Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Cell ; 76(5): 784-796.e6, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31588022

RESUMEN

Oligoribonucleases are conserved enzymes that degrade short RNA molecules of up to 5 nt in length and are assumed to constitute the final stage of RNA turnover. Here we demonstrate that REXO2 is a specialized dinucleotide-degrading enzyme that shows no preference between RNA and DNA dinucleotide substrates. A heart- and skeletal-muscle-specific knockout mouse displays elevated dinucleotide levels and alterations in gene expression patterns indicative of aberrant dinucleotide-primed transcription initiation. We find that dinucleotides act as potent stimulators of mitochondrial transcription initiation in vitro. Our data demonstrate that increased levels of dinucleotides can be used to initiate transcription, leading to an increase in transcription levels from both mitochondrial promoters and other, nonspecific sequence elements in mitochondrial DNA. Efficient RNA turnover by REXO2 is thus required to maintain promoter specificity and proper regulation of transcription in mammalian mitochondria.


Asunto(s)
Proteínas 14-3-3/metabolismo , Biomarcadores de Tumor/metabolismo , Exorribonucleasas/metabolismo , Mitocondrias/enzimología , Oligonucleótidos/metabolismo , Regiones Promotoras Genéticas , Estabilidad del ARN , ARN Mitocondrial/metabolismo , Proteínas 14-3-3/deficiencia , Proteínas 14-3-3/genética , Animales , Biomarcadores de Tumor/genética , Exorribonucleasas/genética , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mitocondrial/genética , Células Sf9 , Spodoptera
2.
PLoS Genet ; 15(6): e1008085, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31170154

RESUMEN

Mitochondrial dynamics is an essential physiological process controlling mitochondrial content mixing and mobility to ensure proper function and localization of mitochondria at intracellular sites of high-energy demand. Intriguingly, for yet unknown reasons, severe impairment of mitochondrial fusion drastically affects mtDNA copy number. To decipher the link between mitochondrial dynamics and mtDNA maintenance, we studied mouse embryonic fibroblasts (MEFs) and mouse cardiomyocytes with disruption of mitochondrial fusion. Super-resolution microscopy revealed that loss of outer mitochondrial membrane (OMM) fusion, but not inner mitochondrial membrane (IMM) fusion, leads to nucleoid clustering. Remarkably, fluorescence in situ hybridization (FISH), bromouridine labeling in MEFs and assessment of mitochondrial transcription in tissue homogenates revealed that abolished OMM fusion does not affect transcription. Furthermore, the profound mtDNA depletion in mouse hearts lacking OMM fusion is not caused by defective integrity or increased mutagenesis of mtDNA, but instead we show that mitochondrial fusion is necessary to maintain the stoichiometry of the protein components of the mtDNA replisome. OMM fusion is necessary for proliferating MEFs to recover from mtDNA depletion and for the marked increase of mtDNA copy number during postnatal heart development. Our findings thus link OMM fusion to replication and distribution of mtDNA.


Asunto(s)
ADN Mitocondrial/genética , Mitocondrias Cardíacas/genética , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/genética , Animales , Variaciones en el Número de Copia de ADN/genética , Replicación del ADN/genética , Fibroblastos , Humanos , Hibridación Fluorescente in Situ , Fusión de Membrana/genética , Ratones , Mitocondrias Cardíacas/metabolismo , Membranas Mitocondriales/metabolismo , Mutagénesis , Miocitos Cardíacos/metabolismo , Transcripción Genética
3.
Nucleic Acids Res ; 46(13): 6642-6669, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29860357

RESUMEN

Mitochondrial DNA (mtDNA) mutations become more prevalent with age and are postulated to contribute to the ageing process. Point mutations of mtDNA have been suggested to originate from two main sources, i.e. replicative errors and oxidative damage, but the contribution of each of these processes is much discussed. To elucidate the origin of mtDNA mutations, we measured point mutation load in mice with deficient mitochondrial base-excision repair (BER) caused by knockout alleles preventing mitochondrial import of the DNA repair glycosylases OGG1 and MUTYH (Ogg1 dMTS, Mutyh dMTS). Surprisingly, we detected no increase in the mtDNA mutation load in old Ogg1 dMTS mice. As DNA repair is especially important in the germ line, we bred the BER deficient mice for five consecutive generations but found no increase in the mtDNA mutation load in these maternal lineages. To increase reactive oxygen species (ROS) levels and oxidative damage, we bred the Ogg1 dMTS mice with tissue specific Sod2 knockout mice. Although increased superoxide levels caused a plethora of changes in mitochondrial function, we did not detect any changes in the mutation load of mtDNA or mtRNA. Our results show that the importance of oxidative damage as a contributor of mtDNA mutations should be re-evaluated.


Asunto(s)
Reparación del ADN , ADN Mitocondrial/química , Estrés Oxidativo , Mutación Puntual , Animales , Núcleo Celular/enzimología , ADN Glicosilasas/metabolismo , Replicación del ADN , Proteínas Hierro-Azufre/antagonistas & inhibidores , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/enzimología , Proteómica , Superóxido Dismutasa/genética , Transcripción Genética
4.
Biochim Biophys Acta ; 1847(11): 1354-61, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26050972

RESUMEN

Mitochondrial DNA has long been posited as a likely target of oxidative damage induced mutation during the ageing process. Research over the past decades has uncovered the accumulation of mitochondrial DNA mutations in association with a mosaic pattern of cells displaying mitochondrial dysfunction in ageing individuals. Unfortunately, the underlying mechanisms are far less straightforward than originally anticipated. Recent research on mitochondria reveals that these genomes are far less helpless than originally envisioned. Additionally, new technologies have allowed us to analyze the mutational signatures of many more somatic mitochondrial DNA mutations, revealing surprising patterns that are inconsistent with a DNA-oxidative damage based hypothesis. In this review, we will discuss these recent observations and new insights into the eccentricities of mitochondrial genetics, and their impact on our understanding of mitochondrial mutations and their role in the ageing process. This article is part of a Special Issue entitled: Mitochondrial Dysfunction in Aging.


Asunto(s)
ADN Mitocondrial/genética , Mutación , Animales , Daño del ADN , Replicación del ADN , ADN Mitocondrial/fisiología , Radicales Libres , Humanos
5.
Nat Commun ; 11(1): 1643, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32242014

RESUMEN

Regulation of the turnover of complex I (CI), the largest mitochondrial respiratory chain complex, remains enigmatic despite huge advancement in understanding its structure and the assembly. Here, we report that the NADH-oxidizing N-module of CI is turned over at a higher rate and largely independently of the rest of the complex by mitochondrial matrix protease ClpXP, which selectively removes and degrades damaged subunits. The observed mechanism seems to be a safeguard against the accumulation of dysfunctional CI arising from the inactivation of the N-module subunits due to attrition caused by its constant activity under physiological conditions. This CI salvage pathway maintains highly functional CI through a favorable mechanism that demands much lower energetic cost than de novo synthesis and reassembly of the entire CI. Our results also identify ClpXP activity as an unforeseen target for therapeutic interventions in the large group of mitochondrial diseases characterized by the CI instability.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Animales , Complejo I de Transporte de Electrón/genética , Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Mioblastos/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
6.
Nat Med ; 24(12): 1940, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30291358

RESUMEN

In the version of this article originally published, there was an error in Fig. 1a. The m.5024C>T mutation, shown as a green T, was displaced by one base. The error has been corrected in the print, HTML and PDF versions of this article.

7.
Nat Med ; 24(11): 1696-1700, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30250143

RESUMEN

Mutations in the mitochondrial DNA (mtDNA) are responsible for several metabolic disorders, commonly involving muscle and the central nervous system1. Because of the critical role of mtDNA in oxidative phosphorylation, the majority of pathogenic mtDNA mutations are heteroplasmic, co-existing with wild-type molecules1. Using a mouse model with a heteroplasmic mtDNA mutation2, we tested whether mitochondrial-targeted TALENs (mitoTALENs)3,4 could reduce the mutant mtDNA load in muscle and heart. AAV9-mitoTALEN was administered via intramuscular, intravenous, and intraperitoneal injections. Muscle and heart were efficiently transduced and showed a robust reduction in mutant mtDNA, which was stable over time. The molecular defect, namely a decrease in transfer RNAAla levels, was restored by the treatment. These results showed that mitoTALENs, when expressed in affected tissues, could revert disease-related phenotypes in mice.


Asunto(s)
Corazón/fisiopatología , Enfermedades Mitocondriales/genética , Músculo Esquelético/fisiopatología , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Animales , ADN Mitocondrial/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/patología , Mitocondrias Musculares/genética , Mitocondrias Musculares/patología , Enfermedades Mitocondriales/fisiopatología , Enfermedades Mitocondriales/terapia , Fosforilación Oxidativa , Mutación Puntual/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/uso terapéutico
8.
Cell Metab ; 25(1): 57-71, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28094012

RESUMEN

Mitochondria were first postulated to contribute to aging more than 40 years ago. During the following decades, multiple lines of evidence in model organisms and humans showed that impaired mitochondrial function can contribute to age-associated disease phenotypes and aging. However, in contrast to the original theory favoring oxidative damage as a cause for mtDNA mutations, there are now strong data arguing that most mammalian mtDNA mutations originate as replication errors made by the mtDNA polymerase. Currently, a substantial amount of mitochondrial research is focused on finding ways to either remove or counteract the effects of mtDNA mutations with the hope of extending the human health- and lifespan. This review summarizes the current knowledge regarding the formation of mtDNA mutations and their impact on mitochondrial function. We also critically discuss proposed pathways interlinked with mammalian mtDNA mutations and suggest future research strategies to elucidate the role of mtDNA mutations in aging.


Asunto(s)
Envejecimiento/metabolismo , Mamíferos/metabolismo , Mitocondrias/metabolismo , Animales , ADN Mitocondrial/genética , Enfermedad/genética , Humanos , Especies Reactivas de Oxígeno/metabolismo
9.
Cell Rep ; 16(11): 2980-2990, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27626666

RESUMEN

Mutations of mtDNA are an important cause of human disease, but few animal models exist. Because mammalian mitochondria cannot be transfected, the development of mice with pathogenic mtDNA mutations has been challenging, and the main strategy has therefore been to introduce mutations found in cell lines into mouse embryos. Here, we describe a phenotype-driven strategy that is based on detecting clonal expansion of pathogenic mtDNA mutations in colonic crypts of founder mice derived from heterozygous mtDNA mutator mice. As proof of concept, we report the generation of a mouse line transmitting a heteroplasmic pathogenic mutation in the alanine tRNA gene of mtDNA displaying typical characteristics of classic mitochondrial disease. In summary, we describe a straightforward and technically simple strategy based on mouse breeding and histology to generate animal models of mtDNA-mutation disease, which will be of great importance for studies of disease pathophysiology and preclinical treatment trials.


Asunto(s)
ADN Mitocondrial/genética , Enfermedades Mitocondriales/genética , Mutación/genética , Animales , Cruzamiento , Cardiomiopatías/genética , Cardiomiopatías/fisiopatología , Células Clonales , Modelos Animales de Enfermedad , Femenino , Ratones Endogámicos C57BL , Enfermedades Mitocondriales/fisiopatología , Fenotipo , Biosíntesis de Proteínas , ARN de Transferencia de Alanina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA