Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36838802

RESUMEN

Lipid-related cancers cause a large number of deaths worldwide. Therefore, development of highly efficient Lipid droplets (LDs) fluorescent imaging probes will be beneficial to our understanding of lipid-related cancers by allowing us to track the metabolic process of LDs. In this work, a LDs-specific NIR (λmax = 698 nm) probe, namely BY1, was rationally designed and synthesized via a one-step reaction by integrating triphenylamine (electron-donor group) unit into the structure of rofecoxib. This integration strategy enabled the target BY1 to form a strong Donor-Acceptor (D-A) system and endowed BY1 with obvious aggregation-induced emission (AIE) effect. Meanwhile, BY1 also showed observable solvent effect and reversible mechanochromatic luminescent property, which could be interpreted clearly via density functional theory (DFT) calculations, differential scanning calorimetry (DSC), powder X-ray diffraction (XPRD), and single crystal X-ray data analysis. More importantly, BY1 exhibited highly specific fluorescent imaging ability (Pearson's correlation = 0.97) towards lipid droplets in living HeLa cells with low cytotoxicity. These results demonstrated that BY1 is a new promising fluorescent probe for lipid droplets imaging, and it might be beneficial to facilitate biological research of lipid-related cancers.


Asunto(s)
Colorantes Fluorescentes , Gotas Lipídicas , Humanos , Gotas Lipídicas/metabolismo , Colorantes Fluorescentes/química , Células HeLa , Lípidos
2.
ACS Omega ; 8(23): 21008-21015, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37323382

RESUMEN

Dual-state emission luminogens (DSEgens), as a new type of luminescent materials that can effectively emit light in solution and solid state, have attracted tremendous attention due to their potential application in chemical sensing, biological imaging, organic electronic devices, etc. In this study, two new rofecoxib derivatives ROIN and ROIN-B have been synthesized, and their photophysical properties are fully investigated by experimental studies and theoretical calculations. The key intermediate ROIN, resulting from one-step conjugation of rofecoxib with an indole unit, shows the classical aggregation-caused quenching (ACQ) effect. Meanwhile, by introducing a tert-butoxycarbonyl (Boc) group on the basis of ROIN without enlarging the π conjugation system, ROIN-B was successfully developed with an obvious DSE property. In addition, both fluorescent behaviors and their transformation from ACQ to DSE were elucidated clearly by going through the analysis of their single X-ray data. Moreover, the target ROIN-B, as a new DSEgens, also displays reversible mechanofluorochromism and lipid droplet-specific imaging ability in HeLa cells. Taken together, this work proposes a precise molecular design strategy to afford a new DSEgens, which may provide guidance for the future exploration of new DSEgens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA