Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Phytopathology ; 114(7): 1626-1636, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38489164

RESUMEN

Development of durable resistance effective against a broad range of pathotypes is crucial for restoration of pathogen-damaged ecosystems. This study dissected the complex genetic architecture for limber pine quantitative disease resistance (QDR) to Cronartium ribicola using a genome-wide association study. Eighteen-month-old seedlings were inoculated for resistance screening under controlled conditions. Disease development was quantitatively assessed for QDR-related traits over 4 years postinoculation. To reveal the genomic architecture contributing to QDR-related traits, a set of genes related to disease resistance with genome-wide distribution was selected for targeted sequencing for genotyping of single-nucleotide polymorphisms (SNPs). The genome-wide association study revealed a set of SNPs significantly associated with quantitative traits for limber pine QDR to white pine blister rust, including number of needle spots and stem cankers, as well as survival 4 years postinoculation. The peaks of marker-trait associations displayed a polygenic pattern, with genomic regions as potential resistant quantitative trait loci, distributed over 10 of the 12 linkage groups (LGs) of Pinus. None of them was linked to the Cr4-controlled major gene resistance previously mapped on LG08. Both normal canker and bole infection were mapped on LG05, and the associated SNPs explained their phenotypic variance up to 52%, tagging a major resistant quantitative trait locus. Candidate genes containing phenotypically associated SNPs encoded putative nucleotide-binding site leucine-rich repeat proteins, leucine-rich repeat-receptor-like kinase, cytochrome P450 superfamily protein, heat shock cognate protein 70, glutamate receptor, RNA-binding family protein, and unknown protein. The confirmation of resistant quantitative trait loci broadens the genetic pool of limber pine resistance germplasm for resistance breeding.


Asunto(s)
Basidiomycota , Resistencia a la Enfermedad , Estudio de Asociación del Genoma Completo , Pinus , Enfermedades de las Plantas , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Pinus/genética , Pinus/microbiología , Pinus/inmunología , Polimorfismo de Nucleótido Simple/genética , Basidiomycota/fisiología , Sitios de Carácter Cuantitativo/genética , Fenotipo , Genotipo , Herencia Multifactorial/genética
2.
Phytopathology ; 112(5): 1093-1102, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34732078

RESUMEN

All native North American white pines are highly susceptible to white pine blister rust (WPBR) caused by Cronartium ribicola. Understanding genomic diversity and molecular mechanisms underlying genetic resistance to WPBR remains one of the great challenges in improvement of white pines. To compare major gene resistance (MGR) present in two species, southwestern white pine (Pinus strobiformis) Cr3 and limber pine (P. flexilis) Cr4, we performed association analyses of Cr3-controlled resistant traits using single nucleotide polymorphism (SNP) assays designed with Cr4-linked polymorphic genes. We found that ∼70% of P. flexilis SNPs were transferable to P. strobiformis. Furthermore, several Cr4-linked SNPs were significantly associated with the Cr3-controlled traits in P. strobiformis families. The most significantly associated SNP (M326511_1126R) almost colocalized with Cr4 on the Pinus consensus linkage group 8, suggesting that Cr3 and Cr4 might be the same R locus, or have localizations very close to each other in the syntenic region of the P. strobiformis and P. flexilis genomes. M326511_1126R was identified as a nonsynonymous SNP, causing amino acid change (Val376Ile) in a putative pectin acetylesterase, with coding sequences identical between the two species. Moreover, top Cr3-associated SNPs were further developed as TaqMan genotyping assays, suggesting their usefulness as marker-assisted selection (MAS) tools to distinguish genotypes between quantitative resistance and MGR. This work demonstrates the successful transferability of SNP markers between two closely related white pine species in the hybrid zone, and the possibility for deployment of MAS tools to facilitate long-term WPBR management in P. strobiformis breeding and conservation.


Asunto(s)
Resistencia a la Enfermedad , Pinus , Enfermedades de las Plantas , Basidiomycota/patogenicidad , Resistencia a la Enfermedad/genética , Pinus/genética , Pinus/microbiología , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
3.
Plant Biotechnol J ; 15(9): 1149-1162, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28176454

RESUMEN

Molecular breeding incorporates efficient tools to increase rust resistance in five-needle pines. Susceptibility of native five-needle pines to white pine blister rust (WPBR), caused by the non-native invasive fungus Cronartium ribicola (J.C. Fisch.), has significantly reduced wild populations of these conifers in North America. Major resistance (R) genes against specific avirulent pathotypes have been found in several five-needle pine species. In this study, we screened genic SNP markers by comparative transcriptome and genetic association analyses and constructed saturated linkage maps for the western white pine (Pinus monticola) R locus (Cr2). Phenotypic segregation was measured by a hypersensitive reaction (HR)-like response on the needles and disease symptoms of cankered stems post inoculation by the C. ribicola avcr2 race. SNP genotypes were determined by HRM- and TaqMan-based SNP genotyping. Saturated maps of the Cr2-linkage group (LG) were constructed in three seed families using a total of 34 SNP markers within 21 unique genes. Cr2 was consistently flanked by contig_2142 (encoding a ruvb-like protein) and contig_3772 (encoding a delta-fatty acid desaturase) across the three seed families. Cr2 was anchored to the Pinus consensus LG-1, which differs from LGs where other R loci of Pinus species were mapped. GO annotation identified a set of NBS-LRR and other resistance-related genes as R candidates in the Cr2 region. Association of one nonsynonymous SNP locus of an NBS-LRR gene with Cr2-mediated phenotypes provides a valuable tool for marker-assisted selection (MAS), which will shorten the breeding cycle of resistance screening and aid in the restoration of WPBR-disturbed forest ecosystems.


Asunto(s)
Basidiomycota/fisiología , Resistencia a la Enfermedad/genética , Pinus/genética , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Transcriptoma , Cruzamiento , Mapeo Cromosómico , Perfilación de la Expresión Génica , Ontología de Genes , Ligamiento Genético , Sitios Genéticos/genética , Genotipo , Pinus/inmunología , Pinus/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple/genética , Semillas/genética , Semillas/inmunología , Semillas/microbiología
4.
BMC Genomics ; 17(1): 753, 2016 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-27663193

RESUMEN

BACKGROUND: Linkage of DNA markers with phenotypic traits provides essential information to dissect clustered genes with potential phenotypic contributions in a target genome region. Pinus flexilis E. James (limber pine) is a keystone five-needle pine species in mountain-top ecosystems of North America. White pine blister rust (WPBR), caused by a non-native fungal pathogen Cronartium ribicola (J.C. Fisch.), has resulted in mortality in this conifer species and is still spreading through the distribution. The objective of this research was to develop P. flexilis transcriptome-wide single nucleotide polymorphism (SNP) markers using RNA-seq analysis for genetic mapping of the major gene (Cr4) that confers complete resistance to C. ribicola. RESULTS: Needle tissues of one resistant and two susceptible seedling families were subjected to RNA-seq analysis. In silico SNP markers were uncovered by mapping the RNA-seq reads back to the de novo assembled transcriptomes. A total of 110,573 in silico SNPs and 2,870 indels were identified with an average of 3.7 SNPs per Kb. These SNPs were distributed in 17,041 unigenes. Of these polymorphic P. flexilis unigenes, 6,584 were highly conserved as compared to the genome sequence of P. taeda L (loblolly pine). High-throughput genotyping arrays were designed and were used to search for Cr4-linked genic SNPs in megagametophyte populations of four maternal trees by haploid-segregation analysis. A total of 32 SNP markers in 25 genes were localized on the Cr4 linkage group (LG). Syntenic relationships of this Cr4-LG map with the model conifer species P. taeda anchored Cr4 on Pinus consensus LG8, indicating that R genes against C. ribicola have evolved independently in different five-needle pines. Functional genes close to Cr4 were annotated and their potential roles in Cr4-mediated resistance were further discussed. CONCLUSIONS: We demonstrated a very effective, low-cost strategy for developing a SNP genetic map of a phenotypic trait of interest. SNP discovery through transcriptome comparison was integrated with high-throughput genotyping of a small set of in silico SNPs. This strategy may be applied to mapping any trait in non-model plant species that have complex genomes. Whole transcriptome sequencing provides a powerful tool for SNP discovery in conifers and other species with complex genomes, for which sequencing and annotation of complex genomes is still challenging. The genic SNP map for the consensus Cr4-LG may help future molecular breeding efforts by enabling both Cr4 positional characterization and selection of this gene against WPBR.

5.
Genes (Basel) ; 15(5)2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38790231

RESUMEN

Pathogen perception generates the activation of signal transduction cascades to host defense. White pine blister rust (WPBR) is caused by Cronartium ribicola J.C. Fisch and affects a number of species of Pinus. One of the most severely affected species is Pinus albicaulis Engelm (whitebark pine). WPBR resistance in the species is a polygenic and complex trait that requires an optimized immune response. We identified early responses in 2-year-old seedlings after four days of fungal inoculation and compared the underlying transcriptomic response with that of healthy non-inoculated individuals. A de novo transcriptome assembly was constructed with 56,796 high quality-annotations derived from the needles of susceptible and resistant individuals in a resistant half-sib family. Differential expression analysis identified 599 differentially expressed transcripts, from which 375 were upregulated and 224 were downregulated in the inoculated seedlings. These included components of the initial phase of active responses to abiotic factors and stress regulators, such as those involved in the first steps of flavonoid biosynthesis. Four days after the inoculation, infected individuals showed an overexpression of chitinases, reactive oxygen species (ROS) regulation signaling, and flavonoid intermediates. Our research sheds light on the first stage of infection and emergence of disease symptoms among whitebark pine seedlings. RNA sequencing (RNA-seq) data encoding hypersensitive response, cell wall modification, oxidative regulation signaling, programmed cell death, and plant innate immunity were differentially expressed during the defense response against C. ribicola.


Asunto(s)
Basidiomycota , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Pinus , Enfermedades de las Plantas , Transcriptoma , Pinus/genética , Pinus/microbiología , Pinus/inmunología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Basidiomycota/patogenicidad , Plantones/genética , Plantones/microbiología , Plantones/inmunología , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Front Microbiol ; 12: 602812, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33776951

RESUMEN

Breeding programs of five-needle pines have documented both major gene resistance (MGR) and quantitative disease resistance (QDR) to Cronartium ribicola (Cri), a non-native, invasive fungal pathogen causing white pine blister rust (WPBR). WPBR is one of the most deadly forest diseases in North America. However, Cri virulent pathotypes have evolved and can successfully infect and kill trees carrying resistance (R) genes, including vcr2 that overcomes MGR conferred by the western white pine (WWP, Pinus monticola) R gene (Cr2). In the absence of a reference genome, the present study generated a vcr2 reference transcriptome, consisting of about 20,000 transcripts with 1,014 being predicted to encode secreted proteins (SPs). Comparative profiling of transcriptomes and secretomes revealed vcr2 was significantly enriched for several gene ontology (GO) terms relating to oxidation-reduction processes and detoxification, suggesting that multiple molecular mechanisms contribute to pathogenicity of the vcr2 pathotype for its overcoming Cr2. RNA-seq-based bulked segregant analysis (BSR-Seq) revealed genome-wide DNA variations, including about 65,617 single nucleotide polymorphism (SNP) loci in 7,749 polymorphic genes shared by vcr2 and avirulent (Avcr2) pathotypes. An examination of the distribution of minor allele frequency (MAF) uncovered a high level of genomic divergence between vcr2 and Avcr2 pathotypes. By integration of extreme-phenotypic genome-wide association (XP-GWAS) analysis and allele frequency directional difference (AFDD) mapping, we identified a set of vcr2-associated SNPs within functional genes, involved in fungal virulence and other molecular functions. These included six SPs that were top candidate effectors with putative activities of reticuline oxidase, proteins with common in several fungal extracellular membrane (CFEM) domain or ferritin-like domain, polysaccharide lyase, rds1p-like stress responsive protein, and two Cri-specific proteins without annotation. Candidate effectors and vcr2-associated genes provide valuable resources for further deciphering molecular mechanisms of virulence and pathogenicity by functional analysis and the subsequent development of diagnostic tools for monitoring the virulence landscape in the WPBR pathosystems.

7.
Front Plant Sci ; 11: 557672, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042181

RESUMEN

Since its introduction to North America in the early 1900s, white pine blister rust (WPBR) caused by the fungal pathogen Cronartium ribicola has resulted in substantial economic losses and ecological damage to native North American five-needle pine species. The high susceptibility and mortality of these species, including limber pine (Pinus flexilis), creates an urgent need for the development and deployment of resistant germplasm to support recovery of impacted populations. Extensive screening for genetic resistance to WPBR has been underway for decades in some species but has only started recently in limber pine using seed families collected from wild parental trees in the USA and Canada. This study was conducted to characterize Alberta limber pine seed families for WPBR resistance and to develop reliable molecular tools for marker-assisted selection (MAS). Open-pollinated seed families were evaluated for host reaction following controlled infection using C. ribicola basidiospores. Phenotypic segregation for presence/absence of stem symptoms was observed in four seed families. The segregation ratios of these families were consistent with expression of major gene resistance (MGR) controlled by a dominant R locus. Based on linkage disequilibrium (LD)-based association mapping used to detect single nucleotide polymorphism (SNP) markers associated with MGR against C. ribicola, MGR in these seed families appears to be controlled by Cr4 or other R genes in very close proximity to Cr4. These associated SNPs were located in genes involved in multiple molecular mechanisms potentially underlying limber pine MGR to C. ribicola, including NBS-LRR genes for recognition of C. ribicola effectors, signaling components, and a large set of defense-responsive genes with potential functions in plant effector-triggered immunity (ETI). Interactions of associated loci were identified for MGR selection in trees with complex genetic backgrounds. SNPs with tight Cr4-linkage were further converted to TaqMan assays to confirm their effectiveness as MAS tools. This work demonstrates the successful translation and deployment of molecular genetic knowledge into specific MAS tools that can be easily applied in a selection or breeding program to efficiently screen MGR against WPBR in Alberta limber pine populations.

8.
PLoS One ; 11(12): e0167986, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27992468

RESUMEN

Whitebark pine (WBP, Pinus albicaulis Engelm.) is an endangered conifer species due to heavy mortality from white pine blister rust (WPBR, caused by Cronartium ribicola) and mountain pine beetle (Dendroctonus ponderosae). Information about genetic diversity and population structure is of fundamental importance for its conservation and restoration. However, current knowledge on the genetic constitution and genomic variation is still limited for WBP. In this study, an integrated genomics approach was applied to characterize seed collections from WBP breeding programs in western North America. RNA-seq analysis was used for de novo assembly of the WBP needle transcriptome, which contains 97,447 protein-coding transcripts. Within the transcriptome, single nucleotide polymorphisms (SNPs) were discovered, and more than 22,000 of them were non-synonymous SNPs (ns-SNPs). Following the annotation of genes with ns-SNPs, 216 ns-SNPs within candidate genes with putative functions in disease resistance and plant defense were selected to design SNP arrays for high-throughput genotyping. Among these SNP loci, 71 were highly polymorphic, with sufficient variation to identify a unique genotype for each of the 371 individuals originating from British Columbia (Canada), Oregon and Washington (USA). A clear genetic differentiation was evident among seed families. Analyses of genetic spatial patterns revealed varying degrees of diversity and the existence of several genetic subgroups in the WBP breeding populations. Genetic components were associated with geographic variables and phenotypic rating of WPBR disease severity across landscapes, which may facilitate further identification of WBP genotypes and gene alleles contributing to local adaptation and quantitative resistance to WPBR. The WBP genomic resources developed here provide an invaluable tool for further studies and for exploitation and utilization of the genetic diversity preserved within this endangered conifer and other five-needle pines.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Pinus/genética , Análisis de Secuencia de ARN/métodos , Conservación de los Recursos Naturales , Resistencia a la Enfermedad , Especies en Peligro de Extinción , Variación Genética , América del Norte , Filogenia , Polimorfismo de Nucleótido Simple , Semillas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA