Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Anal Chem ; 86(11): 5360-9, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24773001

RESUMEN

Tandem mass spectrometry (MS/MS or MS(n)) is a powerful tool for characterizing N-linked glycopeptide structures. However, it is still difficult to obtain detailed structural information on the glycan moiety directly from glycopeptide ions. Here, we propose a new method for in-depth analysis of the glycopeptide structure using MS/MS. This method involves complete derivatization of carboxyl groups in glycopeptides. Methylamidation using PyAOP as a condensing reagent has been optimized for derivatizing all carboxyl groups in glycopeptides. By derivatizing carboxyl groups on the peptide moiety (i.e., Asp, Glu, and C-terminus), the glycopeptides efficiently produce informative glycan fragment ions, including the nonreducing end of the glycan moiety under negative-ion collision-induced dissociation (CID) conditions. These glycan fragment ions can define detailed structural features on the glycan moiety (e.g., the specific composition of the two antennae, the location of fucose residues, and the presence/absence of bisecting GlcNAc residues). For sialylated glycopeptides, carboxyl groups on sialic acid residues are simultaneously derivatized using methylamidation, suppressing preferential loss of residues during MS analysis. As a result, both sialylated and nonsialylated glycopeptides can be analyzed in the same manner. Positive-ion CID of methylamine-derivatized glycopeptides mainly provides information on peptide sequence and glycan composition, whereas negative-ion CID provides in-depth structural information on the glycan moiety. The derivatization step can be readily incorporated into conventional pretreatment for glycopeptide MS analysis without loss of sensitivity, making derivatization suitable for practical use.


Asunto(s)
Glicopéptidos/química , Amidas/química , Indicadores y Reactivos , Fragmentos de Péptidos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem
2.
Anal Chem ; 86(4): 1937-42, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24498852

RESUMEN

Glycosylation and phosphorylation are important post-translational modifications in biological processes and biomarker research. The difficulty in analyzing these modifications is mainly their low abundance and dissociation of labile regions such as sialic acids or phosphate groups. One solution in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is to improve matrices for glycopeptides, carbohydrates, and phosphopeptides by increasing the sensitivity and suppressing dissociation of the labile regions. Recently, a liquid matrix 3-aminoquinoline (3-AQ)/α-cyano-4-hydroxycinnamic acid (CHCA) (3-AQ/CHCA), introduced by Kolli et al. in 1996, has been reported to increase sensitivity for carbohydrates or phosphopeptides, but it has not been systematically evaluated for glycopeptides. In addition, 3-AQ/CHCA enhances the dissociation of labile regions. In contrast, a liquid matrix 1,1,3,3-tetramethylguanidium (TMG, G) salt of p-coumaric acid (CA) (G3CA) was reported to suppress dissociation of sulfate groups or sialic acids of carbohydrates. Here we introduce a liquid matrix 3-AQ/CA for glycopeptides, carbohydrates, and phosphopeptides. All of the analytes were detected as [M + H](+) or [M - H](-) with higher or comparable sensitivity using 3-AQ/CA compared with 3-AQ/CHCA or 2,5-dihydroxybenzoic acid (2,5-DHB). The sensitivity was increased 1- to 1000-fold using 3-AQ/CA. The dissociation of labile regions such as sialic acids or phosphate groups and the fragmentation of neutral carbohydrates were suppressed more using 3-AQ/CA than using 3-AQ/CHCA or 2,5-DHB. 3-AQ/CA was thus determined to be an effective MALDI matrix for high sensitivity and the suppression of dissociation of labile regions in glycosylation and phosphorylation analyses.


Asunto(s)
Carbohidratos/análisis , Ácidos Cumáricos/química , Glicopéptidos/análisis , Fosfopéptidos/análisis , Quinolonas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Secuencia de Aminoácidos , Animales , Carbohidratos/genética , Bovinos , Glicopéptidos/genética , Humanos , Datos de Secuencia Molecular , Propionatos
3.
Anal Chem ; 85(20): 9444-8, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24063356

RESUMEN

Hydrophobic peptides are difficult to detect in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), because of the hydrophilic properties of conventional matrices and the low affinity for hydrophobic peptides. Recently, we reported on alkylated dihydroxybenzoic acid (ADHB) as a matrix additive for hydrophobic peptides; however, the peptides were detected in the rim of the matrix-analyte dried spot. Here, we report on a novel matrix, alkylated trihydroxyacetophenone (ATHAP), which is a 2,4,6-trihydroxyacetophenone derivative incorporating a hydrophobic alkyl chain on the acetyl group and thus is expected to have an affinity for hydrophobic peptides. ATHAP increased the sensitivity of hydrophobic peptides 10-fold compared with α-cyano-4-hydroxycinnamic acid (CHCA), in which the detection of hydrophilic peptides was suppressed. The peptides were detected throughout the entire matrix-analyte dried spot using ATHAP, overcoming the difficulty of finding a "sweet spot" when using ADHB. In addition, ATHAP functioned alone as a matrix, unlike ADHB as an additive. In phosphorylase b digests analysis, hydrophobic peptides, which were not detected with CHCA for 1 pmol, were detected with this matrix, confirming that ATHAP led to increased sequence coverage and may extend the range of target analytes in MALDI-MS.


Asunto(s)
Acetofenonas/química , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Alquilación , Péptidos/metabolismo , Fosforilasa b/metabolismo , Proteolisis
4.
Analyst ; 138(23): 7224-32, 2013 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-24131013

RESUMEN

O-Linked N-acetylglucosamine (O-GlcNAc) is an emerging post-translational modification (PTM) of proteins. Analysis of O-GlcNAc modification using mass spectrometry (MS) is often problematic because of the low stoichiometry of the modification. In this study, we developed a new method for enriching O-GlcNAc-modified peptides using reversible hydrazide chemistry. O-GlcNAc-modified peptides were first labeled with N-azidoacetylgalactosamine (GalNAz) using gatactosyltransferase-T1 (Y289L) enzyme. The azide group on the GalNAz residue was then reacted with 3-ethynylbenzaldehyde via copper-catalyzed Huisgen 1,3-cycloaddition "click reaction" to form an aromatic aldehyde group of glycopeptides. Aromatic aldehyde-derivatized glycopeptides were enriched by reversible hydrazone formation with hydrazide resin. Reaction conditions for each step, especially for the click reaction, were optimized to achieve complete reaction without significant side reactions. This method was validated using a tryptic digest of bovine α-crystallin, which is an O-GlcNAc-modified glycoprotein. The developed method was also applied to structure-specific enrichment of N-linked glycopeptides having non-reducing terminal GlcNAc residues. All materials and chemicals required for this method are commercially available and there is no need to prepare any special reagents, facilitating the introduction of this method in any laboratory.


Asunto(s)
Acetilglucosamina/química , Azidas/química , Glicopéptidos/química , Péptidos/química , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Oxidación-Reducción , Extracción en Fase Sólida , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
5.
Anal Chem ; 84(21): 9453-61, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-23072501

RESUMEN

Negative-ion fragmentation of underivatized N-glycans has been proven to be more informative than positive-ion fragmentation. Fluorescent labeling via reductive amination is often employed for glycan analysis, but little is known about the influence of the labeling group on negative-ion fragmentation. We previously demonstrated that the on-target glycan-labeling method using 3-aminoquinoline/α-cyano-4-hydroxycinnamic acid (3AQ/CHCA) liquid matrix enables highly sensitive, rapid, and quantitative N-glycan profiling analysis. The current study investigates the suitability of 3AQ-labeled N-glycans for structural analysis based on negative-ion collision-induced dissociation (CID) spectra. 3AQ-labeled N-glycans exhibited simple and informative CID spectra similar to those of underivatized N-glycans, with product ions due to cross-ring cleavages of the chitobiose core and ions specific to two antennae (D and E ions). The interpretation of diagnostic fragment ions suggested for underivatized N-glycans could be directly applied to the 3AQ-labeled N-glycans. However, fluorescently labeled N-glycans by conventional reductive amination, such as 2-aminobenzamide (2AB)- and 2-pyrydilamine (2PA)-labeled N-glycans, exhibited complicated CID spectra consisting of numerous signals formed by dehydration and multiple cleavages. The complicated spectra of 2AB- and 2PA-labeled N-glycans was found to be due to their open reducing-terminal N-acetylglucosamine (GlcNAc) ring, rather than structural differences in the labeling group in the N-glycan derivative. Finally, as an example, the on-target 3AQ labeling method followed by negative-ion CID was applied to structurally analyze neutral N-glycans released from human epidermal growth factor receptor type 2 (HER2) protein. The glycan-labeling method using 3AQ-based liquid matrix should facilitate highly sensitive quantitative and qualitative analyses of glycans.


Asunto(s)
Aminoquinolinas/química , Polisacáridos/análisis , Polisacáridos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Humanos , Fragmentos de Péptidos/química , Receptor ErbB-2/química , Coloración y Etiquetado
6.
Anal Chem ; 84(14): 6097-103, 2012 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-22725700

RESUMEN

Negative-ion fragmentation of N-glycans has been proven to be more informative than that of positive-ion. In particular, it defines structural features such as the specific composition of the two antennae and the location of fucose. However, negative-ion formation of neutral N-glycans by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) remains a challenging task, and the detection limit of N-glycans in negative-ion mode is merely at the subpicomole level. Thus, practical applications are limited. In this study, combinations of five liquid matrices and nine anions were used to ionize N-glycans as anionic adducts, and their performances for sensitive analyses were evaluated. The best results were obtained with anion-doped liquid matrix G(3)CA, which consists of p-coumaric acid and 1,1,3,3-tetramethylguanidine; the detection limits of anion adducted N-glycans were 1 fmol/well for NO(3)(-), and 100 amol/well for BF(4)(-). Negative-ion MS(2) spectra of 1 fmol N-glycans were successfully acquired with a sufficient signal-to-noise ratio and were quite useful for MS-based structural determination. The anion-doped G(3)CA matrix opens the way for sensitive and rapid analysis of neutral N-glycans in negative-ion MALDI at a low femtomole level.


Asunto(s)
Ácidos Cumáricos/química , Guanidinas/química , Polisacáridos/análisis , Polisacáridos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Aniones/química , Gases/química , Propionatos , Relación Señal-Ruido
7.
Anal Chem ; 84(9): 4237-43, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22506777

RESUMEN

Hydrophobic peptides are generally difficult to detect using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) because the majority of MALDI matrixes are hydrophilic and therefore have a low affinity for hydrophobic peptides. Here, we report on a novel matrix additive, o-alkylated dihydroxybenzoic acid (ADHB), which is a 2,5-dihydroxybenzoic acid (DHB) derivative incorporating a hydrophobic alkyl chain on a hydroxyl group to improve its affinity for hydrophobic peptides, thereby improving MALDI-MS sensitivity. The addition of ADHB to the conventional matrix α-cyano-4-hydroxycinnamic acid (CHCA) improved the sensitivity of hydrophobic peptides 10- to 100-fold. The sequence coverage of phosphorylase b digest was increased using ADHB. MS imaging indicated that hydrophobic peptides were enriched in the rim of a matrix/analyte dried spot when ADHB was used. In conclusion, the addition of ADHB to the standard matrix led to improved sensitivity of hydrophobic peptides by MALDI-MS.


Asunto(s)
Gentisatos/química , Péptidos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Alquilación , Animales , Ácidos Cumáricos/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Fosforilasa b/química , Sensibilidad y Especificidad
8.
Rapid Commun Mass Spectrom ; 26(20): 2454-60, 2012 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-22976212

RESUMEN

RATIONALE: A liquid matrix, 3-aminoquinoline (3-AQ)/α-cyano-4-hydroxycinnamic acid (CHCA), introduced by Kolli et al. in 1996 for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), has been reported for peptides and proteins, oligonucleotides, oligosaccharides, and glycopeptides. However, it has not been validated for phosphopeptides. METHODS: We optimized sample preparation using 3-AQ/CHCA for phosphopeptides. The sensitivity of six phosphopeptide species as isolated or in digests was systematically evaluated by using MALDI-quadropole ion trap (QIT)-time of flight (TOF) MS in positive and negative ion modes, and compared with the conventional methods using a solid matrix, 2,5-dihydroxybenzoic acid (2,5-DHB). RESULTS: The sensitivity of mono- and tetraphosphopeptides was improved 10- to 10 000-fold with the optimized preparation method using 3-AQ/CHCA compared with the conventional methods using 2,5-DHB. Improvement by 3-AQ/CHCA itself was 10-fold. Adding ammonium dihydrogen phosphate or an analyte solvent composition was also effectively improved the sensitivity. Phosphopeptides in isolated form or in digests were detected at femto- or subfemtomole levels. CONCLUSIONS: Sensitivity of phosphopeptides was improved by the optimized sample preparation method using 3-AQ/CHCA compared with the conventional method using 2,5-DHB. The validation of 3-AQ/CHCA for phosphopeptides was systematically confirmed, expanding the potential of this matrix to phosphoproteomics.


Asunto(s)
Aminoquinolinas/química , Ácidos Cumáricos/química , Fosfopéptidos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Secuencia de Aminoácidos , Animales , Caseínas/química , Pollos , Datos de Secuencia Molecular , Ovalbúmina/química , Receptor de Insulina/química
9.
J Forensic Sci ; 53(1): 107-15, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18279247

RESUMEN

Direct identification of copper phthalocyanine (CuPc) and chlorinated CuPcs in paints for discrimination between blue automobile paints by means of laser desorption mass spectrometry (LDMS) in the absence of a matrix is reported. The models consisted of eight commercially available CuPc pigments applied to a piece of plain white coating paper. The relationship between the peak intensity at m/z 575 of the CuPc, the number of pulsed laser shots, and laser power was compared to optimize laser abrasion. LDMS analysis of the model paints demonstrated that all characteristic components of the CuPc pigments in the paint films were in good agreement with those in the powder pigments. Further, the chlorinated CuPcs in the paint films could be distinguished. A quantity of 42 blue paint films, representing the paints used for painting Japanese domestic trucks, was examined by LDMS analysis. Results indicate that the paints can be classified into four categories based on the chlorinated CuPc components of the paints. Therefore, LDMS spectra of CuPc pigments would be useful for the identification of paints in forensic investigations. Herein, we report the successful identification of the CuPcs in a paint smear on the frame of a bicycle damaged in a hit-and-run accident, using the LDMS spectra.

10.
Life Sci ; 81(1): 40-50, 2007 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-17540411

RESUMEN

RGS5 is a member of regulators of G protein signaling (RGS) proteins that attenuate heterotrimeric G protein signaling by functioning as GTPase-activating proteins (GAPs). We investigated phosphorylation of RGS5 and the resulting change of its function. In 293T cells, transiently expressed RGS5 was phosphorylated by endogenous protein kinases in the basal state. The phosphorylation was enhanced by phorbol 12-myristate 13-acetate (PMA) and endothelin-1 (ET-1), and suppressed by protein kinase C (PKC) inhibitors, H7, calphostin C and staurosporine. These results suggest involvement of PKC in phosphorylation of RGS5. In in vitro experiments, PKC phosphorylated recombinant RGS5 protein at serine residues. RGS5 protein phosphorylated by PKC showed much lower binding capacity for and GAP activity toward Galpha subunits than did the unphosphorylated RGS5. In cells expressing RGS5, the inhibitory effect of RGS5 on ET-1-induced Ca(2+) responses was enhanced by staurosporine. Mass spectrometric analysis of the phosphorylated RGS5 revealed that Ser166 was one of the predominant phosphorylation sites. Substitution of Ser166 by aspartic acid abolished the binding capacity to Galpha subunits and the GAP activity, and markedly reduced the inhibitory effect on ET-1-induced Ca(2+) responses. These results indicate that phosphorylation at Ser166 of RGS5 by PKC causes loss of the function of RGS5 in G protein signaling. Since this serine residue is conserved in RGS domains of many RGS proteins, the phosphorylation at Ser166 by PKC might act as a molecular switch and have functional significance.


Asunto(s)
Fragmentos de Péptidos/metabolismo , Proteína Quinasa C/fisiología , Proteínas RGS/metabolismo , Serina/metabolismo , Calcio/metabolismo , Línea Celular , Electroforesis en Gel de Poliacrilamida , Endotelina-1/farmacología , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Humanos , Fosforilación , Unión Proteica , Proteína Quinasa C/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas RGS/biosíntesis , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo , Transducción de Señal/efectos de los fármacos , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacología
11.
J Am Soc Mass Spectrom ; 25(6): 988-98, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24664808

RESUMEN

Glycopeptide structural analysis using tandem mass spectrometry is becoming a common approach for elucidating site-specific N-glycosylation. The analysis is generally performed in positive-ion mode. Therefore, fragmentation of protonated glycopeptides has been extensively investigated; however, few studies are available on deprotonated glycopeptides, despite the usefulness of negative-ion mode analysis in detecting glycopeptide signals. Here, large sets of glycopeptides derived from well-characterized glycoproteins were investigated to understand the fragmentation behavior of deprotonated N-linked glycopeptides under low-energy collision-induced dissociation (CID) conditions. The fragment ion species were found to be significantly variable depending on their amino acid sequence and could be classified into three types: (i) glycan fragment ions, (ii) glycan-lost fragment ions and their secondary cleavage products, and (iii) fragment ions with intact glycan moiety. The CID spectra of glycopeptides having a short peptide sequence were dominated by type (i) glycan fragments (e.g., (2,4)AR, (2,4)AR-1, D, and E ions). These fragments define detailed structural features of the glycan moiety such as branching. For glycopeptides with medium or long peptide sequences, the major fragments were type (ii) ions (e.g., [peptide + (0,2)X0-H](-) and [peptide-NH3-H](-)). The appearance of type (iii) ions strongly depended on the peptide sequence, and especially on the presence of Asp, Asn, and Glu. When a glycosylated Asn is located on the C-terminus, an interesting fragment having an Asn residue with intact glycan moiety, [glycan + Asn-36](-), was abundantly formed. Observed fragments are reasonably explained by a combination of existing fragmentation rules suggested for N-glycans and peptides.


Asunto(s)
Glicopéptidos/química , Fragmentos de Péptidos/química , Polisacáridos/química , Secuencia de Aminoácidos , Aminoácidos/química , Iones/química , Espectrometría de Masas , Peso Molecular
12.
Mass Spectrom (Tokyo) ; 3(1): A0031, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-26819873

RESUMEN

Mass spectrometry (MS) is a highly sensitive analytical technique that is often coupled with liquid chromatography (LC). However, some buffering salts used in LC (e.g., phosphate and tris(hydroxymethyl)aminomethane (Tris)) are incompatible with MS since they cause ion-source contamination and signal suppression. In this study, we examined salt tolerance of MALDI and applied a matrix additive methylenediphosphonic acid (MDPNA) to reduce salt-induced signal suppression. MDPNA significantly improved the salt tolerance of MALDI-MS. Using ammonium formate buffer at pH 5.0, the effective range of buffering salt concentration in MALDI-MS using MDPNA was estimated up to 250 mM. MDPNA reduced signal suppression caused by buffering salts at pH 4.0 to 8.0. We observed that MDPNA effectively worked over a wide range of buffer conditions. MDPNA was further applied to hydrophilic interaction chromatography (HILIC) and chromatofocusing-MALDI-MS. As a result, the analytes in the eluent containing high-concentration salts were detected with high sensitivity. Thus, our study provides simple and fast LC-MALDI-MS analysis technique not having strict limitation of buffering condition in LC by using matrix additive MDPNA.

13.
Mass Spectrom (Tokyo) ; 3(1): A0026, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24860715

RESUMEN

Iron oxide nanoparticle (NP)-coated target plates were employed for the direct detection and analysis of low molecular weight lipids by laser desorption/ionization (LDI) mass spectrometry (MS). We have demonstrated that the use of the iron oxide NP-coated target provides a simple, direct, and rapid detection method for lipid standards and epidermal surface lipids without any cumbersome sample pretreatment as well as mass spectra that are free of background matrix peaks. Lipid standards (1-stearoyl-sn-glycero-3-phosphocholine, 1,2-dioleoyl-sn-glycerol, 1-palmitoyl-2-oleoyl-3-linoleoyl-rac-glycerol, 1,2-distearoyl-sn-glycero-3-phosphocholine) were detected as either protonated or cationated species. Clean MS/MS spectra for each lipid were also successfully obtained. Pre-MS surface cleaning of the target plates with UV-ozone treatment successfully removed organic contaminants that would interfere with the mass spectra especially in the low molecular weight region. Preliminary application of the presented target plate to the detection of endogenous lipids in latent fingerprints showed promising results and for potential use in the visualization and chemical composition determination of latent fingerprints by nanoparticle assistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA