Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 95(11): 4932-4939, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36906855

RESUMEN

Although thermal ionization mass spectrometry (TIMS) has been employed for the high-precision analysis of isotope ratios, direct quantification of artificial mono-nuclide in the environment is difficult by even using isotope dilution (ID) due to the coexistence of the great magnitude of natural stable nuclides or isobars. In traditional TIMS and ID-TIMS, a sufficient amount of stable Sr doped on a filament is required to realize a stable and adequate ion-beam intensity (i.e., thermally ionized beams). However, the background noise (BGN) at m/z 90, detected by an electron multiplier, disturbs 90Sr analysis at low concentration levels due to peak tailing of a significant 88Sr ion beam dependent on the 88Sr-doping amount. Here, TIMS assisted by quadruple energy filtering was successfully employed for the direct quantification of attogram levels of an artificial monoisotopic radionuclide strontium-90 (90Sr) in microscale biosamples. Direct quantification was achieved by integrating the ID quantification of natural Sr and simultaneous 90Sr/86Sr isotope ratio analysis. Additionally, the measurement amount calculated by the combination of the ID and intercalibration was corrected for the net result amount of 90Sr by subtracting dark noise and the detected amount derived from the survived 88Sr, which are equivalent with the BGN intensity at m/z 90. Background correction revealed that the detection limits were in the range of 6.15 × 10-2-3.90 × 10-1 ag (0.31-1.95 µBq), depending on the concentration of natural Sr in a 1 µL sample, and the quantification of 0.98 ag (5.0 µBq) of 90Sr in 0-300 mg/L of natural Sr was successful. This method could analyze small sample quantities (1 µL), and the quantitative results were verified against authorized radiometric analysis techniques. Furthermore, the amount of 90Sr in actual teeth was successfully quantified. This method will be a powerful tool for measuring 90Sr in the measurement of micro-samples, which are required to assess and understand the degree of internal radiation exposure.

2.
ACS Omega ; 4(6): 11276-11284, 2019 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-31460230

RESUMEN

This paper describes a rapid quantification method for radioactive strontium (90Sr) in fresh foods (perishable foods) and has been comparatively evaluated with the common classical radiometric quantification method. Inductively coupled plasma-dynamic reaction cell-mass spectrometry with online solid-phase extraction (cascade-ICP-MS) rapidly determines 90Sr in a pure water-based sample. Despite its advantages, its application to fresh foods (perishable foods) has not yet been reported; however, the analytical potential of this method for fresh foods must be evaluated. In this study, 90Sr was determined in 12 fresh foods via improved cascade-ICP-MS (Icas-ICP-MS). Addition and recovery tests were demonstrated using real samples of grape, apple, peach, Japanese pear, rice, buckwheat, soybean, spinach, shiitake mushroom, grass, sea squirt, and flounder. With a decomposed solution of Japanese pear, the measurement value coincided with the amount of spiked 90Sr. The reproducibility of the measurements was represented by relative standard deviations of 14.2 and 5.0% for spiked amounts of 20 and 200 Bq/kg, respectively (n = 10), and the recovery rates were 93.7 ± 7.1%. In this case, the limit of detection (LOD) was 2.2 Bq/kg (=0.43 pg/kg). These results were compared with the data obtained using a common classical radiometric quantification method (nitrate precipitation-low background gas flow counter (LBC) method) in the same samples. Both the methods showed equivalent performances with regard to reproducibility, precision, and LODs but different analysis times. Icas-ICP-MS required ∼22 min for analysis, whereas the nitrate precipitation-LBC method required 20 days, confirming that Icas-ICP-MS is the suitable method for analyzing 90Sr in fresh foods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA