármacos , Masculino , Metionina/deficiencia , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Ratas , Sirtuinas/metabolismo
3.
Genome Res ; 29(12): 2034-2045, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31754022

RESUMEN

The functions of many eukaryotic genes are still poorly understood. Here, we developed and validated a new method, termed GeneBridge, which is based on two linked approaches to impute gene function and bridge genes with biological processes. First, Gene-Module Association Determination (G-MAD) allows the annotation of gene function. Second, Module-Module Association Determination (M-MAD) allows predicting connectivity among modules. We applied the GeneBridge tools to large-scale multispecies expression compendia-1700 data sets with over 300,000 samples from human, mouse, rat, fly, worm, and yeast-collected in this study. G-MAD identifies novel functions of genes-for example, DDT in mitochondrial respiration and WDFY4 in T cell activation-and also suggests novel components for modules, such as for cholesterol biosynthesis. By applying G-MAD on data sets from respective tissues, tissue-specific functions of genes were identified-for instance, the roles of EHHADH in liver and kidney, as well as SLC6A1 in brain and liver. Using M-MAD, we identified a list of module-module associations, such as those between mitochondria and proteasome, mitochondria and histone demethylation, as well as ribosomes and lipid biosynthesis. The GeneBridge tools together with the expression compendia are available as an open resource, which will facilitate the identification of connections linking genes, modules, phenotypes, and diseases.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Saccharomyces cerevisiae/genética , Programas Informáticos , Animales , Humanos , Ratones , Ratas
4.
EMBO J ; 36(18): 2670-2683, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28784597

RESUMEN

Discovered in the beginning of the 20th century, nicotinamide adenine dinucleotide (NAD+) has evolved from a simple oxidoreductase cofactor to being an essential cosubstrate for a wide range of regulatory proteins that include the sirtuin family of NAD+-dependent protein deacylases, widely recognized regulators of metabolic function and longevity. Altered NAD+ metabolism is associated with aging and many pathological conditions, such as metabolic diseases and disorders of the muscular and neuronal systems. Conversely, increased NAD+ levels have shown to be beneficial in a broad spectrum of diseases. Here, we review the fundamental aspects of NAD+ biochemistry and metabolism and discuss how boosting NAD+ content can help ameliorate mitochondrial homeostasis and as such improve healthspan and lifespan.


Asunto(s)
Coenzimas/metabolismo , NAD/metabolismo , Animales , Homeostasis , Humanos , Redes y Vías Metabólicas , Mitocondrias/metabolismo
5.
Nephrol Dial Transplant ; 36(1): 60-68, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33099633

RESUMEN

BACKGROUND: Nicotinamide adenine dinucleotide (NAD+) is a ubiquitous coenzyme involved in electron transport and a co-substrate for sirtuin function. NAD+ deficiency has been demonstrated in the context of acute kidney injury (AKI). METHODS: We studied the expression of key NAD+ biosynthesis enzymes in kidney biopsies from human allograft patients and patients with chronic kidney disease (CKD) at different stages. We used ischaemia-reperfusion injury (IRI) and cisplatin injection to model AKI, urinary tract obstruction [unilateral ureteral obstruction (UUO)] and tubulointerstitial fibrosis induced by proteinuria to investigate CKD in mice. We assessed the effect of nicotinamide riboside (NR) supplementation on AKI and CKD in animal models. RESULTS: RNA sequencing analysis of human kidney allograft biopsies during the reperfusion phase showed that the NAD+de novo synthesis is impaired in the immediate post-transplantation period, whereas the salvage pathway is stimulated. This decrease in de novo NAD+ synthesis was confirmed in two mouse models of IRI where NR supplementation prevented plasma urea and creatinine elevation and tubular injury. In human biopsies from CKD patients, the NAD+de novo synthesis pathway was impaired according to CKD stage, with better preservation of the salvage pathway. Similar alterations in gene expression were observed in mice with UUO or chronic proteinuric glomerular disease. NR supplementation did not prevent CKD progression, in contrast to its efficacy in AKI. CONCLUSION: Impairment of NAD+ synthesis is a hallmark of AKI and CKD. NR supplementation is beneficial in ischaemic AKI but not in CKD models.


Asunto(s)
Lesión Renal Aguda/patología , Modelos Animales de Enfermedad , Niacinamida/análogos & derivados , Insuficiencia Renal Crónica/patología , Daño por Reperfusión/patología , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Animales , Antineoplásicos/toxicidad , Cisplatino/toxicidad , Progresión de la Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Niacinamida/administración & dosificación , Niacinamida/deficiencia , Compuestos de Piridinio , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/metabolismo , Daño por Reperfusión/inducido químicamente , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo
6.
J Lipid Res ; 60(4): 741-746, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30782960

RESUMEN

Niacin, the first antidyslipidemic drug, has been at the center stage of lipid research for many decades before the discovery of statins. However, to date, despite its remarkable effects on lipid profiles, the clinical outcomes of niacin treatment on cardiac events is still debated. In addition to its historically well-defined interactions with central players of lipid metabolism, niacin can be processed by eukaryotic cells to synthesize a crucial cofactor, NAD+ NAD+ acts as a cofactor in key cellular processes, including oxidative phosphorylation, glycolysis, and DNA repair. More recently, evidence has emerged that NAD+ also is an essential cosubstrate for the sirtuin family of protein deacylases and thereby has an impact on a wide range of cellular processes, most notably mitochondrial homeostasis, energy homeostasis, and lipid metabolism. NAD+ achieves these remarkable effects through sirtuin-mediated deacetylation of key transcriptional regulators, such as peroxisome proliferator-activated receptor gamma coactivator 1-α, LXR, and SREBPs, that control these cellular processes. Here, we present an alternative point of view to explain niacin's mechanism of action, with a strong focus on the importance of how this old drug acts as a control switch of NAD+/sirtuin-mediated control of metabolism.


Asunto(s)
Hipolipemiantes/farmacología , NAD/efectos de los fármacos , Niacina/farmacología , Animales , Humanos , Hipolipemiantes/química , Metabolismo de los Lípidos/efectos de los fármacos , Estructura Molecular , NAD/metabolismo , Niacina/química
7.
Nature ; 497(7450): 451-7, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23698443

RESUMEN

Longevity is regulated by a network of closely linked metabolic systems. We used a combination of mouse population genetics and RNA interference in Caenorhabditis elegans to identify mitochondrial ribosomal protein S5 (Mrps5) and other mitochondrial ribosomal proteins as metabolic and longevity regulators. MRP knockdown triggers mitonuclear protein imbalance, reducing mitochondrial respiration and activating the mitochondrial unfolded protein response. Specific antibiotics targeting mitochondrial translation and ethidium bromide (which impairs mitochondrial DNA transcription) pharmacologically mimic mrp knockdown and extend worm lifespan by inducing mitonuclear protein imbalance, a stoichiometric imbalance between nuclear and mitochondrially encoded proteins. This mechanism was also conserved in mammalian cells. In addition, resveratrol and rapamycin, longevity compounds acting on different molecular targets, similarly induced mitonuclear protein imbalance, the mitochondrial unfolded protein response and lifespan extension in C. elegans. Collectively these data demonstrate that MRPs represent an evolutionarily conserved protein family that ties the mitochondrial ribosome and mitonuclear protein imbalance to the mitochondrial unfolded protein response, an overarching longevity pathway across many species.


Asunto(s)
Caenorhabditis elegans/fisiología , Longevidad/fisiología , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Ribosómicas/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Antibacterianos/farmacología , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Doxiciclina/farmacología , Evolución Molecular , Femenino , Longevidad/efectos de los fármacos , Longevidad/genética , Masculino , Ratones , Ratones Endogámicos , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Proteínas Mitocondriales/genética , Sitios de Carácter Cuantitativo , Interferencia de ARN , Reproducibilidad de los Resultados , Proteínas Ribosómicas/genética , Sirolimus/farmacología , Respuesta de Proteína Desplegada/genética , Respuesta de Proteína Desplegada/fisiología
8.
J Hepatol ; 66(1): 132-141, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27663419

RESUMEN

BACKGROUND & AIMS: To date, no pharmacological therapy has been approved for non-alcoholic fatty liver disease (NAFLD). The aim of the present study was to evaluate the therapeutic potential of poly ADP-ribose polymerase (PARP) inhibitors in mouse models of NAFLD. METHODS: As poly ADP-ribosylation (PARylation) of proteins by PARPs consumes nicotinamide adenine dinucleotide (NAD+), we hypothesized that overactivation of PARPs drives NAD+ depletion in NAFLD. Therefore, we assessed the effectiveness of PARP inhibition to replenish NAD+ and activate NAD+-dependent sirtuins, hence improving hepatic fatty acid oxidation. To do this, we examined the preventive and therapeutic benefits of the PARP inhibitor (PARPi), olaparib, in different models of NAFLD. RESULTS: The induction of NAFLD in C57BL/6J mice using a high-fat high-sucrose (HFHS)-diet increased PARylation of proteins by PARPs. As such, increased PARylation was associated with reduced NAD+ levels and mitochondrial function and content, which was concurrent with elevated hepatic lipid content. HFHS diet supplemented with PARPi reversed NAFLD through repletion of NAD+, increasing mitochondrial biogenesis and ß-oxidation in liver. Furthermore, PARPi reduced reactive oxygen species, endoplasmic reticulum stress and fibrosis. The benefits of PARPi treatment were confirmed in mice fed with a methionine- and choline-deficient diet and in mice with lipopolysaccharide-induced hepatitis; PARP activation was attenuated and the development of hepatic injury was delayed in both models. Using Sirt1hep-/- mice, the beneficial effects of a PARPi-supplemented HFHS diet were found to be Sirt1-dependent. CONCLUSIONS: Our study provides a novel and practical pharmacological approach for treating NAFLD, fueling optimism for potential clinical studies. LAY SUMMARY: Non-alcoholic fatty liver disease (NAFLD) is now considered to be the most common liver disease in the Western world and has no approved pharmacological therapy. PARP inhibitors given as a treatment in two different mouse models of NAFLD confer a protection against its development. PARP inhibitors may therefore represent a novel and practical pharmacological approach for treating NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ftalazinas/farmacología , Piperazinas/farmacología , Animales , Modelos Animales de Enfermedad , Metabolismo de los Lípidos , Hígado/metabolismo , Hígado/patología , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Oxidación-Reducción , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo
9.
bioRxiv ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38293129

RESUMEN

Lifespan is influenced by complex interactions between genetic and environmental factors. Studying those factors in model organisms of a single genetic background limits their translational value for humans. Here, we mapped lifespan determinants in 85 genetically diverse C. elegans recombinant intercross advanced inbred lines (RIAILs). We assessed molecular profiles - transcriptome, proteome, and lipidome - and life-history traits, including lifespan, development, growth dynamics, and reproduction. RIAILs exhibited large variations in lifespan, which positively correlated with developmental time. Among the top candidates obtained from multi-omics data integration and QTL mapping, we validated known and novel longevity modulators, including rict-1, gfm-1 and mltn-1. We translated their relevance to humans using UK Biobank data and showed that variants in RICTOR and GFM1 are associated with an elevated risk of age-related heart disease, dementia, diabetes, kidney, and liver diseases. We organized our dataset as a resource (https://lisp-lms.shinyapps.io/RIAILs/) that allows interactive explorations for new longevity targets.

10.
J Clin Invest ; 132(17)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35787521

RESUMEN

Mitohormesis defines the increase in fitness mediated by adaptive responses to mild mitochondrial stress. Tetracyclines inhibit not only bacterial but also mitochondrial translation, thus imposing a low level of mitochondrial stress on eukaryotic cells. We demonstrate in cell and germ-free mouse models that tetracyclines induce a mild adaptive mitochondrial stress response (MSR), involving both the ATF4-mediated integrative stress response and type I interferon (IFN) signaling. To overcome the interferences of tetracyclines with the host microbiome, we identify tetracycline derivatives that have minimal antimicrobial activity, yet retain full capacity to induce the MSR, such as the lead compound, 9-tert-butyl doxycycline (9-TB). The MSR induced by doxycycline (Dox) and 9-TB improves survival and disease tolerance against lethal influenza virus (IFV) infection when given preventively. 9-TB, unlike Dox, did not affect the gut microbiome and also showed encouraging results against IFV when given in a therapeutic setting. Tolerance to IFV infection is associated with the induction of genes involved in lung epithelial cell and cilia function, and with downregulation of inflammatory and immune gene sets in lungs, liver, and kidneys. Mitohormesis induced by non-antimicrobial tetracyclines and the ensuing IFN response may dampen excessive inflammation and tissue damage during viral infections, opening innovative therapeutic avenues.


Asunto(s)
Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Antibacterianos , Doxiciclina/farmacología , Humanos , Gripe Humana/tratamiento farmacológico , Ratones , Tetraciclina , Tetraciclinas/farmacología
11.
J Cell Biol ; 221(2)2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35024765

RESUMEN

Protein lysine acetylation is a post-translational modification that regulates protein structure and function. It is targeted to proteins by lysine acetyltransferases (KATs) or removed by lysine deacetylases. This work identifies a role for the KAT enzyme general control of amino acid synthesis protein 5 (GCN5; KAT2A) in regulating muscle integrity by inhibiting DNA binding of the transcription factor/repressor Yin Yang 1 (YY1). Here we report that a muscle-specific mouse knockout of GCN5 (Gcn5skm-/-) reduces the expression of key structural muscle proteins, including dystrophin, resulting in myopathy. GCN5 was found to acetylate YY1 at two residues (K392 and K393), disrupting the interaction between the YY1 zinc finger region and DNA. These findings were supported by human data, including an observed negative correlation between YY1 gene expression and muscle fiber diameter. Collectively, GCN5 positively regulates muscle integrity through maintenance of structural protein expression via acetylation-dependent inhibition of YY1. This work implicates the role of protein acetylation in the regulation of muscle health and for consideration in the design of novel therapeutic strategies to support healthy muscle during myopathy or aging.


Asunto(s)
Distrofina/genética , Músculos/metabolismo , Factor de Transcripción YY1/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Envejecimiento/metabolismo , Animales , ADN/metabolismo , Distrofina/metabolismo , Regulación de la Expresión Génica , Humanos , Lisina/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Músculos/patología , Músculos/ultraestructura , Atrofia Muscular/patología , Distrofias Musculares/patología , Transcriptoma/genética , Factores de Transcripción p300-CBP/deficiencia
12.
J Pharmacol Exp Ther ; 335(1): 13-22, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20624994

RESUMEN

Although previous studies of Huntington's disease (HD) have addressed many potential mechanisms of striatal neuron dysfunction and death, it is also known, based on clinical findings, that cortical function is dramatically disrupted in HD. With respect to disease etiology, however, the specific molecular and neuronal circuit bases for the cortical effects of mutant huntingtin (htt) have remained largely unknown. In the present work, we studied the relationship between the molecular effects of mutant htt fragments in cortical cells and the corresponding behavior of cortical neuron microcircuits by using a novel cellular model of HD. We observed that a transcript-selective diminution in activity-dependent brain-derived neurotrophic factor (BDNF) expression preceded the onset of a synaptic connectivity deficit in ex vivo cortical networks, which manifested as decreased spontaneous collective burst-firing behavior measured by multielectrode array substrates. Decreased BDNF expression was determined to be a significant contributor to network-level dysfunction, as shown by the ability of exogenous BDNF to ameliorate cortical microcircuit burst firing. The molecular determinants of the dysregulation of activity-dependent BDNF expression by mutant htt seem to be distinct from previously elucidated mechanisms, because they do not involve known neuron-restrictive silencer factor/RE1-silencing transcription factor-regulated promoter sequences but instead result from dysregulation of BDNF exon IV and VI transcription. These data elucidate a novel HD-related deficit in BDNF gene regulation as a plausible mechanism of cortical neuron hypoconnectivity and cortical function deficits in HD. Moreover, the novel model paradigm established here is well suited to further mechanistic and drug screening research applications.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Corteza Cerebral/metabolismo , Red Nerviosa/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/farmacología , Neuronas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/farmacología , Sinapsis/genética , Sinapsis/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Vectores Genéticos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Inmunohistoquímica , Lentivirus/genética , Microelectrodos , Modelos Estadísticos , Mutación/fisiología , Red Nerviosa/efectos de los fármacos , Vías Nerviosas/fisiología , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/farmacología , ARN/biosíntesis , ARN/genética , Ratas , Ratas Wistar , Receptor trkB/antagonistas & inhibidores , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sinapsis/efectos de los fármacos
13.
Nat Metab ; 2(1): 9-31, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32694684

RESUMEN

The conceptual evolution of nicotinamide adenine dinucleotide (NAD+) from being seen as a simple metabolic cofactor to a pivotal cosubstrate for proteins regulating metabolism and longevity, including the sirtuin family of protein deacylases, has led to a new wave of scientific interest in NAD+. NAD+ levels decline during ageing, and alterations in NAD+ homeostasis can be found in virtually all age-related diseases, including neurodegeneration, diabetes and cancer. In preclinical settings, various strategies to increase NAD+ levels have shown beneficial effects, thus starting a competitive race to discover marketable NAD+ boosters to improve healthspan and lifespan. Here, we review the basics of NAD+ biochemistry and metabolism, and its roles in health and disease, and we discuss current challenges and the future translational potential of NAD+ research.


Asunto(s)
Enfermedad , Homeostasis , NAD/metabolismo , Animales , Glucólisis , Humanos , Longevidad , Metabolismo/fisiología , NADP/metabolismo , Oxidación-Reducción , Fosforilación , Sirtuinas/metabolismo , Fracciones Subcelulares/metabolismo
14.
Nat Metab ; 1(12): 1219-1225, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-32694678

RESUMEN

The cellular level of nicotinamide adenine dinucleotide (NAD+), through its different functions, affects cellular metabolism and signalling1-3. A decrease in the NAD+ content has been associated with various pathologies and physiological aging4,5, while strategies to boost cellular NAD+ levels have been shown to be effective against age-related diseases in many animal models6. The link between decreased NAD+ levels and numerous pathologies and physiological aging has triggered the need for a simple quantification method for NAD+, ideally applicable at the point of care. Here, we introduce a bioluminescent biosensor for the rapid quantification of NAD+ levels in biological samples, which can be used either in laboratories or at the point of care. The biosensor is a semisynthetic, light-emitting sensor protein that changes the colour of emitted light from blue to red on binding of NAD+. This NAD+-dependent colour change enables the use of the biosensor in paper-based assays in which NAD+ is quantified by measuring the colour of the emitted light by using either a simple digital camera or a plate reader. We used the approach to quantify NAD+ levels in cell culture, tissue and blood samples, yielding results that agreed with those from standard testing methods. The same biosensor furthermore allows the quantification of NAD+-dependent enzymatic activities in blood samples, thus expanding its utility as a tool for point-of-care diagnostics.


Asunto(s)
Técnicas Biosensibles , NAD/metabolismo , Sistemas de Atención de Punto , Animales , Células Cultivadas , Color , Diseño de Equipo , Biblioteca de Genes , Humanos , Cinética , Hígado/química , Luminiscencia , Masculino , Ratones , Ratones Endogámicos C57BL , NAD/análisis , NAD/sangre , Pruebas en el Punto de Atención
15.
J Med Chem ; 61(3): 745-759, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29345930

RESUMEN

NAD+ has a central function in linking cellular metabolism to major cell-signaling and gene-regulation pathways. Defects in NAD+ homeostasis underpin a wide range of diseases, including cancer, metabolic disorders, and aging. Although the beneficial effects of boosting NAD+ on mitochondrial fitness, metabolism, and lifespan are well established, to date, no therapeutic enhancers of de novo NAD+ biosynthesis have been reported. Herein we report the discovery of 3-[[[5-cyano-1,6-dihydro-6-oxo-4-(2-thienyl)-2-pyrimidinyl]thio]methyl]phenylacetic acid (TES-1025, 22), the first potent and selective inhibitor of human ACMSD (IC50 = 0.013 µM) that increases NAD+ levels in cellular systems. The results of physicochemical-property, ADME, and safety profiling, coupled with in vivo target-engagement studies, support the hypothesis that ACMSD inhibition increases de novo NAD+ biosynthesis and position 22 as a first-class molecule for the evaluation of the therapeutic potential of ACMSD inhibition in treating disorders with perturbed NAD+ supply or homeostasis.


Asunto(s)
Carboxiliasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , NAD/biosíntesis , Carboxiliasas/química , Carboxiliasas/metabolismo , Inhibidores Enzimáticos/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Fenilacetatos/metabolismo , Fenilacetatos/farmacología , Conformación Proteica
16.
Aging Cell ; 17(4): e12751, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29654651

RESUMEN

Disruption of the regulator for G protein signaling 14 (RGS14) knockout (KO) in mice extends their lifespan and has multiple beneficial effects related to healthful aging, that is, protection from obesity, as reflected by reduced white adipose tissue, protection against cold exposure, and improved metabolism. The observed beneficial effects were mediated by improved mitochondrial function. But most importantly, the main mechanism responsible for the salutary properties of the RGS14 KO involved an increase in brown adipose tissue (BAT), which was confirmed by surgical BAT removal and transplantation to wild-type (WT) mice, a surgical simulation of a molecular knockout. This technique reversed the phenotype of the RGS14 KO and WT, resulting in loss of the improved metabolism and protection against cold exposure in RGS14 KO and conferring this protection to the WT BAT recipients. Another mechanism mediating the salutary features in the RGS14 KO was increased SIRT3. This mechanism was confirmed in the RGS14 X SIRT3 double KO, which no longer demonstrated improved metabolism and protection against cold exposure. Loss of function of the Caenorhabditis elegans RGS-14 homolog confirmed the evolutionary conservation of this mechanism. Thus, disruption of RGS14 is a model of healthful aging, as it not only enhances lifespan, but also protects against obesity and cold exposure and improves metabolism with a key mechanism of increased BAT, which, when removed, eliminates the features of healthful aging.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Longevidad , Proteínas RGS/metabolismo , Transducción de Señal , Animales , Longevidad/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas RGS/deficiencia , Proteínas RGS/genética , Transducción de Señal/genética
17.
Nat Rev Endocrinol ; 12(1): 43-60, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26503676

RESUMEN

Reversible acetylation was initially described as an epigenetic mechanism regulating DNA accessibility. Since then, this process has emerged as a controller of histone and nonhistone acetylation that integrates key physiological processes such as metabolism, circadian rhythm and cell cycle, along with gene regulation in various organisms. The widespread and reversible nature of acetylation also revitalized interest in the mechanisms that regulate lysine acetyltransferases (KATs) and deacetylases (KDACs) in health and disease. Changes in protein or histone acetylation are especially relevant for many common diseases including obesity, diabetes mellitus, neurodegenerative diseases and cancer, as well as for some rare diseases such as mitochondrial diseases and lipodystrophies. In this Review, we examine the role of reversible acetylation in metabolic control and how changes in levels of metabolites or cofactors, including nicotinamide adenine dinucleotide, nicotinamide, coenzyme A, acetyl coenzyme A, zinc and butyrate and/or ß-hydroxybutyrate, directly alter KAT or KDAC activity to link energy status to adaptive cellular and organismal homeostasis.


Asunto(s)
Metabolismo Energético/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Ácido 3-Hidroxibutírico/metabolismo , Acetilación , Animales , Coenzimas/metabolismo , Epigénesis Genética/fisiología , Histona Acetiltransferasas/metabolismo , Humanos , Niacinamida/metabolismo
18.
Nat Med ; 22(8): 879-88, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27400265

RESUMEN

The biological effects of urolithins remain poorly characterized, despite wide-spread human exposure via the dietary consumption of their metabolic precursors, the ellagitannins, which are found in the pomegranate fruit, as well as in nuts and berries. We identified urolithin A (UA) as a first-in-class natural compound that induces mitophagy both in vitro and in vivo following oral consumption. In C. elegans, UA prevented the accumulation of dysfunctional mitochondria with age and extended lifespan. Likewise, UA prolonged normal activity during aging in C. elegans, including mobility and pharyngeal pumping, while maintaining mitochondrial respiratory capacity. These effects translated to rodents, where UA improved exercise capacity in two different mouse models of age-related decline of muscle function, as well as in young rats. Our findings highlight the health benefits of urolithin A and its potential application in strategies to improve mitochondrial and muscle function.


Asunto(s)
Cumarinas/farmacología , Longevidad/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitofagia/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Mioblastos/efectos de los fármacos , ARN Mensajero/efectos de los fármacos , Animales , Caenorhabditis elegans , ADN Mitocondrial/efectos de los fármacos , ADN Mitocondrial/metabolismo , Fertilidad/efectos de los fármacos , Ratones , Microscopía Confocal , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Consumo de Oxígeno , Faringe/efectos de los fármacos , ARN Mensajero/metabolismo , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa
19.
PLoS One ; 9(7): e102495, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25013930

RESUMEN

Dysfunction of Paneth and goblet cells in the intestine contributes to inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CAC). Here, we report a role for the NAD+-dependent histone deacetylase SIRT1 in the control of anti-bacterial defense. Mice with an intestinal specific Sirt1 deficiency (Sirt1int-/-) have more Paneth and goblet cells with a consequent rearrangement of the gut microbiota. From a mechanistic point of view, the effects on mouse intestinal cell maturation are mediated by SIRT1-dependent changes in the acetylation status of SPDEF, a master regulator of Paneth and goblet cells. Our results suggest that targeting SIRT1 may be of interest in the management of IBD and CAC.


Asunto(s)
Colitis/genética , Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica , Células Caliciformes/metabolismo , Células de Paneth/metabolismo , Sirtuina 1/genética , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciación Celular , Línea Celular , Colitis/inducido químicamente , Colitis/complicaciones , Colitis/patología , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/patología , Eliminación de Gen , Células Caliciformes/patología , Humanos , Ratones , Ratones Noqueados , Células de Paneth/patología , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Transducción de Señal , Sirtuina 1/deficiencia , Dodecil Sulfato de Sodio
20.
J Clin Invest ; 121(8): 3306-19, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21785217

RESUMEN

Huntington disease (HD) is a devastating neurodegenerative disorder for which there are no disease-modifying treatments. Previous studies have proposed that activation of the heat shock response (HSR) via the transcription factor heat shock factor 1 (HSF1) may be of therapeutic benefit. However, the effect of disease progression on the HSR and the therapeutic potential of this pathway are currently unknown. Here, we used a brain-penetrating HSP90 inhibitor and physiological, molecular, and behavioral readouts to demonstrate that pharmacological activation of HSF1 improves huntingtin aggregate load, motor performance, and other HD-related phenotypes in the R6/2 mouse model of HD. However, the beneficial effects of this treatment were transient and diminished with disease progression. Molecular analyses to understand the transient nature of these effects revealed altered chromatin architecture, reduced HSF1 binding, and impaired HSR accompanied disease progression in both the R6/2 transgenic and HdhQ150 knockin mouse models of HD. Taken together, our findings reveal that the HSR, a major inducible regulator of protein homeostasis and longevity, is disrupted in HD. Consequently, pharmacological induction of HSF1 as a therapeutic approach to HD is more complex than was previously anticipated.


Asunto(s)
Cromatina/química , Proteínas de Unión al ADN/fisiología , Respuesta al Choque Térmico/genética , Enfermedad de Huntington/metabolismo , Factores de Transcripción/fisiología , Animales , Núcleo Celular/metabolismo , Cromatina/metabolismo , Citoplasma/metabolismo , Modelos Animales de Enfermedad , Femenino , Proteínas HSP90 de Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico , Enfermedad de Huntington/genética , Masculino , Ratones , Ratones Transgénicos , Fenotipo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA