RESUMEN
Kupffer's vesicle (KV) in the teleost embryo is a fluid-filled vesicle surrounded by a layer of epithelial cells with rotating primary cilia. KV transiently acts as the left-right organizer and degenerates after the establishment of left-right asymmetric gene expression. Previous labelling experiments in zebrafish embryos indicated that descendants of KV-epithelial cells are incorporated into mesodermal tissues after the collapse of KV. However, the overall picture of their differentiation potency had been unclear due to the lack of suitable genetic tools and molecular analyses. In the present study, we established a novel zebrafish transgenic line with a promoter of dand5, in which all KV-epithelial cells and their descendants are specifically labelled until the larval stage. We found that KV-epithelial cells undergo epithelial-mesenchymal transition upon KV collapse and infiltrate into adjacent mesodermal progenitors, the presomitic mesoderm and chordoneural hinge. Once incorporated, the descendants of KV-epithelial cells expressed distinct mesodermal differentiation markers and contributed to the mature populations such as the axial muscles and notochordal sheath through normal developmental process. These results indicate that differentiated KV-epithelial cells possess unique plasticity in that they are reemployed into mesodermal lineages through transdifferentiation after they complete their initial role in KV.
Asunto(s)
Tipificación del Cuerpo , Pez Cebra , Animales , Tipificación del Cuerpo/fisiología , Transdiferenciación Celular , Cilios/metabolismo , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mesodermo/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
Antisense oligonucleotide (ASO) therapeutics are single-stranded oligonucleotides which bind to RNA through sequence-specific Watson-Crick base pairings. A unique mechanism of toxicity for ASOs is hybridization-dependent off-target effects that can potentially occur due to the binding of ASOs to complementary regions of unintended RNAs. To reduce the off-target effects of ASOs, it would be useful to know the approximate number of complementary regions of ASOs, or off-target candidate sites of ASOs, of a given oligonucleotide length and complementarity with their target RNAs. However, the theoretical number of complementary regions with mismatches has not been reported to date. In this study, we estimated the general number of complementary regions of ASOs with mismatches in human mRNA sequences by mathematical calculation and in silico analysis using several thousand hypothetical ASOs. By comparing the theoretical number of complementary regions estimated by mathematical calculation to the actual number obtained by in silico analysis, we found that the number of complementary regions of ASOs could be broadly estimated by the theoretical number calculated mathematically. Our analysis showed that the number of complementary regions increases dramatically as the number of tolerated mismatches increases, highlighting the need for expression analysis of such genes to assess the safety of ASOs.
Asunto(s)
Marcación de Gen/métodos , Genoma Humano , Oligonucleótidos Antisentido/metabolismo , ARN Mensajero/metabolismo , Sitios de Unión , Simulación por Computador , Humanos , Oligonucleótidos Antisentido/genética , ARN Mensajero/genéticaRESUMEN
The medaka contains seven zic genes, two of which, zic1 and zic4, have been studied extensively. The analyses are mainly based on the double anal fin (Da) mutant, which was isolated from the wild. Da is an enhancer mutant of zic1/zic4, and the expression of zic1/zic4 is specifically lost in the dorsal half of the somites, which leads to a mirror-image duplication of the ventral half across the lateral midline from larva to adult. The studies of medaka Da give us important insights into the function of zic1/zic4 in mesodermal tissues and also the mechanism of dorsoventral patterning in the vertebrate trunk region occurring during late development, which is a long-standing mystery in developmental biology. In this chapter, we introduce genomic organization of medaka zic genes and discuss their function, mainly focusing on zic1 and zic4 in dorsoventral patterning of the trunk region and possible connections to human congenital disorders.
Asunto(s)
Tipificación del Cuerpo/fisiología , Embrión no Mamífero/embriología , Proteínas de Peces , Oryzias , Somitos/embriología , Factores de Transcripción , Dedos de Zinc/fisiología , Animales , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Oryzias/embriología , Oryzias/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
We investigated the effect on mitochondrial Ca2+ of SEA0400, an inhibitor of the Na+/Ca2+ exchanger (NCX) which reduces mitochondrial Ca2+ overload during myocardial ischemia, in digitonin-permeabilized H9c2 cells expressing the mitochondrial-targeted Ca2+ indicator, yellow cameleon 3.1. The elevation of mitochondrial Ca2+ concentration caused by an increase in extramitochondrial Ca2+ concentration was inhibited by carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP) or ruthenium red, but enhanced by CGP-37157, a mitochondrial NCX inhibitor. SEA0400 had no effect on mitochondrial Ca2+ under normal and ischemic conditions. Thus, the mitochondria-protective effects of SEA0400 could be explained by inhibition of plasmalemmal NCX but not mitochondrial NCX.
Asunto(s)
Compuestos de Anilina/farmacología , Membrana Celular/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Éteres Fenílicos/farmacología , Intercambiador de Sodio-Calcio/antagonistas & inhibidores , Calcio/metabolismo , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Línea Celular , Membrana Celular/efectos de los fármacos , Clonazepam/análogos & derivados , Clonazepam/farmacología , Humanos , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Rojo de Rutenio/farmacología , Tiazepinas/farmacologíaRESUMEN
Teleost fish exhibit remarkable diversity in morphology, such as fins and coloration, particularly on the dorsal side. These structures are evolutionary adaptive because their back is highly visible to other individuals. However, owing to the late phenotypic appearance (from larva to adult) and lack of appropriate mutants, the genetic mechanisms that regulate these dorsoventrally asymmetric external patterns are largely unknown. To address this, we have analyzed the spontaneous medaka mutant Double anal fin (Da), which exhibits a mirror-image duplication of the ventral half across the lateral midline from larva to adult. Da is an enhancer mutant for zic1 and zic4 in which their expression in dorsal somites is lost. We show that the dorsoventral polarity in Da somites is lost and then demonstrate using transplantation techniques that somites and their derived tissues globally determine the multiple dorsal-specific characteristics of the body (fin morphology and pigmentation) from embryo to adult. Intriguingly, the zic1/zic4 expression in the wild type persists throughout life in the dorsal parts of somite derivatives, i.e. the myotome, dermis and vertebrae, forming a broad dorsal domain in the trunk. Comparative analysis further implies a central role for zic1/zic4 in morphological diversification of the teleost body. Taken together, we propose that the teleost trunk consists of dorsal/ventral developmental modules and that zic1/zic4 in somites function as selector genes in the dorsal module to regulate multiple dorsal morphologies.
Asunto(s)
Tipificación del Cuerpo/genética , Tórax/embriología , Factores de Transcripción/fisiología , Animales , Células Cultivadas , Embrión no Mamífero , Peces/embriología , Peces/genética , Peces/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes de Cambio/genética , Genes de Cambio/fisiología , Modelos Biológicos , Oryzias/embriología , Oryzias/genética , Oryzias/metabolismo , Fenotipo , Somitos/embriología , Somitos/metabolismo , Tórax/metabolismo , Factores de Transcripción/genética , Dedos de Zinc/genéticaRESUMEN
Mechanical rigidity of the liposome membrane is often defined by the membrane bending modulus and is one of the determinants of liposome stability, but the quantitative experimental data are still limited to a few kinds of liposomes. Here, we used atomic force microscopy to investigate the membrane bending moduli of liposomes by immobilizing them on bovine serum albumin-coated glass in aqueous medium. The following lipids were used for liposome preparation: egg yolk phosphatidylcholine, dioleoylphosphatidylcholine, hydrogenated soybean phosphatidylcholine, dipalmitoylphosphatidylcholine, 1,2-dioleoyl-3-trimethylammonium-propane, cholesterol, and N-(carbonylmethoxypoly(ethylene glycol) 2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine. By using liposomes of various compositions, we showed that the thermodynamic phase state of the membrane rather than the electric potential or liposome surface modification with poly(ethylene glycol) is the predominant determinant of the bending modulus, which decreased in the following order: solid ordered > liquid ordered > liquid disordered. By using the generalized polarization value of the Laurdan fluorescent probe, we investigated membrane rigidity in terms of membrane fluidity. Atomic force microscopic analysis was superior to the Laurdan method, especially in evaluating the membrane rigidity of liposomes containing hydrogenated soybean phosphatidylcholine and cholesterol. Positively charged liposomes with a large bending modulus were taken up by cells more efficiently than those with a small bending modulus. These findings offer a quantitative method of analyzing the membrane rigidity of nanosized liposomes with different lipid compositions and will contribute to the control of liposome stability and cellular uptake efficiency of liposomal formulations intended for clinical use.
Asunto(s)
Lípidos/química , Liposomas/química , Microscopía de Fuerza Atómica , Polietilenglicoles/química , Composición de MedicamentosRESUMEN
BACKGROUND: Amorphous silica particles with the primary dimensions of a few tens of nm, have been widely applied as additives in various fields including medicine and food. Especially, they have been widely applied in powders for making tablets and to coat tablets. However, their behavior and biological effects in the gastrointestinal tracts associated with oral administration remains unknown. METHODS: Amorphous silica particles with diameters of 50, 100, and 200nm were incubated in the fasted-state and fed-state simulated gastric and intestinal fluids. The sizes, intracellular transport into Caco-2 cells (model cells for intestinal absorption), the Caco-2 monolayer membrane permeability, and the cytotoxicity against Caco-2 cells were then evaluated for the silica particles. RESULTS: Silica particles agglomerated in fed-state simultaneous intestinal fluids. The agglomeration and increased particles size inhibited the particles' absorption into the Caco-2 cells or particles' transport through the Caco-2 cells. The in vitro cytotoxicity of silica particles was not observed when the average size was larger than 100nm, independent of the fluid and the concentration. CONCLUSION: Our study indicated the effect of diet on the agglomeration of silica particles. The sizes of silica particles affected the particles' absorption into or transport through the Caco-2 cells, and cytotoxicity in vitro, depending on the various biological fluids. GENERAL SIGNIFICANCE: The findings obtained from our study may offer valuable information to evaluate the behavior of silica particles in the gastrointestinal tracts or safety of medicines or foods containing these materials as additives.
Asunto(s)
Absorción Intestinal , Dióxido de Silicio/toxicidad , Líquidos Corporales , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Humanos , Tamaño de la Partícula , Dióxido de Silicio/química , Dióxido de Silicio/farmacocinéticaRESUMEN
We previously elucidated that ATP-binding cassette subfamily B member 1 (ABCB1) mediates the efflux of doxorubicin-conjugated block copolymers from HeLa cells. Here, we investigated the role of ABCB1 in the in vivo behavior of a doxorubicin-conjugated polymer in Mdr1a/1b(-/-) mice. The area under the curve for intravenously administered polymer in Mdr1a/1b(-/-) mice was 2.2-fold greater than that in wild-type mice. The polymer was mostly distributed in the liver followed by spleen and less so in the brain, heart, kidney, and lung. The amount of polymer excreted in the urine was significantly decreased in Mdr1a/1b(-/-) mice. The amounts of polymers excreted in the feces were similar in both groups despite the higher systemic exposure in Mdr1a/1b(-/-) mice. Confocal microscopy images showed polymer localized in CD68(+) macrophages in the liver. These results show that knockout of ABCB1 prolonged systemic exposure of the doxorubicin-conjugated polymer in mice. Our results suggest that ABCB1 mediated the excretion of doxorubicin-conjugated polymer in urine and feces. Our results provide valuable information about the behavior of block copolymers in vivo, which is important for evaluating the pharmacokinetics of active substances conjugated to block copolymers or the accumulation of block copolymers in vivo.
Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/fisiología , Transportadoras de Casetes de Unión a ATP/fisiología , Doxorrubicina/farmacocinética , Polímeros/química , Animales , Antibióticos Antineoplásicos/farmacocinética , Femenino , Ratones , Ratones Noqueados , Distribución Tisular , Miembro 4 de la Subfamilia B de Casete de Unión a ATPRESUMEN
We have previously reported the intracellular trafficking mechanism of liposomal phospholipids. In the present study, we investigated the effects of liposomal phospholipids on the intracellular trafficking of doxorubicin (DXR). In DXR-encapsulated liposomes, polyethylene glycol (PEG)-modified phospholipids have been widely used as one of the liposomal lipids. First, we investigated the intracellular trafficking mechanism of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy-PEG2000] (PEG2000-DSPE), and demonstrated that the intracellular trafficking pathways of phospholipids changed by PEG modification. Then, we evaluated the effects of liposomal DXR on the intracellular trafficking of liposomal phospholipids. Under the phosphatidylinositol transfer protein (PITP)-suppressing condition by siRNA treatment, the intracellular amounts of DSPC derived from DXR-encapsulated liposomes were larger than that from nonencapsulated liposomes. Moreover, following the effects of liposomal phospholipids on the intracellular amounts of DXR, the intracellular amounts of DXR were increased under the PITP-suppressing condition in DXR-encapsulated liposomes. We showed that intracellular DXR was associated with the complex of PITP and DSPC, and the extracellular efflux of DXR was enhanced by complex formation with PITP and DSPC.
Asunto(s)
Doxorrubicina/metabolismo , Sistemas de Liberación de Medicamentos , Liposomas/química , Modelos Biológicos , Fosfolípidos/química , Western Blotting , Cápsulas/química , Células HeLa , Humanos , Microscopía ConfocalRESUMEN
Food Safety Commission, Cabinet Office, Government of Japan (FSCJ) was established in 2003 and marked its 20th anniversary in 2023. FSCJ held a commemorative ceremony and symposium to celebrate its 20th anniversary at Mita conference hall (Mita, Minato-ku, Tokyo) on September 1st, 2023, which attracted a total of 164 on-site attendees including six media companies, as well as 460 online viewers. FSCJ Chairperson Dr. YAMAMOTO gave a summary of each session; Session 1 outlined the various future challenges against which risk assessment organizations must prepare. In Session 2, panelists shared information on the development of new evaluation methodologies and international collaborations in order to meet various global demands and issues. In Session 3, the FSCJ introduced its future initiatives and called for international collaboration in sharing information and expertise to address data gaps and emerging issues, to which all panelists expressed their support. The importance of personnel development to tackle these challenges was also raised. In concluding the seminar, Dr. YAMAMOTO expressed that the common understanding gained from this occasion was the most fruitful achievement, owing to the international colleagues who shared their thought-provoking presentations and insights.
RESUMEN
Tissue elongation is a fundamental morphogenetic process to construct complex embryonic structures. In zebrafish, somites rapidly elongate in both dorsal and ventral directions, transforming from a cuboidal to a V-shape within a few hours of development. Despite its significance, the cellular behaviors that directly lead to somite elongation have not been examined at single-cell resolution. Here, we describe the motion and shapes of all cells composing the dorsal half of the somite in three-dimensional space using lightsheet microscopy. We identified two types of cell movements-in horizontal and dorsal directions-that occur simultaneously within individual cells, creating a complex, twisted flow of cells during somite elongation. Chemical inhibition of Sdf1 signaling disrupted the collective movement in both directions and inhibited somite elongation, suggesting that Sdf1 signaling is crucial for this cell flow. Furthermore, three-dimensional computational modeling suggested that horizontal cell rotation accelerates the perpendicular elongation of the somite along the dorsoventral axis. Together, our study offers novel insights into the role of collective cell migration in tissue morphogenesis, which proceeds dynamically in the three-dimensional space of the embryo.
RESUMEN
Limb reduction has occurred multiple times in tetrapod history. Among ratites, wing reductions range from mild vestigialization to complete loss, with emus (Dromaius novaehollandiae) serving as a model for studying the genetic mechanisms behind limb reduction. Here, we explore the developmental mechanisms underlying wing reduction in emu. Our analyses reveal that immobilization resulting from the absence of distal muscles contributes to skeletal shortening, fusion and left-right intraindividual variation. Expression analysis and single cell-RNA sequencing identify muscle progenitors displaying a dual lateral plate mesodermal and myogenic signature. These cells aggregate at the proximal region of wing buds and undergo cell death. We propose that this cell death, linked to the lack of distal muscle masses, underlines the morphological features and variability in skeletal elements due to reduced mechanical loading. Our results demonstrate that differential mobility during embryonic development may drive morphological diversification in vestigial structures.
Asunto(s)
Muerte Celular , Dromaiidae , Regulación del Desarrollo de la Expresión Génica , Alas de Animales , Animales , Alas de Animales/metabolismo , Dromaiidae/genética , Muerte Celular/genética , Mesodermo/metabolismo , Músculo Esquelético/metabolismo , Tipificación del Cuerpo/genética , Mioblastos/metabolismo , Mioblastos/citologíaRESUMEN
Importance of regulatory science in development of innovative drugs is pointed out by the Council for Science and Technology Policy in the Cabinet Office, and the pharmaceuticals-related divisions in the NIHS have begun the regulatory science research for promoting improvement in developing environment of innovative drugs since 2012. Nano-medicines, fully engineered protein drugs, nucleic acid drugs, and gene therapy drugs have been selected as innovative drugs, and the point-to-consider documents for evaluating mainly quality and non-clinical safety of these drugs will be developed. In addition, the conditions for the first-in-human trial will be also proposed, especially from the standpoints of quality and non-clinical safety evaluation.
Asunto(s)
Aprobación de Drogas , Descubrimiento de Drogas/tendencias , Nanomedicina/tendencias , Diseño de Fármacos , Terapia Genética/tendencias , Humanos , Ingeniería de Proteínas/tendenciasRESUMEN
Cellular protrusions are fundamental structures for a wide variety of cellular behaviors, such as cell migration, cell-cell interaction, and signal reception. Visualization of cellular protrusions in living cells can be achieved by labeling of cytoskeletal actin with genetically encoded fluorescent probes. Here, we describe a detailed experimental procedure to visualize cellular protrusions in medaka embryos, which consists of the following steps: preparation of Actin-Chromobody-GFP and α-bungarotoxin mRNAs for actin labeling and immobilization of the embryo, respectively; microinjection of the mRNAs into embryos in a mosaic fashion to sparsely label individual cells; removal of the hard chorion, which hampers observation; and visualization of cellular protrusions in the embryo with a confocal microscope. Overall, our protocol provides a simple method to reveal cellular protrusions in vivo by confocal microscopy.
RESUMEN
Craniofacial anomalies are one of the most frequent birth defects worldwide and are often caused by genetic and environmental factors such as pharmaceuticals and chemical agents. Although identifying adverse outcome pathways (AOPs) is a central issue for evaluating the teratogenicity, the AOP causing craniofacial anomalies has not been identified. Recently, zebrafish has gained interest as an emerging model for predicting teratogenicity because of high throughput, cost-effectiveness and availability of various tools for examining teratogenic mechanisms. Here, we established zebrafish sox10-EGFP reporter lines to visualize cranial neural crest cells (CNCCs) and have identified the AOPs for craniofacial anomalies. When we exposed the transgenic embryos to teratogens that were reported to cause craniofacial anomalies in mammals, CNCC migration and subsequent morphogenesis of the first pharyngeal arch were impaired at 24 hours post-fertilization. We also found that cell proliferation and apoptosis of the migratory CNCCs were disturbed, which would be key events of the AOP. From these results, we propose that our sox10-EGFP reporter lines serve as a valuable model for detecting craniofacial skeletal abnormalities, from early to late developmental stages. Given that the developmental process of CNCCs around this stage is highly conserved between zebrafish and mammals, our findings can be extrapolated to mammalian craniofacial development and thus help in predicting craniofacial anomalies in human.
Asunto(s)
Rutas de Resultados Adversos , Pez Cebra , Animales , Humanos , Pez Cebra/genética , Pez Cebra/metabolismo , Cráneo , Regulación del Desarrollo de la Expresión Génica , Teratógenos/farmacología , MamíferosRESUMEN
Anterior and posterior paired appendages of vertebrates are notable examples of heterochrony in the relative timing of their development. In teleosts, posterior paired appendages (pelvic fin buds) emerge much later than their anterior paired appendages (pectoral fin buds). Pelvic fin buds of zebrafish (Danio rerio) appear at 3 weeks post-fertilization (wpf) during the larva-to-juvenile transition (metamorphosis), whereas pectoral fin buds arise from the lateral plate mesoderm on the yolk surface at the embryonic stage. Here we explored the mechanism by which presumptive pelvic fin cells maintain their fate, which is determined at the embryonic stage, until the onset of metamorphosis. Expression analysis revealed that transcripts of pitx1, one of the key factors for the development of posterior paired appendages, became briefly detectable in the posterior lateral plate mesoderm at early embryonic stages. Further analysis indicated that the pelvic fin-specific pitx1 enhancer was in the poised state at the larval stage and is activated at the juvenile stage. We discuss the implications of these findings for the heterochronic development of pelvic fin buds.
RESUMEN
The left-right symmetry breaking of vertebrate embryos requires nodal flow. However, the molecular mechanisms that mediate the asymmetric gene expression regulation under nodal flow remain elusive. Here, we report that heat shock factor 1 (HSF1) is asymmetrically activated in the Kupffer's vesicle of zebrafish embryos in the presence of nodal flow. Deficiency in HSF1 expression caused a significant situs inversus and disrupted gene expression asymmetry of nodal signaling proteins in zebrafish embryos. Further studies demonstrated that HSF1 is a mechanosensitive protein. The mechanical sensation ability of HSF1 is conserved in a variety of mechanical stimuli in different cell types. Moreover, cilia and Ca2+-Akt signaling axis are essential for the activation of HSF1 under mechanical stress in vitro and in vivo. Considering the conserved expression of HSF1 in organisms, these findings unveil a fundamental mechanism of gene expression regulation by mechanical clues during embryonic development and other physiological and pathological transformations.
RESUMEN
The neonatal FcR (FcRn) binds to the Fc domain of IgG at acidic pH in the endosome and protects IgG from degradation, thereby contributing to the long serum half-life of IgG. To date, more than 20 mAb products and 5 Fc-fusion protein products have received marketing authorization approval in the United States, the European Union, or Japan. Many of these therapeutic proteins have the Fc domain of human IgG1; however, the serum half-lives differ in each protein. To elucidate the role of FcRn in the pharmacokinetics of Fc domain-containing therapeutic proteins, we evaluated the affinity of the clinically used human, humanized, chimeric, or mouse mAbs and Fc-fusion proteins to recombinant human FcRn by surface plasmon resonance analysis. The affinities of these therapeutic proteins to FcRn were found to be closely correlated with the serum half-lives reported from clinical studies, suggesting the important role of FcRn in regulating their serum half-lives. The relatively short serum half-life of Fc-fusion proteins was thought to arise from the low affinity to FcRn. The existence of some mAbs having high affinity to FcRn and a short serum half-life, however, suggested the involvement of other critical factor(s) in determining the serum half-life of such Abs. We further investigated the reason for the relatively low affinity of Fc-fusion proteins to FcRn and suggested the possibility that the receptor domain of Fc-fusion protein influences the structural environment of the FcRn binding region but not of the FcgammaRI binding region of the Fc domain.
Asunto(s)
Anticuerpos Monoclonales/metabolismo , Afinidad de Anticuerpos/inmunología , Antígenos de Histocompatibilidad Clase I/fisiología , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/metabolismo , Inmunoglobulina G/uso terapéutico , Receptores Fc/fisiología , Proteínas Recombinantes de Fusión/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/uso terapéutico , Células CHO , Cricetinae , Cricetulus , Semivida , Antígenos de Histocompatibilidad Clase I/sangre , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Fragmentos Fc de Inmunoglobulinas/sangre , Inmunoglobulina G/sangre , Recién Nacido , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Receptores Fc/sangre , Receptores Fc/metabolismo , Proteínas Recombinantes de Fusión/sangre , Proteínas Recombinantes de Fusión/aislamiento & purificaciónRESUMEN
Liposomes are of great interest as drug delivery vehicles, and studies have focused on understanding how the physical and chemical characteristics of liposomes can be modified to improve their in vivo behavior. In a previous study, we found that the slightly negatively-charged liposomes aggregate only in the culture medium of human umbilical vein endothelial cells, whereas the liposomes modified with polyethylene glycol (PEG) (PEGylated) did not aggregate. In the present study, we investigated the underlying mechanism of this phenomenon. Firstly, it was found that heparin in the culture medium is one of the factors that cause aggregation of the non-PEGylated liposomes. Since the addition of ethylenediaminetetraacetic acid (EDTA) prevented the aggregation, metal ions, such as Ca(2+) and Mg(2+), in the culture medium could also be important in driving the aggregation. In the presence of heparin, higher concentrations of Ca(2+) or Mg(2+) increased the particle size of the non-PEGylated liposomes, although no change in the particle size of PEGylated liposomes was observed. Under conditions in which aggregation occurred, we measured the binding and uptake of liposomes by macrophages in vitro. The binding and uptake of non-PEGylated liposomes were significantly increased with increasing Ca(2+) concentrations, whereas those of PEGylated liposomes were unchanged. While the formation of aggregations of cationic or anionic liposomes has been reported previously, there are few reports addressing the aggregation of slightly negatively-charged or neutral liposomes. Thus, our data provide useful insights on the effect of PEGylation on liposomal aggregation and in vivo behavior.
Asunto(s)
Anticoagulantes/química , Calcio/química , Heparina/química , Liposomas/química , Polietilenglicoles/química , Animales , Línea Celular , Quelantes/química , Doxorrubicina/química , Ácido Edético/química , Macrófagos/metabolismo , Magnesio/química , RatonesRESUMEN
Most of the active components of polypeptides have a complex molecular structure, large molecular size. Such components may also be structurally heterogeneous. Therefore, development of a method that can confirm the consistency of polypeptides amino-acid sequences for product characterization is desirable. In general, it is extremely difficult to distinguish differences of a few amino acid residues in the 1H-NMR spectrum of polypeptides with molecular weights greater than several thousand. However, we have been able to distinguish between three insulin species differing in one to three amino acid residues using a combination of multivariate statistics and 1H-NMR spectra. These results demonstrate that this methodology could be useful for characterization of polypeptides.