Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 114(23): E4676-E4685, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28533375

RESUMEN

The activity of the transcription factor nuclear factor-erythroid 2 p45-derived factor 2 (NRF2) is orchestrated and amplified through enhanced transcription of antioxidant and antiinflammatory target genes. The present study has characterized a triazole-containing inducer of NRF2 and elucidated the mechanism by which this molecule activates NRF2 signaling. In a highly selective manner, the compound covalently modifies a critical stress-sensor cysteine (C151) of the E3 ligase substrate adaptor protein Kelch-like ECH-associated protein 1 (KEAP1), the primary negative regulator of NRF2. We further used this inducer to probe the functional consequences of selective activation of NRF2 signaling in Huntington's disease (HD) mouse and human model systems. Surprisingly, we discovered a muted NRF2 activation response in human HD neural stem cells, which was restored by genetic correction of the disease-causing mutation. In contrast, selective activation of NRF2 signaling potently repressed the release of the proinflammatory cytokine IL-6 in primary mouse HD and WT microglia and astrocytes. Moreover, in primary monocytes from HD patients and healthy subjects, NRF2 induction repressed expression of the proinflammatory cytokines IL-1, IL-6, IL-8, and TNFα. Together, our results demonstrate a multifaceted protective potential of NRF2 signaling in key cell types relevant to HD pathology.


Asunto(s)
Enfermedad de Huntington/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Adulto , Anciano , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Enfermedad de Huntington/genética , Proteína 1 Asociada A ECH Tipo Kelch/química , Intoxicación por MPTP/metabolismo , Intoxicación por MPTP/prevención & control , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Persona de Mediana Edad , Factor 2 Relacionado con NF-E2/química , Células-Madre Neurales/metabolismo , Fármacos Neuroprotectores/farmacología , Conformación Proteica/efectos de los fármacos , Ratas , Transducción de Señal
2.
Int J Mol Sci ; 20(5)2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-30871086

RESUMEN

Sirtuins (SIRT1-7) are NAD⁺-dependent protein deacetylases/ADP ribosyltransferases with important roles in chromatin silencing, cell cycle regulation, cellular differentiation, cellular stress response, metabolism and aging. Sirtuins are components of the epigenetic machinery, which is disturbed in Alzheimer's disease (AD), contributing to AD pathogenesis. There is an association between the SIRT2-C/T genotype (rs10410544) (50.92%) and AD susceptibility in the APOEε4-negative population (SIRT2-C/C, 34.72%; SIRT2-T/T 14.36%). The integration of SIRT2 and APOE variants in bigenic clusters yields 18 haplotypes. The 5 most frequent bigenic genotypes in AD are 33CT (27.81%), 33CC (21.36%), 34CT (15.29%), 34CC (9.76%) and 33TT (7.18%). There is an accumulation of APOE-3/4 and APOE-4/4 carriers in SIRT2-T/T > SIRT2-C/T > SIRT2-C/C carriers, and also of SIRT2-T/T and SIRT2-C/T carriers in patients who harbor the APOE-4/4 genotype. SIRT2 variants influence biochemical, hematological, metabolic and cardiovascular phenotypes, and modestly affect the pharmacoepigenetic outcome in AD. SIRT2-C/T carriers are the best responders, SIRT2-T/T carriers show an intermediate pattern, and SIRT2-C/C carriers are the worst responders to a multifactorial treatment. In APOE-SIRT2 bigenic clusters, 33CC carriers respond better than 33TT and 34CT carriers, whereas 24CC and 44CC carriers behave as the worst responders. CYP2D6 extensive metabolizers (EM) are the best responders, poor metabolizers (PM) are the worst responders, and ultra-rapid metabolizers (UM) tend to be better responders that intermediate metabolizers (IM). In association with CYP2D6 genophenotypes, SIRT2-C/T-EMs are the best responders. Some Sirtuin modulators might be potential candidates for AD treatment.


Asunto(s)
Enfermedad de Alzheimer/genética , Sirtuina 2/genética , Sirtuinas/genética , Anciano , Anciano de 80 o más Años , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Citocromo P-450 CYP2D6/genética , Femenino , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Genotipo , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Farmacogenética/métodos , Fenotipo
3.
Hum Mol Genet ; 20(20): 3986-96, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21791548

RESUMEN

Sirtuin 2 (SIRT2) is one of seven known mammalian protein deacetylases homologous to the yeast master lifespan regulator Sir2. In recent years, the sirtuin protein deacetylases have emerged as candidate therapeutic targets for many human diseases, including metabolic and age-dependent neurological disorders. In non-neuronal cells, SIRT2 has been shown to function as a tubulin deacetylase and a key regulator of cell division and differentiation. However, the distribution and function of the SIRT2 microtubule (MT) deacetylase in differentiated, postmitotic neurons remain largely unknown. Here, we show abundant and preferential expression of specific isoforms of SIRT2 in the mammalian central nervous system and find that a previously uncharacterized form, SIRT2.3, exhibits age-dependent accumulation in the mouse brain and spinal cord. Further, our studies reveal that focal areas of endogenous SIRT2 expression correlate with reduced α-tubulin acetylation in primary mouse cortical neurons and suggest that the brain-enriched species of SIRT2 may function as the predominant MT deacetylases in mature neurons. Recent reports have demonstrated an association between impaired tubulin acetyltransferase activity and neurodegenerative disease; viewed in this light, our results showing age-dependent accumulation of the SIRT2 neuronal MT deacetylase in wild-type mice suggest a functional link between tubulin acetylation patterns and the aging brain.


Asunto(s)
Envejecimiento/metabolismo , Sistema Nervioso Central/metabolismo , Microtúbulos/metabolismo , Neuronas/metabolismo , Sirtuina 2/metabolismo , Animales , Línea Celular Tumoral , Femenino , Regulación del Desarrollo de la Expresión Génica , Orden Génico , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Microtúbulos/genética , Isoformas de Proteínas/metabolismo , Sirtuina 2/genética
4.
Proc Natl Acad Sci U S A ; 107(17): 7927-32, 2010 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-20378838

RESUMEN

Huntington's disease (HD), an incurable neurodegenerative disorder, has a complex pathogenesis including protein aggregation and the dysregulation of neuronal transcription and metabolism. Here, we demonstrate that inhibition of sirtuin 2 (SIRT2) achieves neuroprotection in cellular and invertebrate models of HD. Genetic or pharmacologic inhibition of SIRT2 in a striatal neuron model of HD resulted in gene expression changes including significant down-regulation of RNAs responsible for sterol biosynthesis. Whereas mutant huntingtin fragments increased sterols in neuronal cells, SIRT2 inhibition reduced sterol levels via decreased nuclear trafficking of SREBP-2. Importantly, manipulation of sterol biosynthesis at the transcriptional level mimicked SIRT2 inhibition, demonstrating that the metabolic effects of SIRT2 inhibition are sufficient to diminish mutant huntingtin toxicity. These data identify SIRT2 inhibition as a promising avenue for HD therapy and elucidate a unique mechanism of SIRT2-inhibitor-mediated neuroprotection. Furthermore, the ascertainment of SIRT2's role in regulating cellular metabolism demonstrates a central function shared with other sirtuin proteins.


Asunto(s)
Encéfalo/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Enfermedad de Huntington/prevención & control , Fármacos Neuroprotectores/farmacología , Sirtuina 2/antagonistas & inhibidores , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Esteroles/biosíntesis , Análisis de Varianza , Animales , Western Blotting , Caenorhabditis elegans , Drosophila , Perfilación de la Expresión Génica , Inmunohistoquímica , Ratones , Microscopía Confocal
5.
Bioorg Med Chem Lett ; 22(8): 2789-93, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22446090

RESUMEN

Inhibition of sirtuin 2 (SIRT2) is known to be protective against the toxicity of disease proteins in Parkinson's and Huntington's models of neurodegeneration. Previously, we developed SIRT2 inhibitors based on the 3-(N-arylsulfamoyl)benzamide scaffold, including3-(N-(4-bromophenyl)sulfamoyl)-N-(4-bromophenyl)benzamide(C2-8, 1a), which demonstrated neuroprotective effects in a Huntington's mouse model, but had low potency of SIRT2 inhibition. Here we report that N-methylation of 1a greatly increases its potency and results in excellent selectivity for SIRT2 over SIRT1 and SIRT3 isoforms. Structure-activity relationships observed for 1a analogs and docking simulation data suggest that the para-substituted amido moiety of these compounds could occupy two potential hydrophobic binding pockets in SIRT2. These results provide a direction for the design of potent drug-like SIRT2 inhibitors.


Asunto(s)
Benzamidas/química , Benzamidas/farmacología , Sirtuina 2/antagonistas & inhibidores , Acilación , Animales , Sitios de Unión , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Conformación Molecular , Estructura Molecular , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/farmacología , Isoformas de Proteínas , Sirtuina 1/química , Sirtuina 3/química , Relación Estructura-Actividad , Sulfonas/química , Sulfonas/farmacología
6.
Prog Neurobiol ; 83(4): 249-59, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17379386

RESUMEN

Transcriptional dysregulation in Huntington's disease (HD) is a well documented and broadly studied phenomenon. Its basis appears to be in huntingtin's aberrant protein-protein interactions with a variety of transcription factors. The development of therapeutics targeting altered transcription, however, faces serious challenges. No single transcriptional regulator has emerged as a primary actor in HD. The levels of literally hundreds of RNA transcripts are altered in affected cells and it is uncertain which are most relevant. The protein-protein interactions of mutant huntingtin with transcriptional factors do not constitute conventional and easy targets for drug molecules. Nevertheless, potential therapeutic advances, targeting transcriptional deregulation in HD, have been made in recent years. In this chapter we review current progress in this area of therapeutic development. We also discuss possible drug discovery strategies targeting altered transcriptional pathways.


Asunto(s)
Enfermedad de Huntington/tratamiento farmacológico , Proteínas del Tejido Nervioso/efectos de los fármacos , Proteínas Nucleares/efectos de los fármacos , Proteínas Represoras/efectos de los fármacos , Factores de Transcripción/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Diseño de Fármacos , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
FEBS J ; 285(19): 3576-3590, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29323772

RESUMEN

The transcription factor Nrf2 (nuclear factor-erythroid 2 p45-related factor 2) functions at the interface of cellular redox and intermediary metabolism. Nrf2 target genes encode antioxidant enzymes, and proteins involved in xenobiotic detoxification, repair and removal of damaged proteins and organelles, inflammation, and mitochondrial bioenergetics. The function of Nrf2 is altered in many neurodegenerative disorders, such as Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis, and Friedreich's ataxia. Nrf2 activation mitigates multiple pathogenic processes involved in these neurodegenerative disorders through upregulation of antioxidant defenses, inhibition of inflammation, improvement of mitochondrial function, and maintenance of protein homeostasis. Small molecule pharmacological activators of Nrf2 have shown protective effects in numerous animal models of neurodegenerative diseases, and in cultures of human cells expressing mutant proteins. Targeting Nrf2 signaling may provide a therapeutic option to delay onset, slow progression, and ameliorate symptoms of neurodegenerative disorders.


Asunto(s)
Terapia Molecular Dirigida , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/prevención & control , Animales , Humanos , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Estrés Oxidativo , Transducción de Señal
8.
J Biomol Screen ; 12(3): 351-60, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17379859

RESUMEN

CAG-triplet repeat extension, translated into polyglutamines within the coding frame of otherwise unrelated gene products, causes 9 incurable neurodegenerative disorders, including Huntington's disease. Although an expansion in the CAG repeat length is the autosomal dominant mutation that causes the fully penetrant neurological phenotypes, the repeat length is inversely correlated with the age of onset. The precise molecular mechanism(s) of neurodegeneration remains elusive, but compelling evidence implicates the protein or its proteolytic fragments as the cause for the gain of novel pathological function(s). The authors sought to identify small molecules that target the selective clearance of polypeptides containing pathological polyglutamine extension. In a high-throughput chemical screen, they identified compounds that facilitate the clearance of a small huntingtin fragment with extended polyglutamines fused to green fluorescent protein reporter. Identified hits were validated in dose-response and toxicity tests. Compounds have been further tested in an assay for clearance of a larger huntingtin fragment, containing either pathological or normal polyglutamine repeats. In this assay, the authors identified compounds selectively targeting the clearance of mutant but not normal huntingtin fragments. These compounds were subjected to a functional assay, which yielded a lead compound that rescues cells from induced mutant polyglutamine toxicity.


Asunto(s)
Evaluación Preclínica de Medicamentos , Proteínas Mutantes/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fragmentos de Péptidos/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Proteínas Fluorescentes Verdes/metabolismo , Peso Molecular , Células PC12 , Péptidos , Ratas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Especificidad por Sustrato
9.
Chem Biol ; 13(7): 765-70, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16873024

RESUMEN

Poly (ADP-ribose) polymerase (PARP1) is a nuclear protein that, when overactivated by oxidative stress-induced DNA damage, ADP ribosylates target proteins leading to dramatic cellular ATP depletion. We have discovered a biologically active small-molecule inhibitor of PARP1. The discovered compound inhibited PARP1 enzymatic activity in vitro and prevented ATP loss and cell death in a surrogate model of oxidative stress in vivo. We also investigated a new use for PARP1 inhibitors in energy-deficient cells by using Huntington's disease as a model. Our results showed that insult with the oxidant hydrogen peroxide depleted cellular ATP in mutant cells below the threshold of viability. The protective role of PARP1 inhibitors against oxidative stress has been shown in this model system.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Adenosina Trifosfato/metabolismo , Western Blotting , Inhibidores Enzimáticos/química , Células HeLa , Humanos , Modelos Moleculares
10.
Drug News Perspect ; 20(8): 501-9, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18080037

RESUMEN

There is no cure for devastating neurodegenerative disorders such as Alzheimer's, Parkinson's, Huntington's diseases or amyotrophic lateral sclerosis, which cause longterm suffering and ultimately death. Slowly progressing neurodegenerative diseases affect the lives of many thousands of patients and their families. These disorders are characterized by pathological changes in disease-specific areas of the brain. In each disease, these pathological processes lead to dysfunction and degeneration in distinct subsets of neurons. Research on neurodegenerative disorders has revealed a complex picture of cellular pathology involving abnormalities in biochemical processes, gene regulation, responses to external stimuli, etc. However, despite the differences in the clinical manifestations and selective neuronal vulnerability, on cellular and molecular levels the underlying pathological processes appear similar across different diseases, suggesting common pathways of neurodegeneration. Elucidation of the precise neurodegenerative mechanism(s) is essential for development of effective and safe therapy for these lethal human disorders.


Asunto(s)
Degeneración Nerviosa/fisiopatología , Vías Nerviosas/fisiología , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/metabolismo , Animales , Calcio/metabolismo , Caspasas/metabolismo , Humanos , Modelos Neurológicos , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/metabolismo , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Especies Reactivas de Oxígeno/metabolismo
11.
J Biomol Screen ; 11(7): 729-35, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16928982

RESUMEN

Familial amyotrophic lateral sclerosis (ALS) accounts for 10% of all ALS cases; approximately 25% of these cases are due to mutations in the Cu/Zn superoxide dismutase gene (SOD1). To date, 105 different mutations spanning all 5 exons have been identified in the SOD1 gene. Mutant SOD1-associated ALS is caused by a toxic gain of function of the mutated protein. Therefore, regardless of the specific mechanism whereby mutant SOD1 initiates motor neuron death, the authors hypothesize that measures that decrease levels of mutant SOD1 protein should ameliorate the phenotype in transgenic mice and potentially in patients with SOD1-mediated disease. They have designed 2 cell-based screening assays to identify small, brain-permeant molecules that inactivate expression of the SOD1 gene or increase the degradation of the SOD1 protein. Here they describe the development and optimization of these assays and the results of high-throughput screening using a variety of compound libraries, including a total of more than 116,000 compounds. The majority of the hit compounds identified that down-regulated SOD1 were shown to be toxic in a cell-based viability assay or were nonselective transcription inhibitors, but work is continuing on a number of nonspecific inhibitors of SOD1 expression. Ultimately, the authors believe that these 2 cell-based assays will provide powerful strategies to identify novel therapies for the treatment of inherited SOD1-associated forms of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/enzimología , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/farmacología , Superóxido Dismutasa/metabolismo , Animales , Línea Celular , Inhibidores Enzimáticos/análisis , Inhibidores Enzimáticos/química , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ratones , Proteínas Mutantes/metabolismo , Células PC12 , Regiones Promotoras Genéticas/genética , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Superóxido Dismutasa-1
12.
J Huntingtons Dis ; 5(4): 347-355, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27983565

RESUMEN

BACKGROUND: Modulation of gene transcription by HDAC inhibitors has been shown repeatedly to be neuroprotective in cellular, invertebrate, and rodent models of Huntington's disease (HD). It has been difficult to translate these treatments to the clinic, however, because existing compounds have limited potency or brain bioavailability. OBJECTIVE: In the present study, we assessed the therapeutic potential of LBH589, an orally bioavailable hydroxamic acid-derived nonselective HDAC inhibitor in mouse models of HD. METHOD: The efficacy of LBH589 is tested in two HD mouse models using various biochemical, behavioral and neuropathological outcome measures. RESULTS: We show that LBH589 crosses the blood brain barrier; induces histone hyperacetylation and prevents striatal neuronal shrinkage in R6/2 HD mice. In full-length knock-in HD mice LBH589-treatment improves motor performance and reduces neuronal atrophy. CONCLUSIONS: Our efficacious results of LBH589 in fragment and full-length mouse models of HD suggest that LBH589 is a promising candidate for clinical assessment in HD patients and provides confirmation that non-selective HDAC inhibitors can be viable clinical candidates.


Asunto(s)
Inhibidores de Histona Desacetilasas/farmacología , Enfermedad de Huntington/tratamiento farmacológico , Ácidos Hidroxámicos/farmacología , Indoles/farmacología , Fármacos Neuroprotectores/farmacología , Animales , Atrofia/tratamiento farmacológico , Atrofia/metabolismo , Atrofia/patología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Femenino , Técnicas de Sustitución del Gen , Inhibidores de Histona Desacetilasas/farmacocinética , Histonas/metabolismo , Enfermedad de Huntington/patología , Enfermedad de Huntington/fisiopatología , Ácidos Hidroxámicos/farmacocinética , Indoles/farmacocinética , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/patología , Neuronas/fisiología , Fármacos Neuroprotectores/farmacocinética , Panobinostat
13.
Cell Chem Biol ; 23(7): 849-861, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27427231

RESUMEN

There are currently no disease-modifying therapies for the neurodegenerative disorder Huntington's disease (HD). This study identified novel thiazole-containing inhibitors of the deacetylase sirtuin-2 (SIRT2) with neuroprotective activity in ex vivo brain slice and Drosophila models of HD. A systems biology approach revealed an additional SIRT2-independent property of the lead-compound, MIND4, as an inducer of cytoprotective NRF2 (nuclear factor-erythroid 2 p45-derived factor 2) activity. Structure-activity relationship studies further identified a potent NRF2 activator (MIND4-17) lacking SIRT2 inhibitory activity. MIND compounds induced NRF2 activation responses in neuronal and non-neuronal cells and reduced production of reactive oxygen species and nitrogen intermediates. These drug-like thiazole-containing compounds represent an exciting opportunity for development of multi-targeted agents with potentially synergistic therapeutic benefits in HD and related disorders.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Huntington/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Fármacos Neuroprotectores/farmacología , Sirtuina 2/antagonistas & inhibidores , Tiazoles/farmacología , Tiazoles/uso terapéutico , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Drosophila , Enfermedad de Huntington/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/uso terapéutico , Ratas , Sirtuina 2/deficiencia , Sirtuina 2/metabolismo , Relación Estructura-Actividad , Tiazoles/química
14.
ACS Med Chem Lett ; 6(5): 607-11, 2015 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-26005542

RESUMEN

Inhibitors of sirtuin-2 (SIRT2) deacetylase have been shown to be protective in various models of Huntington's disease (HD) by decreasing polyglutamine aggregation, a hallmark of HD pathology. The present study was directed at optimizing the potency of SIRT2 inhibitors containing the 3-(benzylsulfonamido)benzamide scaffold and improving their metabolic stability. Molecular modeling and docking studies revealed an unfavorable role of the sulfonamide moiety for SIRT2 binding. This prompted us to replace the sulfonamide with thioether, sulfoxide, or sulfone groups. The thioether analogues were the most potent SIRT2 inhibitors with a two- to three-fold increase in potency relative to their corresponding sulfonamide analogues. The newly synthesized compounds also demonstrated higher SIRT2 selectivity over SIRT1 and SIRT3. Two thioether-derived compounds (17 and 18) increased α-tubulin acetylation in a dose-dependent manner in at least one neuronal cell line, and 18 was found to inhibit polyglutamine aggregation in PC12 cells.

15.
PLoS One ; 10(1): e0116919, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25608039

RESUMEN

Sirtuin deacetylases regulate diverse cellular pathways and influence disease processes. Our previous studies identified the brain-enriched sirtuin-2 (SIRT2) deacetylase as a potential drug target to counteract neurodegeneration. In the present study, we characterize SIRT2 inhibition activity of the brain-permeable compound AK7 and examine the efficacy of this small molecule in models of Parkinson's disease, amyotrophic lateral sclerosis and cerebral ischemia. Our results demonstrate that AK7 is neuroprotective in models of Parkinson's disease; it ameliorates alpha-synuclein toxicity in vitro and prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopamine depletion and dopaminergic neuron loss in vivo. The compound does not show beneficial effects in mouse models of amyotrophic lateral sclerosis and cerebral ischemia. These findings underscore the specificity of protective effects observed here in models of Parkinson's disease, and previously in Huntington's disease, and support the development of SIRT2 inhibitors as potential therapeutics for the two neurodegenerative diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Benzamidas/administración & dosificación , Isquemia Encefálica/fisiopatología , Fármacos Neuroprotectores/administración & dosificación , Enfermedad de Parkinson/prevención & control , Sirtuina 2/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Sulfonamidas/administración & dosificación , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/efectos adversos , Animales , Benzamidas/farmacología , Línea Celular , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Sulfonamidas/farmacología , alfa-Sinucleína/metabolismo
16.
Eur J Med Chem ; 76: 414-26, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-24602787

RESUMEN

Inhibitors of sirtuin-2 deacetylase (SIRT2) have been shown to be protective in various models of Huntington's disease (HD) by decreasing polyglutamine aggregation, a hallmark of HD pathology. The present study was directed at optimizing the potency of SIRT2 inhibitors containing the neuroprotective sulfobenzoic acid scaffold and improving their pharmacology. To achieve that goal, 176 analogues were designed, synthesized, and tested in deacetylation assays against the activities of major human sirtuins SIRT1-3. This screen yielded 15 compounds with enhanced potency for SIRT2 inhibition and 11 compounds having SIRT2 inhibition equal to reference compound AK-1. The newly synthesized compounds also demonstrated higher SIRT2 selectivity over SIRT1 and SIRT3. These candidates were subjected to a dose-response bioactivity assay, measuring an increase in α-tubulin K40 acetylation in two neuronal cell lines, which yielded five compounds bioactive in both cell lines and eight compounds bioactive in at least one of the cell lines tested. These bioactive compounds were subsequently tested in a tertiary polyglutamine aggregation assay, which identified five inhibitors. ADME properties of the bioactive SIRT2 inhibitors were assessed, which revealed a significant improvement of the pharmacological properties of the new entities, reaching closer to the goal of a clinically-viable candidate.


Asunto(s)
Benzamidas/farmacología , Fármacos Neuroprotectores/farmacología , Sirtuina 2/antagonistas & inhibidores , Acetilación , Benzamidas/química , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Fármacos Neuroprotectores/química , Sirtuina 2/metabolismo , Relación Estructura-Actividad
18.
Front Pharmacol ; 3: 82, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22563317

RESUMEN

Sirtuin proteins are conserved regulators of aging that have recently emerged as important modifiers of several diseases which commonly occur later in life such as cancer, diabetes, cardiovascular, and neurodegenerative diseases. In mammals, there are seven sirtuins (SIRT1-7), which display diversity in subcellular localization and function. SIRT1 has received much of attention due to its possible impact on longevity, while important biological and therapeutic roles of other sirtuins have been underestimated and just recently recognized. Here we focus on SIRT2, a member of the sirtuin family, and discuss its role in cellular and tissue-specific functions. This review summarizes the main scientific advances on SIRT2 protein biology and explores its potential as a therapeutic target for treatment of age-related disorders.

19.
Front Pharmacol ; 3: 42, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22416232

RESUMEN

Tauopathies including tau-associated Frontotemporal dementia (FTD) and Alzheimer's disease are characterized pathologically by the formation of tau-containing neurofibrillary aggregates and neuronal loss, which contribute to cognitive decline. There are currently no effective treatments to prevent or slow this neural systems failure. The rTg4510 mouse model, which expresses a mutant form of the tau protein associated with FTD with Parkinsonism-17, undergoes dramatic hippocampal and cortical neuronal loss making it an ideal model to study treatments for FTD-related neuronal loss. Sirtuins are a family of proteins involved in cell survival that have the potential to modulate neuronal loss in neurodegenerative disorders. Here we tested the hypothesis that sirtuin 2 (SIRT2) inhibition would be non-toxic and prevent neurodegeneration in rTg4510 brain. In this study we delivered SIRT2 inhibitor AK1 directly to the hippocampus with an osmotic minipump and confirmed that it reached the target region both with histological assessment of delivery of a dye and with a pharmacodynamic marker, ABCA1 transcription, which was upregulated with AK1 treatment. AK1 treatment was found to be safe in wild-type mice and in the rTg4510 mouse model, and further, it provided some neuroprotection in the rTg4510 hippocampal circuitry. This study provides proof-of-concept for therapeutic benefits of SIRT2 inhibitors in both tau-associated FTD and Alzheimer's disease, and suggests that development of potent, brain permeable SIRT2 inhibitors is warranted.

20.
Cell Rep ; 2(6): 1492-7, 2012 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-23200855

RESUMEN

Inhibition of sirtuin 2 (SIRT2) deacetylase mediates protective effects in cell and invertebrate models of Parkinson's disease and Huntington's disease (HD). Here we report the in vivo efficacy of a brain-permeable SIRT2 inhibitor in two genetic mouse models of HD. Compound treatment resulted in improved motor function, extended survival, and reduced brain atrophy and is associated with marked reduction of aggregated mutant huntingtin, a hallmark of HD pathology. Our results provide preclinical validation of SIRT2 inhibition as a potential therapeutic target for HD and support the further development of SIRT2 inhibitors for testing in humans.


Asunto(s)
Inhibidores de Histona Desacetilasas/farmacología , Enfermedad de Huntington/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Sirtuina 2/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Femenino , Enfermedad de Huntington/enzimología , Enfermedad de Huntington/genética , Masculino , Ratones , Ratones Mutantes , Sirtuina 2/genética , Sirtuina 2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA