Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Toxicol Appl Pharmacol ; 334: 100-109, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28893587

RESUMEN

The contribution of animal testing in drug development has been widely debated and challenged. An industry-wide nonclinical to clinical translational database was created to determine how safety assessments in animal models translate to First-In-Human clinical risk. The blinded database was composed of 182 molecules and contained animal toxicology data coupled with clinical observations from phase I human studies. Animal and clinical data were categorized by organ system and correlations determined. The 2×2 contingency table (true positive, false positive, true negative, false negative) was used for statistical analysis. Sensitivity was 48% with a 43% positive predictive value (PPV). The nonhuman primate had the strongest performance in predicting adverse effects, especially for gastrointestinal and nervous system categories. When the same target organ was identified in both the rodent and nonrodent, the PPV increased. Specificity was 84% with an 86% negative predictive value (NPV). The beagle dog had the strongest performance in predicting an absence of clinical adverse effects. If no target organ toxicity was observed in either test species, the NPV increased. While nonclinical studies can demonstrate great value in the PPV for certain species and organ categories, the NPV was the stronger predictive performance measure across test species and target organs indicating that an absence of toxicity in animal studies strongly predicts a similar outcome in the clinic. These results support the current regulatory paradigm of animal testing in supporting safe entry to clinical trials and provide context for emerging alternate models.


Asunto(s)
Bases de Datos Factuales , Investigación Biomédica Traslacional , Animales , Evaluación Preclínica de Medicamentos , Industria Farmacéutica , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Modelos Animales , Medición de Riesgo
2.
Toxicol Pathol ; 45(3): 372-380, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28351296

RESUMEN

An Innovation and Quality (IQ) Consortium focus group conducted a cross-company survey to evaluate current practices and perceptions around the use of animal models of disease (AMDs) in nonclinical safety assessment of molecules in clinical development. The IQ Consortium group is an organization of pharmaceutical and biotechnology companies with the mission of advancing science and technology. The survey queried the utilization of AMDs during drug discovery in which drug candidates are evaluated in efficacy models and limited short-duration non-Good Laboratory Practices (GLP) toxicology testing and during drug development in which drug candidates are evaluated in GLP toxicology studies. The survey determined that the majority of companies used AMDs during drug discovery primarily as a means for proactively assessing potential nonclinical safety issues prior to the conduct of toxicology studies, followed closely by the use of AMDs to better understand toxicities associated with exaggerated pharmacology in traditional toxicology models or to derisk issues when the target is only expressed in the disease state. In contrast, the survey results indicated that the use of AMDs in development is infrequent, being used primarily to investigate nonclinical safety issues associated with targets expressed only in disease states and/or in response to requests from global regulatory authorities.


Asunto(s)
Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Industria Farmacéutica , Animales , Toma de Decisiones en la Organización , Evaluación Preclínica de Medicamentos/estadística & datos numéricos , Industria Farmacéutica/legislación & jurisprudencia , Industria Farmacéutica/organización & administración , Industria Farmacéutica/normas , Regulación Gubernamental , Encuestas y Cuestionarios
3.
Front Toxicol ; 6: 1370045, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646442

RESUMEN

The ICH S1B carcinogenicity global testing guideline has been recently revised with a novel addendum that describes a comprehensive integrated Weight of Evidence (WoE) approach to determine the need for a 2-year rat carcinogenicity study. In the present work, experts from different organizations have joined efforts to standardize as much as possible a procedural framework for the integration of evidence associated with the different ICH S1B(R1) WoE criteria. The framework uses a pragmatic consensus procedure for carcinogenicity hazard assessment to facilitate transparent, consistent, and documented decision-making and it discusses best-practices both for the organization of studies and presentation of data in a format suitable for regulatory review. First, it is acknowledged that the six WoE factors described in the addendum form an integrated network of evidence within a holistic assessment framework that is used synergistically to analyze and explain safety signals. Second, the proposed standardized procedure builds upon different considerations related to the primary sources of evidence, mechanistic analysis, alternative methodologies and novel investigative approaches, metabolites, and reliability of the data and other acquired information. Each of the six WoE factors is described highlighting how they can contribute evidence for the overall WoE assessment. A suggested reporting format to summarize the cross-integration of evidence from the different WoE factors is also presented. This work also notes that even if a 2-year rat study is ultimately required, creating a WoE assessment is valuable in understanding the specific factors and levels of human carcinogenic risk better than have been identified previously with the 2-year rat bioassay alone.

4.
Front Toxicol ; 5: 1234498, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026843

RESUMEN

In silico toxicology protocols are meant to support computationally-based assessments using principles that ensure that results can be generated, recorded, communicated, archived, and then evaluated in a uniform, consistent, and reproducible manner. We investigated the availability of in silico models to predict the carcinogenic potential of pregabalin using the ten key characteristics of carcinogens as a framework for organizing mechanistic studies. Pregabalin is a single-species carcinogen producing only one type of tumor, hemangiosarcomas in mice via a nongenotoxic mechanism. The overall goal of this exercise is to test the ability of in silico models to predict nongenotoxic carcinogenicity with pregabalin as a case study. The established mode of action (MOA) of pregabalin is triggered by tissue hypoxia, leading to oxidative stress (KC5), chronic inflammation (KC6), and increased cell proliferation (KC10) of endothelial cells. Of these KCs, in silico models are available only for selected endpoints in KC5, limiting the usefulness of computational tools in prediction of pregabalin carcinogenicity. KC1 (electrophilicity), KC2 (genotoxicity), and KC8 (receptor-mediated effects), for which predictive in silico models exist, do not play a role in this mode of action. Confidence in the overall assessments is considered to be medium to high for KCs 1, 2, 5, 6, 7 (immune system effects), 8, and 10 (cell proliferation), largely due to the high-quality experimental data. In order to move away from dependence on animal data, development of reliable in silico models for prediction of oxidative stress, chronic inflammation, immunosuppression, and cell proliferation will be critical for the ability to predict nongenotoxic compound carcinogenicity.

5.
Toxicol Pathol ; 39(4): 716-44, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21666103

RESUMEN

Data collected from 182 marketed and nonmarketed pharmaceuticals demonstrate that there is little value gained in conducting a rat two-year carcinogenicity study for compounds that lack: (1) histopathologic risk factors for rat neoplasia in chronic toxicology studies, (2) evidence of hormonal perturbation, and (3) positive genetic toxicology results. Using a single positive result among these three criteria as a test for outcome in the two-year study, fifty-two of sixty-six rat tumorigens were correctly identified, yielding 79% test sensitivity. When all three criteria were negative, sixty-two of seventy-six pharmaceuticals (82%) were correctly predicted to be rat noncarcinogens. The fourteen rat false negatives had two-year study findings of questionable human relevance. Applying these criteria to eighty-six additional chemicals identified by the International Agency for Research on Cancer as likely human carcinogens and to drugs withdrawn from the market for carcinogenicity concerns confirmed their sensitivity for predicting rat carcinogenicity outcome. These analyses support a proposal to refine regulatory criteria for conducting a two-year rat study to be based on assessment of histopathologic findings from a rat six-month study, evidence of hormonal perturbation, genetic toxicology results, and the findings of a six-month transgenic mouse carcinogenicity study. This proposed decision paradigm has the potential to eliminate over 40% of rat two-year testing on new pharmaceuticals without compromise to patient safety.


Asunto(s)
Pruebas de Carcinogenicidad/métodos , Carcinógenos/toxicidad , Pruebas de Mutagenicidad/métodos , Animales , Pruebas de Carcinogenicidad/normas , Carcinógenos/normas , Bases de Datos Factuales , Árboles de Decisión , Modelos Animales de Enfermedad , Estudios de Evaluación como Asunto , Femenino , Guías como Asunto , Humanos , Inmunosupresores , Masculino , Ratones , Ratones Transgénicos , Pruebas de Mutagenicidad/normas , Neoplasias/inducido químicamente , Ratas , Ratas Endogámicas F344 , Factores de Riesgo , Estadística como Asunto , Pruebas de Toxicidad Crónica
6.
Lab Chip ; 20(7): 1177-1190, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32129356

RESUMEN

Drug-induced gastrointestinal toxicities (DI-GITs) are among the most common adverse events in clinical trials. High prevalence of DI-GIT has persisted among new drugs due in part to the lack of robust experimental tools to allow early detection or to guide optimization of safer molecules. Developing in vitro assays for the leading GI toxicities (nausea, vomiting, diarrhoea, constipation, and abdominal pain) will likely involve recapitulating complex physiological properties that require contributions from diverse cell/tissue types including epithelial, immune, microbiome, nerve, and muscle. While this stipulation may be beyond traditional 2D monocultures of intestinal cell lines, emerging 3D GI microtissues capture interactions between diverse cell and tissue types. These interactions give rise to microphysiologies fundamental to gut biology. For GI microtissues, organoid technology was the breakthrough that introduced intestinal stem cells with the capability of differentiating into each of the epithelial cell types and that self-organize into a multi-cellular tissue proxy with villus- and crypt-like domains. Recently, GI microtissues generated using miniaturized devices with microfluidic flow and cyclic peristaltic strain were shown to induce Caco2 cells to spontaneously differentiate into each of the principle intestinal epithelial cell types. Second generation models comprised of epithelial organoids or microtissues co-cultured with non-epithelial cell types can successfully reproduce cross-'tissue' functional interactions broadening the potential of these models to accurately study drug-induced toxicities. A new paradigm in which in vitro assays become an early part of GI safety assessment could be realized if microphysiological systems (MPS) are developed in alignment with drug-discovery needs. Herein, approaches for assessing GI toxicity of pharmaceuticals are reviewed and gaps are compared with capabilities of emerging GI microtissues (e.g., organoids, organ-on-a-chip, transwell systems) in order to provide perspective on the assay features needed for MPS models to be adopted for DI-GIT assessment.


Asunto(s)
Microfluídica , Organoides , Células CACO-2 , Humanos , Mucosa Intestinal , Intestinos
7.
Lab Chip ; 20(3): 468-476, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31989145

RESUMEN

The human kidney contains approximately one million nephrons. As the functional unit of the kidney, the nephron affords an opportunity to approximate the kidney at a microphysiological scale. Recent emergence of physiologically accurate human tissue models has radically advanced the possibilities of mimicking organ biology and multi-organ combinations in vitro. Anatomically, the nephron is one of the most complex, sequentially integrated microfluidic units in the body making the miniaturized microfluidic systems excellent candidates for capturing the kidney biology in vitro. While these models are promising, there are a number of considerations for practical implementation into a drug development paradigm. Opportunities for pharmaceutical industry applications of new MPS models often start with drug safety testing. As such, the intent of this article is to focus on safety and ADME applications. This article reviews biological functions of the kidney and options for characterizing known roles in nephrotoxicity. The concept of "context-of-use" is introduced as a framework for describing and verifying the specific features of an MPS platform for use in drug development. Overall, we present a perspective on key attributes of microphysiological kidney models, which the pharmaceutical industry could leverage to improve confident safety and ADME evaluations of experimental therapies.


Asunto(s)
Riñón/efectos de los fármacos , Preparaciones Farmacéuticas/metabolismo , Desarrollo de Medicamentos , Evaluación Preclínica de Medicamentos/efectos adversos , Industria Farmacéutica , Humanos , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación , Modelos Biológicos , Preparaciones Farmacéuticas/química
8.
Lab Chip ; 20(2): 215-225, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31799979

RESUMEN

The liver is critical to consider during drug development because of its central role in the handling of xenobiotics, a process which often leads to localized and/or downstream tissue injury. Our ability to predict human clinical safety outcomes with animal testing is limited due to species differences in drug metabolism and disposition, while traditional human in vitro liver models often lack the necessary in vivo physiological fidelity. To address this, increasing numbers of liver microphysiological systems (MPS) are being developed, however the inconsistency in their optimization and characterization often leads to models that do not possess critical levels of baseline performance that is required for many pharmaceutical industry applications. Herein we provide a guidance on best approaches to benchmark liver MPS based on 3 stages of characterization that includes key performance metrics and a 20 compound safety test set. Additionally, we give an overview of frequently used liver injury safety assays, describe the ideal MPS model, and provide a perspective on currently best suited MPS contexts of use. This pharmaceutical industry guidance has been written to help MPS developers and end users identify what could be the most valuable models for safety risk assessment.


Asunto(s)
Hígado/metabolismo , Preparaciones Farmacéuticas/metabolismo , Animales , Evaluación Preclínica de Medicamentos , Industria Farmacéutica , Humanos , Dispositivos Laboratorio en un Chip , Hígado/química , Preparaciones Farmacéuticas/química , Medición de Riesgo
9.
Clin Pharmacol Ther ; 107(2): 333-346, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31314926

RESUMEN

The diagnosis and management of drug-induced liver injury (DILI) remains a challenge in clinical trials in drug development. The qualification of emerging biomarkers capable of predicting DILI soon after the initiation of treatment, differentiating DILI from underlying liver disease, identifying the causal entity, and assigning appropriate treatment options after DILI is diagnosed are needed. Qualification efforts have been hindered by lack of properly stored and consented biospecimens that are linked to clinical data relevant to a specific context of use. Recommendations are made for biospecimen collection procedures, with the focus on clinical trials, and for specific emerging biomarkers to focus qualification efforts.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Desarrollo de Medicamentos/métodos , Desarrollo de Medicamentos/normas , Manejo de Especímenes/métodos , Manejo de Especímenes/normas , Biomarcadores , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Ensayos Clínicos como Asunto/normas , Humanos , Consentimiento Informado , Pruebas de Función Hepática , Fenotipo
10.
Rev Sci Instrum ; 90(7): 075005, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31370483

RESUMEN

Electric motors are being investigated in-depth for their application in aerospace. Part of this investigation is the characterization of the loadings from the propulsion devices, in a stationary setup, usually accomplished through the utilization of load cells. The majority of the load cells used in this application are designed around a resistance-based strain gauge. However, electric motors radiate electromagnetic interference (EMI) when in operation, which degrades the signal retrieved through the strain gauge, due to the gauge's metallic construction acting as an antenna for the EMI. To demonstrate the advantage of fiber Bragg gratings (FBGs), with their immunity to EMI, a load cell implementing both sensor technologies was designed and subjected to the same mechanical loading and EMI, with a flywheel coupled to a brushless DC motor. The load cell had a sensitivity of 8.59 ± 0.18 N and 2.49 ± 2.49 N through the strain gauge and FBG system, respectively. The strain gauge signal contained the mechanical loading signal embedded in wideband noise and spikes (that increased linearly with motor angular velocity), while the FBG signal did not, with little noise. The raw strain gauge signal, at a maximum, had a signal power ratio (mechanical signal power divided by the overall signal power mean) of 21.06 at 104.72 rad/s; the FBG signal, at a minimum, had a signal power ratio of 40.09 at 52.36 rad/s. Therefore, on the basis of the mechanical tests performed in this work, the recommended sensor of choice for electric propulsion in aerospace applications is the FBG.

11.
Front Physiol ; 10: 1389, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31780954

RESUMEN

Frigid temperatures of the Southern Ocean are known to be an evolutionary driver in Antarctic fish. For example, many fish have reduced red blood cell (RBC) concentration to minimize vascular resistance. Via the oxygen-carrying protein hemoglobin, RBCs contain the vast majority of the body's iron, which is known to be a limiting nutrient in marine ecosystems. Since lower RBC levels also lead to reduced iron requirements, we hypothesize that low iron availability was an additional evolutionary driver of Antarctic fish speciation. Antarctic Icefish of the family Channichthyidae are known to have an extreme alteration of iron metabolism due to loss of RBCs and two iron-binding proteins, hemoglobin and myoglobin. Loss of hemoglobin is considered a maladaptive trait allowed by relaxation of predator selection since extreme adaptations are required to compensate for the loss of oxygen-carrying capacity. However, iron dependency minimization may have driven hemoglobin loss instead of a random evolutionary event. Given the variety of functions that hemoglobin serves in the endothelium, we suspected the protein corresponding to the 3' truncated Hbα fragment (Hbα-3'f) that was not genetically excluded by icefish may still be expressed as a protein. Using whole mount confocal microscopy, we show that Hbα-3'f is expressed in the vascular endothelium of icefish retina, suggesting this Hbα fragment may still serve an important role in the endothelium. These observations support a novel hypothesis that iron minimization could have influenced icefish speciation with the loss of the iron-binding portion of Hbα in Hbα-3'f, as well as hemoglobin ß and myoglobin.

12.
Exp Biol Med (Maywood) ; 242(16): 1579-1585, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28622731

RESUMEN

Tissue chips are poised to deliver a paradigm shift in drug discovery. By emulating human physiology, these chips have the potential to increase the predictive power of preclinical modeling, which in turn will move the pharmaceutical industry closer to its aspiration of clinically relevant and ultimately animal-free drug discovery. Despite the tremendous science and innovation invested in these tissue chips, significant challenges remain to be addressed to enable their routine adoption into the industrial laboratory. This article describes the main steps that need to be taken and highlights key considerations in order to transform tissue chip technology from the hands of the innovators into those of the industrial scientists. Written by scientists from 13 pharmaceutical companies and partners at the National Institutes of Health, this article uniquely captures a consensus view on the progression strategy to facilitate and accelerate the adoption of this valuable technology. It concludes that success will be delivered by a partnership approach as well as a deep understanding of the context within which these chips will actually be used. Impact statement The rapid pace of scientific innovation in the tissue chip (TC) field requires a cohesive partnership between innovators and end users. Near term uptake of these human-relevant platforms will fill gaps in current capabilities for assessing important properties of disposition, efficacy and safety liabilities. Similarly, these platforms could support mechanistic studies which aim to resolve challenges later in development (e.g. assessing the human relevance of a liability identified in animal studies). Building confidence that novel capabilities of TCs can address real world challenges while they themselves are being developed will accelerate their application in the discovery and development of innovative medicines. This article outlines a strategic roadmap to unite innovators and end users thus making implementation smooth and rapid. With the collective contributions from multiple international pharmaceutical companies and partners at National Institutes of Health, this article should serve as an invaluable resource to the multi-disciplinary field of TC development.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Procedimientos Analíticos en Microchip/métodos , Microfluídica/métodos , Industria Farmacéutica , Humanos , Dispositivos Laboratorio en un Chip
13.
Toxicol Sci ; 155(1): 22-31, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27780885

RESUMEN

Future Tox III, a Society of Toxicology Contemporary Concepts in Toxicology workshop, was held in November 2015. Building upon Future Tox I and II, Future Tox III was focused on developing the high throughput risk assessment paradigm and taking the science of in vitro data and in silico models forward to explore the question-what progress is being made to address challenges in implementing the emerging big-data toolbox for risk assessment and regulatory decision-making. This article reports on the outcome of the workshop including 2 examples of where advancements in predictive toxicology approaches are being applied within Federal agencies, where opportunities remain within the exposome and AOP domains, and how collectively the toxicology community across multiple sectors can continue to bridge the translation from historical approaches to Tox21 implementation relative to risk assessment and regulatory decision-making.


Asunto(s)
Toxicología , Animales , Humanos , Técnicas In Vitro , Pruebas de Toxicidad
14.
Toxicol Sci ; 143(2): 256-67, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25628403

RESUMEN

FutureTox II, a Society of Toxicology Contemporary Concepts in Toxicology workshop, was held in January, 2014. The meeting goals were to review and discuss the state of the science in toxicology in the context of implementing the NRC 21st century vision of predicting in vivo responses from in vitro and in silico data, and to define the goals for the future. Presentations and discussions were held on priority concerns such as predicting and modeling of metabolism, cell growth and differentiation, effects on sensitive subpopulations, and integrating data into risk assessment. Emerging trends in technologies such as stem cell-derived human cells, 3D organotypic culture models, mathematical modeling of cellular processes and morphogenesis, adverse outcome pathway development, and high-content imaging of in vivo systems were discussed. Although advances in moving towards an in vitro/in silico based risk assessment paradigm were apparent, knowledge gaps in these areas and limitations of technologies were identified. Specific recommendations were made for future directions and research needs in the areas of hepatotoxicity, cancer prediction, developmental toxicity, and regulatory toxicology.


Asunto(s)
Simulación por Computador , Técnicas In Vitro , Toxicología/métodos , Toxicología/tendencias , Congresos como Asunto , Valor Predictivo de las Pruebas , Sociedades Científicas , Estados Unidos
15.
Toxicol Sci ; 77(2): 188-94, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14657512

RESUMEN

The Alternatives to Carcinogenicity Testing Committee of the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) conducted a large-scale, multinational collaborative research program to evaluate several genetically modified mouse assays for assessing the human carcinogenic potential of compounds. The data from this testing program have made an important contribution to the general understanding of how these models can be best applied in hazard identification; however, questions still exist regarding methodology and data interpretation. To address these issues, ILSI HESI hosted a February 2003 workshop on the Utility of Transgenic Assays for Risk Assessment. The purpose of this workshop was to reach an understanding of how data from genetically modified mouse models are viewed by different regulatory bodies in the pharmaceutical sector and, based on this understanding, to identify areas in which more experimental work may be needed to increase the utility of data derived from these assays. In the course of discussions, various data gaps related to model selection and protocol issues were identified. Based on the outcome of the workshop, various studies are proposed to provide data to improve the utility of currently available assays for cancer hazard identification and risk assessment purposes.


Asunto(s)
Animales Modificados Genéticamente , Pruebas de Carcinogenicidad/métodos , Animales , Pruebas de Carcinogenicidad/normas , Carcinógenos/toxicidad , Genes p53 , Genes ras , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Modelos Animales , Medición de Riesgo
16.
J Biochem Biophys Methods ; 58(2): 159-86, 2004 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-14980789

RESUMEN

Recent developments are reviewed in size exclusion chromatographic calibration methodologies, including direct calibration by using narrow and broad polymer standards and various instrumental methods (nuclear magnetic resonance, mass spectrometry, light scattering) as well as universal calibration with and without viscometry detectors, for simple and complex polymers.


Asunto(s)
Cromatografía/instrumentación , Cromatografía/métodos , Polímeros/química , Calibración , Luz , Espectroscopía de Resonancia Magnética/métodos , Espectrometría de Masas/métodos , Dispersión de Radiación
17.
Toxicol Sci ; 126(2): 291-7, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22262567

RESUMEN

The practice of toxicology is changing rapidly, as demonstrated by the response to the 2007 NRC report on "Toxicity Testing in the 21(st) Century." New assays are being developed to replace animal testing; yet the use of data from these assays in decision making is not clear. A Health and Environmental Sciences Institute committee held a May 2011 workshop to discuss approaches to identifying adverse effects in the context of the NRC report. Scientists from industry, government, academia, and NGOs discussed two case studies and explored how information from new, high data content assays developed for screening can be used to differentiate adverse effects from adaptive responses. The terms "adverse effect" and "adaptive response" were defined, as well as two new terms, the relevant pathways of toxicological concern (RPTCs) and relevant responses for regulation (RRRs). RPTCs are biochemical pathways associated with adverse events and need to be elucidated before they are used in regulatory decision making. RRRs are endpoints that are the basis for risk assessment and may or may not be at the level of pathways. Workshop participants discussed the criteria for determining whether, at the RPTC level, an effect is potentially adverse or potentially indicative of adaptability, and how the use of prototypical, data-rich compounds could lead to a greater understanding of RPTCs and their use as RRRs. Also discussed was the use of RPTCs in a weight-of-evidence approach to risk assessment. Inclusion of data at this level could decrease uncertainty in risk assessments but will require the use of detailed dosimetry and consideration of exposure context and the time and dose continuum to yield scientifically based decisions. The results of this project point to the need for an extensive effort to characterize RPTCs and their use in risk assessment to make the vision of the 2007 NRC report a reality.


Asunto(s)
Toxicología , Historia del Siglo XXI , Medición de Riesgo , Pruebas de Toxicidad
19.
ACS Med Chem Lett ; 1(9): 483-7, 2010 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-24900235

RESUMEN

To identify a CCR5 antagonist as an HIV-1 entry inhibitor, we designed a novel series of indane derivatives based on conformational considerations. Modification on the indane ring led to the discovery of compound 22a (INCB9471) that exhibited high affinity for CCR5, potent anti-HIV-1 activity, high receptor selectivity, excellent oral bioavailability, and a tolerated safety profile. INCB9471 has entered human clinical trials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA