Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(27): e2301549120, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37364114

RESUMEN

Modern infectious disease outbreaks often involve changes in host tropism, the preferential adaptation of pathogens to specific hosts. The Lyme disease-causing bacterium Borrelia burgdorferi (Bb) is an ideal model to investigate the molecular mechanisms of host tropism, because different variants of these tick-transmitted bacteria are distinctly maintained in rodents or bird reservoir hosts. To survive in hosts and escape complement-mediated immune clearance, Bb produces the outer surface protein CspZ that binds the complement inhibitor factor H (FH) to facilitate bacterial dissemination in vertebrates. Despite high sequence conservation, CspZ variants differ in human FH-binding ability. Together with the FH polymorphisms between vertebrate hosts, these findings suggest that minor sequence variation in this bacterial outer surface protein may confer dramatic differences in host-specific, FH-binding-mediated infectivity. We tested this hypothesis by determining the crystal structure of the CspZ-human FH complex, and identifying minor variation localized in the FH-binding interface yielding bird and rodent FH-specific binding activity that impacts infectivity. Swapping the divergent region in the FH-binding interface between rodent- and bird-associated CspZ variants alters the ability to promote rodent- and bird-specific early-onset dissemination. We further linked these loops and respective host-specific, complement-dependent phenotypes with distinct CspZ phylogenetic lineages, elucidating evolutionary mechanisms driving host tropism emergence. Our multidisciplinary work provides a novel molecular basis for how a single, short protein motif could greatly modulate pathogen host tropism.


Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Animales , Humanos , Evasión Inmune/genética , Filogenia , Tropismo Viral , Enfermedad de Lyme/microbiología , Proteínas Bacterianas/metabolismo , Factor H de Complemento/genética , Factor H de Complemento/metabolismo , Proteínas del Sistema Complemento/genética , Proteínas de la Membrana/metabolismo
2.
J Virol ; 98(3): e0173123, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38329345

RESUMEN

In our 2012 genome announcement (J Virol 86:11403-11404, 2012, https://doi.org/10.1128/JVI.01954-12), we initially identified the host bacterium of bacteriophage Enc34 as Enterobacter cancerogenus using biochemical tests. However, later in-house DNA sequencing revealed that the true host is a strain of Hafnia alvei. Capitalizing on our new DNA-sequencing capabilities, we also refined the genomic termini of Enc34, confirming a 60,496-bp genome with 12-nucleotide 5' cohesive ends. IMPORTANCE: Our correction reflects the evolving landscape of bacterial identification, where molecular methods have supplanted traditional biochemical tests. This case underscores the significance of revisiting past identifications, as seemingly known bacterial strains may yield unexpected discoveries, necessitating essential updates to the scientific record. Despite the host identity correction, our genome announcement retains importance as the first complete genome sequence of a Hafnia alvei bacteriophage.


Asunto(s)
Bacteriófagos , Hafnia alvei , Tropismo al Anfitrión , Bacteriófagos/clasificación , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Bacteriófagos/fisiología , Enterobacter/química , Enterobacter/virología , Genoma Viral/genética , Hafnia alvei/clasificación , Hafnia alvei/genética , Hafnia alvei/virología , Error Científico Experimental , Análisis de Secuencia de ADN
3.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36768143

RESUMEN

The bacterial genus Pantoea comprises species found in a variety of different environmental sources. Pantoea spp. are often recovered from plant material and are capable of both benefitting the plants and acting like phytopathogens. Some species of Pantoea (including P. agglomerans) are considered opportunistic human pathogens capable of causing various infections in immunocompromised subjects. In this study, a strain of P. agglomerans (identified by 16S rRNA gene sequencing) was isolated from a dead specimen of an unidentified Latvian grasshopper species. The retrieved strain of P. agglomerans was then used as a host for the potential retrieval of phages from the same source material. After rounds of plaque purification and propagation, three high-titer lysates corresponding to putatively distinct phages were acquired. Transmission electron microscopy revealed that one of the phages was a myophage with an unusual morphology, while the two others were typical podophages. Whole-genome sequencing (WGS) was performed for each of these isolated phages. Genome de novo assembly and subsequent functional annotation confirmed that three different strictly lytic phages were isolated. Elaborate genomic characterization of the acquired phages was performed to elucidate their place within the so-far-uncovered phage diversity.


Asunto(s)
Bacteriófagos , Pantoea , Humanos , Bacteriófagos/genética , Pantoea/genética , ARN Ribosómico 16S/genética
4.
Proc Natl Acad Sci U S A ; 116(34): 17007-17012, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31371507

RESUMEN

Shrews, insectivorous small mammals, pertain to an ancient mammalian order. We screened 693 European and African shrews for hepatitis B virus (HBV) homologs to elucidate the enigmatic genealogy of HBV. Shrews host HBVs at low prevalence (2.5%) across a broad geographic and host range. The phylogenetically divergent shrew HBVs comprise separate species termed crowned shrew HBV (CSHBV) and musk shrew HBV (MSHBV), each containing distinct genotypes. Recombination events across host orders, evolutionary reconstructions, and antigenic divergence of shrew HBVs corroborated ancient origins of mammalian HBVs dating back about 80 million years. Resurrected CSHBV replicated in human hepatoma cells, but human- and tupaia-derived primary hepatocytes were resistant to hepatitis D viruses pseudotyped with CSHBV surface proteins. Functional characterization of the shrew sodium taurocholate cotransporting polypeptide (Ntcp), CSHBV/MSHBV surface peptide binding patterns, and infection experiments revealed lack of Ntcp-mediated entry of shrew HBV. Contrastingly, HBV entry was enabled by the shrew Ntcp. Shrew HBVs universally showed mutations in their genomic preCore domains impeding hepatitis B e antigen (HBeAg) production and resembling those observed in HBeAg-negative human HBV. Deep sequencing and in situ hybridization suggest that HBeAg-negative shrew HBVs cause intense hepatotropic monoinfections and low within-host genomic heterogeneity. Geographical clustering and low MSHBV/CSHBV-specific seroprevalence suggest focal transmission and high virulence of shrew HBVs. HBeAg negativity is thus an ancient HBV infection pattern, whereas Ntcp usage for entry is not evolutionarily conserved. Shrew infection models relying on CSHBV/MSHBV revertants and human HBV will allow comparative assessments of HBeAg-mediated HBV pathogenesis, entry, and species barriers.


Asunto(s)
Evolución Molecular , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/patogenicidad , Modelos Genéticos , Filogenia , Musarañas/virología , Proteínas del Envoltorio Viral/genética , Factores de Virulencia/genética , Animales , Línea Celular Tumoral , Hepatitis B/genética , Hepatitis B/metabolismo , Hepatitis B/veterinaria , Virus de la Hepatitis B/metabolismo , Humanos
5.
Bioprocess Biosyst Eng ; 45(9): 1447-1463, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35939139

RESUMEN

Recombinant hepatitis B core antigen (HBcAg) molecules, produced in heterologous expression systems, self-assemble into highly homogenous and non-infectious virus-like particles (VLPs) that are under extensive research for biomedical applications. HBcAg production in the methylotrophic yeast P. pastoris has been well documented; however, productivity screening under various residual methanol levels has not been reported for bioreactor processes. HBcAg production under various excess methanol levels of 0.1, 1.0 and 2.0 g L-1 was investigated in this research. Results indicate that, under these particular conditions, the total process and specific protein yields of 876-1308 mg L-1 and 7.9-11.2 mg gDCW-1, respectively, were achieved after 67-75 h of cultivation. Produced HBcAg molecules were efficiently purified and the presence of highly immunogenic, correctly formed and homogenous HBcAg-VLPs with an estimated purity of 90% was confirmed by electron microscopy. The highest reported HBcAg yield of 1308 mg L-1 and 11.2 mg gDCW-1 was achieved under limiting residual methanol concentration, which is about 2.5 times higher than the next highest reported result. A PI-algorithm-based residual methanol concentration feed rate controller was employed to maintain a set residual methanol concentration. Finally, mathematical process models to characterise the vegetative, dead and total cell biomass (Xv, Xd and X), substrate (Glycerol and Methanol) concentration, reactor volume (V), and product (HBcAg) dynamics during cultivation, were identified. A rare attempt to model the residual methanol concentration during induction is also presented.


Asunto(s)
Antígenos del Núcleo de la Hepatitis B , Metanol , Reactores Biológicos , Glicerol/metabolismo , Antígenos del Núcleo de la Hepatitis B/metabolismo , Metanol/química , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes
6.
Chembiochem ; 22(22): 3199-3207, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34520613

RESUMEN

Site-specific protein modifications are vital for biopharmaceutical drug development. Gluconoylation is a non-enzymatic, post-translational modification of N-terminal HisTags. We report high-yield, site-selective in vitro α-aminoacylation of peptides, glycoproteins, antibodies, and virus-like particles (VLPs) with azidogluconolactone at pH 7.5 in 1 h. Conjugates slowly hydrolyse, but diol-masking with borate esters inhibits reversibility. In an example, we multimerise azidogluconoylated SARS-CoV-2 receptor-binding domain (RBD) onto VLPs via click-chemistry, to give a COVID-19 vaccine. Compared to yeast antigen, HEK-derived RBD was immunologically superior, likely due to observed differences in glycosylation. We show the benefits of ordered over randomly oriented multimeric antigen display, by demonstrating single-shot seroconversion and best virus-neutralizing antibodies. Azidogluconoylation is simple, fast and robust chemistry, and should accelerate research and development.


Asunto(s)
Azidas/química , Vacunas contra la COVID-19/química , Gluconatos/química , Glicina/química , Histidina/química , Lactonas/química , Vacunas de Partículas Similares a Virus/química , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Azidas/inmunología , Vacunas contra la COVID-19/inmunología , Gluconatos/inmunología , Glicina/inmunología , Histidina/inmunología , Humanos , Lactonas/inmunología , Modelos Moleculares , Estructura Molecular , Vacunas de Partículas Similares a Virus/inmunología
7.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35008553

RESUMEN

Among the twelve catalytically active carbonic anhydrase isozymes present in the human body, the CAIX is highly overexpressed in various solid tumors. The enzyme acidifies the tumor microenvironment enabling invasion and metastatic processes. Therefore, many attempts have been made to design chemical compounds that would exhibit high affinity and selective binding to CAIX over the remaining eleven catalytically active CA isozymes to limit undesired side effects. It has been postulated that such drugs may have anticancer properties and could be used in tumor treatment. Here we have designed a series of compounds, methyl 5-sulfamoyl-benzoates, which bear a primary sulfonamide group, a well-known marker of CA inhibitors, and determined their affinities for all twelve CA isozymes. Variations of substituents on the benzenesulfonamide ring led to compound 4b, which exhibited an extremely high observed binding affinity to CAIX; the Kd was 0.12 nM. The intrinsic dissociation constant, where the binding-linked protonation reactions have been subtracted, reached 0.08 pM. The compound also exhibited more than 100-fold selectivity over the remaining CA isozymes. The X-ray crystallographic structure of compound 3b bound to CAIX showed the structural position, while several structures of compounds bound to other CA isozymes showed structural reasons for compound selectivity towards CAIX. Since this series of compounds possess physicochemical properties suitable for drugs, they may be developed for anticancer therapeutic purposes.


Asunto(s)
Benzoatos/farmacología , Anhidrasa Carbónica IX/metabolismo , Inhibidores de Anhidrasa Carbónica/farmacología , Sulfonamidas/farmacología , Dominio Catalítico/efectos de los fármacos , Cristalografía por Rayos X/métodos , Humanos , Isoenzimas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Unión Proteica/fisiología , Relación Estructura-Actividad , Termodinámica , Microambiente Tumoral/efectos de los fármacos , Bencenosulfonamidas
8.
Angew Chem Int Ed Engl ; 60(23): 12847-12851, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33750007

RESUMEN

Structure determination of adjuvant-coupled antigens is essential for rational vaccine development but has so far been hampered by the relatively low antigen content in vaccine formulations and by their heterogeneous composition. Here we show that magic-angle spinning (MAS) solid-state NMR can be used to assess the structure of the influenza virus hemagglutinin stalk long alpha helix antigen, both in its free, unformulated form and once chemically coupled to the surface of large virus-like particles (VLPs). The sensitivity boost provided by high-field dynamic nuclear polarization (DNP) and proton detection at fast MAS rates allows to overcome the penalty associated with the antigen dilution. Comparison of the MAS NMR fingerprints between the free and VLP-coupled forms of the antigen provides structural evidence of the conservation of its native fold upon bioconjugation. This work demonstrates that high-sensitivity MAS NMR is ripe to play a major role in vaccine design, formulation studies, and manufacturing process development.


Asunto(s)
Antígenos Virales/análisis , Vacunas de Partículas Similares a Virus/química , Resonancia Magnética Nuclear Biomolecular
9.
Biophys J ; 119(8): 1513-1524, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32971003

RESUMEN

In the design of high-affinity and enzyme isoform-selective inhibitors, we applied an approach of augmenting the substituents attached to the benzenesulfonamide scaffold in three ways, namely, substitutions at the 3,5- or 2,4,6-positions or expansion of the condensed ring system. The increased size of the substituents determined the spatial limitations of the active sites of the 12 catalytically active human carbonic anhydrase (CA) isoforms until no binding was observed because of the inability of the compounds to fit in the active site. This approach led to the discovery of high-affinity and high-selectivity compounds for the anticancer target CA IX and antiobesity target CA VB. The x-ray crystallographic structures of compounds bound to CA IX showed the positions of the bound compounds, whereas computational modeling confirmed that steric clashes prevent the binding of these compounds to other isoforms and thus avoid undesired side effects. Such an approach, based on the Lock-and-Key principle, could be used for the development of enzyme-specific drug candidate compounds.


Asunto(s)
Inhibidores de Anhidrasa Carbónica , Anhidrasas Carbónicas , Inhibidores Enzimáticos , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Dominio Catalítico , Inhibidores Enzimáticos/farmacología , Humanos , Isoformas de Proteínas/metabolismo , Relación Estructura-Actividad
10.
J Struct Biol ; 210(2): 107490, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32135236

RESUMEN

Lyme disease is a tick-borne infection caused by Borrelia burgdorferi sensu lato complex spirochetes. Through a complex enzootic cycle, the bacteria transfer between two different hosts: Ixodes ticks and mammalian organisms. At the start of the tick blood meal, the spirochetes located in the tick gut upregulate the expression of several genes, mainly coding for outer surface proteins. Outer surface proteins belonging to the paralogous gene family 54 (PFam54) have been shown to be the most upregulated among the other borrelial proteins and the results clearly point to the potential importance of these proteins in the pathogenesis of Lyme disease. The significance of PFam54 proteins is confirmed by the fact that of all ten PFam54 proteins, BBA64 and BBA66 are necessary for the transfer of B. burgdorferi from infected Ixodes ticks to mammalian hosts. To enhance the understanding of the pathogenesis of Lyme disease and to promote the development of novel therapies against Lyme disease, we solved the crystal structure of the PFam54 member BBA65. Additionally, we report the structure of the B. burgdorferi BBA64 orthologous protein from B. spielmanii. Together with the previously determined crystal structures of five PFam54 members and several related proteins, we performed a comprehensive structural analysis for this important group of proteins. In addition to revealing the molecular aspects of the proteins, the structural data analysis suggests that the gene families PFam54 and PFam60, which have long been referred to as separate paralogous families, should be merged into one and designated as PFam54_60.


Asunto(s)
Borrelia burgdorferi/metabolismo , Borrelia burgdorferi/patogenicidad , Enfermedad de Lyme/microbiología , Enfermedad de Lyme/patología , Animales , Borrelia burgdorferi/genética , Cristalografía por Rayos X , Humanos , Ixodes/microbiología , Spirochaetales/genética , Spirochaetales/metabolismo , Spirochaetales/patogenicidad
11.
Arch Virol ; 165(3): 737-741, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31875246

RESUMEN

The novel bacterial virus Mimir87, infecting the salt-tolerant bacterium Virgibacillus halotolerans, was isolated from worker honey bees. Mimir87 has an elongated head and a long non-contractile tail consistent with members of the Siphoviridae phage family. The phage genome comprises 48,016 base pairs and encodes 68 predicted proteins, to 34 of which a function could be assigned from homology analysis. The phage encodes two metabolism-related transporter proteins previously not observed in bacteriophage genomes. Mimir87 displays some relatedness to several Bacillus and Paenibacillus viruses; however, the overall sequence dissimilarity suggests Mimir87 to be a representative of a new phage genus.


Asunto(s)
Siphoviridae/clasificación , Siphoviridae/genética , Proteínas Virales/genética , Virgibacillus/virología , Secuencia de Bases , ADN Viral/genética , Genoma Viral/genética , Análisis de Secuencia de ADN , Siphoviridae/aislamiento & purificación
12.
Int J Mol Sci ; 21(7)2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32283813

RESUMEN

A series of new 3-phenyl-5-aryl-N-(4-sulfamoylphenyl)-4,5-dihydro-1H-pyrazole-1-carboxamide derivatives was designed here, synthesized, and studied for carbonic anhydrase (CAs, EC 4.2.1.1) inhibitory activity against the human (h) isozymes I, II, and VII (cytosolic, off-target isoforms), and IX and XII (anticancer drug targets). Generally, CA I was not effectively inhibited, whereas effective inhibitors were identified against both CAs II (KIs in the range of 5.2-233 nM) and VII (KIs in the range of 2.3-350 nM). Nonetheless, CAs IX and XII were the most susceptible isoforms to this class of inhibitors. In particular, compounds bearing an unsubstituted phenyl ring at the pyrazoline 3 position showed 1.3-1.5 nM KIs against CA IX. In contrast, a subset of derivatives having a 4-halo-phenyl at the same position of the aromatic scaffold even reached subnanomolar KIs against CA XII (0.62-0.99 nM). Docking studies with CA IX and XII were used to shed light on the derivative binding mode driving the preferential inhibition of the tumor-associated CAs. The identified potent and selective CA IX/XII inhibitors are of interest as leads for the development of new anticancer strategies.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas , Pirazoles/farmacología , Antineoplásicos/química , Sitios de Unión , Inhibidores de Anhidrasa Carbónica/química , Anhidrasas Carbónicas/metabolismo , Humanos , Isoenzimas , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Unión Proteica , Pirazoles/química , Relación Estructura-Actividad
13.
Molecules ; 24(19)2019 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-31590289

RESUMEN

Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the fundamental reaction of CO2 hydration in all living organisms and are actively involved in the regulation of a plethora of pathological and physiological conditions. A set of new coumarin/ dihydrocoumarin derivatives was here synthesized, characterized, and tested as human CA inhibitors. Their inhibitory activity was evaluated against the cytosolic human isoforms hCA I and II and the transmembrane hCA IX and hCA XII. Two compounds showed potent inhibitory activity against hCA IX, being more active or equipotent with the reference drug acetazolamide. Computational procedures were used to investigate the binding mode of this class of compounds within the active site of hCA IX and XII that are validated as anti-tumor targets.


Asunto(s)
Inhibidores de Anhidrasa Carbónica/síntesis química , Anhidrasas Carbónicas/química , Cumarinas/síntesis química , Antígenos de Neoplasias/química , Anhidrasa Carbónica IX/química , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de Anhidrasa Carbónica/farmacología , Dominio Catalítico , Simulación por Computador , Cumarinas/química , Cumarinas/farmacología , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
14.
Bioorg Chem ; 81: 311-318, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30176570

RESUMEN

Twenty-four novel sulfonamide derivatives incorporating dipeptide tails were synthesized by facile acylation reactions of homosulfanilamide through benzotriazole or dicyclohexyl carbodiimide (DCC) mediated coupling reactions. The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of the new compounds was assessed against four human (h) isoforms, hCA I, hCA II, hCA IX and hCA XII. Most of the synthesized compounds showed good in vitro carbonic anhydrase inhibitory properties, with inhibition constants in the low nanomolar range. Particularly, the new dipeptide-sulfonamide conjugates incorporating Ala, Phe and Met in the dipeptide sequence, showed the most effective inhibitory activity against to CA IX and XII.


Asunto(s)
Inhibidores de Anhidrasa Carbónica/química , Dipéptidos/química , Sulfonamidas/química , Antígenos de Neoplasias , Anhidrasa Carbónica I/antagonistas & inhibidores , Anhidrasa Carbónica II/antagonistas & inhibidores , Anhidrasa Carbónica IX/antagonistas & inhibidores , Inhibidores de Anhidrasa Carbónica/síntesis química , Dipéptidos/síntesis química , Humanos , Isoenzimas/antagonistas & inhibidores , Sulfonamidas/síntesis química
15.
Bioorg Chem ; 77: 411-419, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29427856

RESUMEN

In this study, new 4-[3-(aryl)-5-substitutedphenyl-4,5-dihydro-1H-pyrazole-1-yl]benzensulfonamides (19-36) were synthesized and evaluated their cytotoxic/anticancer and CA inhibitory effects. According to results obtained, the compounds 34 (4-[5-(2,3,4-trimethoxyphenyl)-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole-1-yl] benzensulfonamide, Potency-Selectivity Expression (PSE) = 141) and 36 (4-[5-(3,4,5-trimethoxyphenyl)-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole-1-yl]benzensulfonamide, PSE = 54.5) were found the leader anticancer compounds with the highest PSE values. In CA inhibitory studies, the compounds 36 and 24 (4-[5-(3,4,5-trimethoxyphenyl)-3-(4-fluorophenyl)-4,5-dihydro-1H-pyrazole-1-yl]benzensulfonamide) were found the leader CA inhibitors depending on selectivity ratios. The compound 36 was a selective inhibitor of hCA XII isoenzyme (hCA I/hCA XII = 1250 and hCA II/hCA XII = 224) while the compound 24 was a selective inhibitor of hCA IX isoenzyme (hCA I/hCA IX = 161 and hCA II/hCA IX = 177). The compounds 24, 34, and 36 can be considered to develop new anticancer drug candidates.


Asunto(s)
Antineoplásicos/farmacología , Anhidrasa Carbónica IX/antagonistas & inhibidores , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Pirazoles/farmacología , Sulfonamidas/farmacología , Antígenos de Neoplasias/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Anhidrasa Carbónica IX/metabolismo , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Estructura Molecular , Pirazoles/síntesis química , Pirazoles/química , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química
16.
BMC Biotechnol ; 17(1): 79, 2017 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-29126399

RESUMEN

BACKGROUND: The lack of a universal influenza vaccine is a global health problem. Interest is now focused on structurally conserved protein domains capable of eliciting protection against a broad range of influenza virus strains. The long alpha helix (LAH) is an attractive vaccine component since it is one of the most conserved influenza hemagglutinin (HA) stalk regions. For an improved immune response, the LAH domain from H3N2 strain has been incorporated into virus-like particles (VLPs) derived from hepatitis B virus core protein (HBc) using recently developed tandem core technology. RESULTS: Fermentation conditions for recombinant HBc-LAH were established in yeast Pichia pastoris and a rapid and efficient purification method for chimeric VLPs was developed to match the requirements for industrial scale-up. Purified VLPs induced strong antibody responses against both group 1 and group 2 HA proteins in mice. CONCLUSION: Our results indicate that the tandem core technology is a useful tool for incorporation of highly hydrophobic LAH domain into HBc VLPs. Chimeric VLPs can be successfully produced in bioreactor using yeast expression system. Immunologic data indicate that HBc VLPs carrying the LAH antigen represent a promising universal influenza vaccine component.


Asunto(s)
Hemaglutininas Virales/aislamiento & purificación , Antígenos del Núcleo de la Hepatitis B/genética , Vacunas contra la Influenza/aislamiento & purificación , Proteínas Recombinantes de Fusión/aislamiento & purificación , Virión/aislamiento & purificación , Animales , Anticuerpos Antivirales , Femenino , Hemaglutininas Virales/genética , Hemaglutininas Virales/inmunología , Hemaglutininas Virales/metabolismo , Subtipo H3N2 del Virus de la Influenza A/genética , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/metabolismo , Ratones , Ratones Endogámicos BALB C , Pichia/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/metabolismo , Virión/genética , Virión/inmunología , Virión/metabolismo
17.
Bioorg Med Chem ; 25(3): 857-863, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28024887

RESUMEN

A series of 5-substituted-benzylsulfanyl-thiophene-2-sulfonamides was prepared by reacting 5-bromo-thiophene-2-sulfonamide with 5-substituted-benzyl mercaptans. The new compounds were investigated as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. The cytosolic human (h) isoforms hCA I was poorly inhibited by the new sulfonamides (KIs in the range of 683-4250nM), whereas hCA II, and the transmembrane, tumor associated isoforms hCA IX and XII were effectively inhibited in the subnanomolar-nanomolar range. A high resolution X-ray crystal structure of the adduct of hCA II with one of the new sulfonamides allowed us to rationalize the excellent inhibitory activity of these heterocyclic sulfonamides.


Asunto(s)
Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Sulfonamidas/farmacología , Tiofenos/farmacología , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Estructura Molecular , Soluciones , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química , Tiofenos/síntesis química , Tiofenos/química
18.
Bioorg Med Chem ; 25(13): 3583-3589, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28416101

RESUMEN

A series of N-substituted saccharins incorporating aryl, alkyl and alkynyl moieties, as well as some ring opened derivatives were prepared and investigated as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). The widespread cytosolic isoforms CA I and II were not inhibited by these sulfonamides whereas transmembrane, tumor-associated ones were effectively inhibited, with KIs in the range of 22.1-481nM for CA IX and of 3.9-245nM for hCA XII. Although the inhibition mechanism of these tertiary/secondary sulfonamides is unknown for the moment, the good efficacy and especially selectivity for the inhibition of the tumor-associated over the cytosolic, widespread isoforms, make these derivatives of considerable interest as enzyme inhibitors with various pharmacologic applications.


Asunto(s)
Anhidrasa Carbónica IX/antagonistas & inhibidores , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Sacarina/farmacología , Antígenos de Neoplasias/metabolismo , Anhidrasa Carbónica IX/metabolismo , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Sacarina/síntesis química , Sacarina/química , Relación Estructura-Actividad
19.
J Enzyme Inhib Med Chem ; 32(1): 767-775, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28537099

RESUMEN

A new chemotype with carbonic anhydrase (CA, EC 4.2.1.1) inhibitory action has been discovered, the homo-sulfocoumarins (3H-1,2-benzoxathiepine 2,2-dioxides) which have been designed considering the (sulfo)coumarins as lead molecules. An original synthetic strategy of a panel of such derivatives led to compounds with a unique inhibitory profile and very high selectivity for the inhibition of the tumour associated (CA IX/XII) over the cytosolic (CA I/II) isoforms. Although the CA inhibition mechanism with these new compounds is unknown for the moment, we hypothesize that it may be similar to that of the sulfocoumarins, i.e. hydrolysis to the corresponding sulfonic acids which thereafter anchor to the zinc-coordinated water molecule within the enzyme active site.


Asunto(s)
Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Óxidos S-Cíclicos/farmacología , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Óxidos S-Cíclicos/síntesis química , Óxidos S-Cíclicos/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Relación Estructura-Actividad
20.
Biochim Biophys Acta ; 1854(5): 349-55, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25582082

RESUMEN

Borrelia burgdorferi is the causative agent of Lyme disease, which can be acquired after the bite of an infected Ixodes tick. As a strategy to resist the innate immunity and to successfully spread and proliferate, B. burgdorferi expresses a set of outer membrane proteins that are capable of binding complement regulator factor H (CFH), factor H-like protein 1 (CFHL-1) and factor H-related proteins (CFHR) to avoid complement-mediated killing. B. burgdorferi B31 contains three proteins that belong to the Erp (OspE/F-related) protein family and are capable of binding CFH and some CFHRs, namely ErpA, ErpC and ErpP. We have determined the crystal structure of ErpP at 2.53Å resolution and the crystal structure of ErpC at 2.15Å resolution. Recently, the crystal structure of the Erp family member OspE from B. burgdorferi N40 was determined in complex with CFH domains 19-20, revealing the residues involved in the complex formation. Despite the high sequence conservation between ErpA, ErpC, ErpP and the homologous protein OspE (78-80%), the affinity for CFH and CFHRs differs markedly among the Erp family members, suggesting that ErpC may bind only CFHRs but not CFH. A comparison of the binding site in OspE with those of ErpC and ErpP revealed that the extended loop region, which is only observed in the potential binding site of ErpC, plays an important role by preventing the binding of CFH. These results can explain the inability of ErpC to bind CFH, whereas ErpP and ErpA still possess the ability to bind CFH.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Factor H de Complemento/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA