Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 2428, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32415121

RESUMEN

2D van der Waals ferroelectrics have emerged as an attractive building block with immense potential to provide multifunctionality in nanoelectronics. Although several accomplishments have been reported in ferroelectric switching for out-of-plane ferroelectrics down to the monolayer, a purely in-plane ferroelectric has not been experimentally validated at the monolayer thickness. Herein, an in-plane ferroelectricity is demonstrated for micrometer-size monolayer SnS at room temperature. SnS has been commonly regarded to exhibit the odd-even effect, where the centrosymmetry breaks only in the odd-number layers to exhibit ferroelectricity. Remarkably, however, a robust room temperature ferroelectricity exists in SnS below a critical thickness of 15 layers with both an odd and even number of layers, suggesting the possibility of controlling the stacking sequence of multilayer SnS beyond the limit of ferroelectricity in the monolayer. This work will pave the way for nanoscale ferroelectric applications based on SnS as a platform for in-plane ferroelectrics.

2.
Nanoscale ; 10(47): 22474-22483, 2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30480284

RESUMEN

Remarkable optical/electrical features are expected in two-dimensional group-IV monochalcogenides (MXs; M = Sn/Ge and X = S/Se) with a uniquely distorted layered structure. The lone pair electrons in the group-IV atoms are the origin of this structural distortion, while they also cause a strong interlayer force and high chemical reactivity. The fabrication of chemically stable few-to-monolayer MX has been a significant challenge. We have observed that, once the SnS surface is oxidized, the SnOx top layer works as a passivation layer for the SnS layer underneath. In this work, the SnOx/SnS hetero-structure is studied structurally, optically, and electrically. When tape-exfoliated bulk SnS is oxygen-annealed under a reduced pressure at 10 Pa, surface oxidation and SnS sublimation proceed simultaneously, resulting in a monolayer-thick SnS layer with the SnOx passivation layer. The field-effect transistor of nine-layer SnS prepared via mechanical exfoliation exhibits a p-type characteristic because of intrinsic Sn vacancies, whereas ambipolar behavior is observed for the monolayer-thick SnS obtained via oxygen annealing probably owing to the additional n-type doping by S vacancies. This work on monolayer-thick SnS fabrication can be applied to other unstable lone pair analogues and can facilitate future research on MXs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA