Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; : e202401621, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984588

RESUMEN

Artificial metallo-nucleases (AMNs) are small molecule DNA cleavage agents, also known as DNA molecular scissors, and represent an important class of chemotherapeutic with high clinical potential. This review provides a primary level of exploration on the concepts key to this area including an introduction to DNA structure, function, recognition, along with damage and repair mechanisms. Building on this foundation, we describe hybrid molecules where AMNs are covalently attached to directing groups that provide molecular scissors with enhanced or sequence specific DNA damaging capabilities. As this research field continues to evolve, understanding the applications of AMNs along with synthetic conjugation strategies can provide the basis for future innovations, particularly for designing new artificial gene editing systems.

2.
Methods ; 219: 30-38, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37690737

RESUMEN

The development of compounds that can selectively bind with non-canonical DNA structures has expanded in recent years. Junction DNA, including three-way junctions (3WJs) and four-way Holliday junctions (HJs), offer an intriguing target for developmental therapeutics as both 3WJs and HJs are involved in DNA replication and repair processes. However, there are a limited number of assays available for the analysis of junction DNA binding. Here, we describe the design and execution of multiplex fluorescent polyacrylamide gel electrophoresis (PAGE) and microscale thermophoresis (MST) assays that enable evaluation of junction-binding compounds. Two well characterised junction-binding compounds-a C6 linked bis-acridine ligand and an iron(II)-bound peptide helicate, which recognise HJs and 3WJs, respectively-were employed as probes for both MST and PAGE experiments. The multiplex PAGE assay expands beyond previously reported fluorescent PAGE as it uses four individual fluorophores that can be combined to visualise single-strands, pseudo-duplexes, and junction DNA present during 3WJ and HJ formation. The use of MST to identify the binding affinity of junction binding agents is, to our knowledge, first reported example of this technique. The combined use of PAGE and MST provides complementary results for the visualisation of 3WJ and HJ formation and the direct binding affinity (Kd and EC50) of these agents. These assays can be used to aid the discovery and design of new therapeutics targeting non-canonical nucleic acid structures.


Asunto(s)
ADN Cruciforme , ADN , ADN/química , Replicación del ADN , Electroforesis en Gel de Poliacrilamida
3.
Nucleic Acids Res ; 50(10): 5467-5481, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35640595

RESUMEN

Triplex-forming oligonucleotides (TFOs) are short, single-stranded oligomers that hybridise to a specific sequence of duplex DNA. TFOs can block transcription and thereby inhibit protein production, making them highly appealing in the field of antigene therapeutics. In this work, a primer extension protocol was developed to enzymatically prepare chemical nuclease TFO hybrid constructs, with gene-silencing applications. Click chemistry was employed to generate novel artificial metallo-nuclease (AMN)-dNTPs, which were selectively incorporated into the TFO strand by a DNA polymerase. This purely enzymatic protocol was then extended to facilitate the construction of 5-methylcytosine (5mC) modified TFOs that displayed increased thermal stability. The utility of the enzymatically synthesised di-(2-picolyl)amine (DPA)-TFOs was assessed and compared to a specifically prepared solid-phase synthesis counterpart through gel electrophoresis, quantitative PCR, and Sanger sequencing, which revealed similar recognition and damage properties to target genes. The specificity was then enhanced through coordinated designer intercalators-DPQ and DPPZ-and high-precision DNA cleavage was achieved. To our knowledge, this is the first example of the enzymatic production of an AMN-TFO hybrid and is the largest base modification incorporated using this method. These results indicate how chemical nuclease-TFOs may overcome limitations associated with non-molecularly targeted metallodrugs and open new avenues for artificial gene-editing technology.


Asunto(s)
ADN , Oligonucleótidos , ADN/química , División del ADN , Endonucleasas/metabolismo , Oligonucleótidos/química
4.
Angew Chem Int Ed Engl ; 63(13): e202318863, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38271265

RESUMEN

The grooves of DNA provide recognition sites for many nucleic acid binding proteins and anticancer drugs such as the covalently binding cisplatin. Here we report a crystal structure showing, for the first time, groove selectivity by an intercalating ruthenium complex. The complex Λ-[Ru(phen)2 phi]2+ , where phi=9,10-phenanthrenediimine, is bound to the DNA decamer duplex d(CCGGTACCGG)2 . The structure shows that the metal complex is symmetrically bound in the major groove at the central TA/TA step, and asymmetrically bound in the minor groove at the adjacent GG/CC steps. A third type of binding links the strands, in which each terminal cytosine base stacks with one phen ligand. The overall binding stoichiometry is four Ru complexes per duplex. Complementary biophysical measurements confirm the binding preference for the Λ-enantiomer and show a high affinity for TA/TA steps and, more generally, TA-rich sequences. A striking enantiospecific elevation of melting temperatures is found for oligonucleotides which include the TATA box sequence.


Asunto(s)
Complejos de Coordinación , Compuestos Organometálicos , Rutenio , Compuestos Organometálicos/química , ADN/química , Oligonucleótidos/química , Complejos de Coordinación/química , Temperatura , Rutenio/química
5.
Nucleic Acids Res ; 49(18): 10289-10308, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34570227

RESUMEN

Metallodrugs provide important first-line treatment against various forms of human cancer. To overcome chemotherapeutic resistance and widen treatment possibilities, new agents with improved or alternative modes of action are highly sought after. Here, we present a click chemistry strategy for developing DNA damaging metallodrugs. The approach involves the development of a series of polyamine ligands where three primary, secondary or tertiary alkyne-amines were selected and 'clicked' using the copper-catalysed azide-alkyne cycloaddition reaction to a 1,3,5-azide mesitylene core to produce a family of compounds we call the 'Tri-Click' (TC) series. From the isolated library, one dominant ligand (TC1) emerged as a high-affinity copper(II) binding agent with potent DNA recognition and damaging properties. Using a range of in vitro biophysical and molecular techniques-including free radical scavengers, spin trapping antioxidants and base excision repair (BER) enzymes-the oxidative DNA damaging mechanism of copper-bound TC1 was elucidated. This activity was then compared to intracellular results obtained from peripheral blood mononuclear cells exposed to Cu(II)-TC1 where use of BER enzymes and fluorescently modified dNTPs enabled the characterisation and quantification of genomic DNA lesions produced by the complex. The approach can serve as a new avenue for the design of DNA damaging agents with unique activity profiles.


Asunto(s)
Química Clic/métodos , Cobre/farmacología , Daño del ADN/efectos de los fármacos , Nylons/farmacología , Oxidantes/farmacología , Humanos , Leucocitos Mononucleares , Estrés Oxidativo
6.
Angew Chem Int Ed Engl ; 62(14): e202215704, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36524852

RESUMEN

The discovery of epigenetic bases has revolutionised the understanding of disease and development. Among the most studied epigenetic marks are cytosines covalently modified at the 5 position. In order to gain insight into their biological significance, the ability to determine their spatiotemporal distribution within the genome is essential. Techniques for sequencing on "next-generation" platforms often involve harsh chemical treatments leading to sample degradation. Third-generation sequencing promises to further revolutionise the field by providing long reads, enabling coverage of highly repetitive regions of the genome or structural variants considered unmappable by next generation sequencing technology. While the ability of third-generation platforms to directly detect epigenetic modifications is continuously improving, at present chemical or enzymatic derivatisation presents the most convenient means of enhancing reliability. This Review presents techniques available for the detection of cytosine modifications on third-generation platforms.


Asunto(s)
ADN , Genoma , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN/métodos , ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Epigénesis Genética , Citosina , Metilación de ADN
7.
Angew Chem Int Ed Engl ; 62(38): e202305759, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37338105

RESUMEN

Artificial metallo-nucleases (AMNs) are promising DNA damaging drug candidates. Here, we demonstrate how the 1,2,3-triazole linker produced by the Cu-catalysed azide-alkyne cycloaddition (CuAAC) reaction can be directed to build Cu-binding AMN scaffolds. We selected biologically inert reaction partners tris(azidomethyl)mesitylene and ethynyl-thiophene to develop TC-Thio, a bioactive C3 -symmetric ligand in which three thiophene-triazole moieties are positioned around a central mesitylene core. The ligand was characterised by X-ray crystallography and forms multinuclear CuII and CuI complexes identified by mass spectrometry and rationalised by density functional theory (DFT). Upon Cu coordination, CuII -TC-Thio becomes a potent DNA binding and cleaving agent. Mechanistic studies reveal DNA recognition occurs exclusively at the minor groove with subsequent oxidative damage promoted through a superoxide- and peroxide-dependent pathway. Single molecule imaging of DNA isolated from peripheral blood mononuclear cells shows that the complex has comparable activity to the clinical drug temozolomide, causing DNA damage that is recognised by a combination of base excision repair (BER) enzymes.


Asunto(s)
Química Clic , Cobre , Cobre/química , Leucocitos Mononucleares/metabolismo , Ligandos , ADN/química , Azidas/química
8.
J Biol Inorg Chem ; 27(1): 201-213, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35006347

RESUMEN

Tackling microbial resistance requires continuous efforts for the development of new molecules with novel mechanisms of action and potent antimicrobial activity. Our group has previously identified metal-based compounds, [Ag(1,10-phenanthroline-5,6-dione)2]ClO4 (Ag-phendione) and [Cu(1,10-phenanthroline-5,6-dione)3](ClO4)2.4H2O (Cu-phendione), with efficient antimicrobial action against multidrug-resistant species. Herein, we investigated the ability of Ag-phendione and Cu-phendione to bind with double-stranded DNA using a combination of in silico and in vitro approaches. Molecular docking revealed that both phendione derivatives can interact with the DNA by hydrogen bonding, hydrophobic and electrostatic interactions. Cu-phendione exhibited the highest binding affinity to either major (- 7.9 kcal/mol) or minor (- 7.2 kcal/mol) DNA grooves. In vitro competitive quenching assays involving duplex DNA with Hoechst 33258 or ethidium bromide demonstrated that Ag-phendione and Cu-phendione preferentially bind DNA in the minor grooves. The competitive ethidium bromide displacement technique revealed Cu-phendione has a higher binding affinity to DNA (Kapp = 2.55 × 106 M-1) than Ag-phendione (Kapp = 2.79 × 105 M-1) and phendione (Kapp = 1.33 × 105 M-1). Cu-phendione induced topoisomerase I-mediated DNA relaxation of supercoiled plasmid DNA. Moreover, Cu-phendione was able to induce oxidative DNA injuries with the addition of free radical scavengers inhibiting DNA damage. Ag-phendione and Cu-phendione avidly displaced propidium iodide bound to DNA in permeabilized Pseudomonas aeruginosa cells in a dose-dependent manner as judged by flow cytometry. The treatment of P. aeruginosa with bactericidal concentrations of Cu-phendione (15 µM) induced DNA fragmentation as visualized by either agarose gel or TUNEL assays. Altogether, these results highlight a possible novel DNA-targeted mechanism by which phendione-containing complexes, in part, elicit toxicity toward the multidrug-resistant pathogen P. aeruginosa.


Asunto(s)
Complejos de Coordinación , Pseudomonas aeruginosa , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Cobre/química , Cobre/farmacología , ADN/química , Simulación del Acoplamiento Molecular , Fenantrolinas/química , Fenantrolinas/farmacología , Plata/farmacología
9.
Molecules ; 27(3)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35163909

RESUMEN

Several classes of copper complexes are known to induce oxidative DNA damage that mediates cell death. These compounds are potentially useful anticancer agents and detailed investigation can reveal the mode of DNA interaction, binding strength, and type of oxidative lesion formed. We recently reported the development of a DNA electrochemical biosensor employed to quantify the DNA cleavage activity of the well-studied [Cu(phen)2]2+ chemical nuclease. However, to validate the broader compatibility of this sensor for use with more diverse-and biologically compatible-copper complexes, and to probe its use from a drug discovery perspective, analysis involving new compound libraries is required. Here, we report on the DNA binding and quantitative cleavage activity of the [Cu(TPMA)(N,N)]2+ class (where TPMA = tris-2-pyridylmethylamine) using a DNA electrochemical biosensor. TPMA is a tripodal copper caging ligand, while N,N represents a bidentate planar phenanthrene ligand capable of enhancing DNA interactions through intercalation. All complexes exhibited electroactivity and interact with DNA through partial (or semi-) intercalation but predominantly through electrostatic attraction. Although TPMA provides excellent solution stability, the bulky ligand enforces a non-planar geometry on the complex, which sterically impedes full interaction. [Cu(TPMA)(phen)]2+ and [Cu(TPMA)(DPQ)]2+ cleaved 39% and 48% of the DNA strands from the biosensor surface, respectively, while complexes [Cu(TPMA)(bipy)]2+ and [Cu(TPMA)(PD)]2+ exhibit comparatively moderate nuclease efficacy (ca. 26%). Comparing the nuclease activities of [Cu(TPMA)(phen)] 2+ and [Cu(phen)2]2+ (ca. 23%) confirms the presence of TPMA significantly enhances chemical nuclease activity. Therefore, the use of this DNA electrochemical biosensor is compatible with copper(II) polypyridyl complexes and reveals TPMA complexes as a promising class of DNA damaging agent with tuneable activity due to coordinated ancillary phenanthrene ligands.


Asunto(s)
Técnicas Biosensibles , Complejos de Coordinación , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Cobre/química , Cristalografía por Rayos X , ADN/química , División del ADN
10.
Angew Chem Int Ed Engl ; 61(3): e202110455, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34652881

RESUMEN

Limitations of clinical platinum(II) therapeutics include systemic toxicity and inherent resistance. Modern approaches, therefore, seek new ways to deliver active platinum(II) to discrete nucleic acid targets. In the field of antigene therapy, triplex-forming oligonucleotides (TFOs) have attracted interest for their ability to specifically recognise extended duplex DNA targets. Here, we report a click chemistry based approach that combines alkyne-modified TFOs with azide-bearing cis-platinum(II) complexes-based on cisplatin, oxaliplatin, and carboplatin motifs-to generate a library of PtII -TFO hybrids. These constructs can be assembled modularly and enable directed platinum(II) crosslinking to purine nucleobases on the target sequence under the guidance of the TFO. By covalently incorporating modifications of thiazole orange-a known DNA-intercalating fluorophore-into PtII -TFOs constructs, enhanced target binding and discrimination between target and off-target sequences was achieved.


Asunto(s)
Complejos de Coordinación/química , ADN/química , Oligonucleótidos/química , Platino (Metal)/química , Alquinos/química , Química Clic
11.
Chembiochem ; 22(13): 2184-2205, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33570813

RESUMEN

DNA binding metal complexes are synonymous with anticancer drug discovery. Given the array of structural and chemical reactivity properties available through careful design, metal complexes have been directed to bind nucleic acid structures through covalent or noncovalent binding modes. Several recognition modes - including crosslinking, intercalation, and oxidation - are central to the clinical success of broad-spectrum anticancer metallodrugs. However, recent progress in nucleic acid click chemistry coupled with advancement in our understanding of metal complex-nucleic acid interactions has opened up new avenues in genetic engineering and targeted therapies. Several of these applications are enabled by the hybridisation of oligonucleotide or polyamine probes to discrete metal complexes, which facilitate site-specific reactivity at the nucleic acid interface under the guidance of the probe. This Review focuses on recent advancements in hybrid design and, by way of an introduction to this topic, we provide a detailed overview of nucleic acid structures and metal complex-nucleic acid interactions. Our aim is to provide readers with an insight on the rational design of metal complexes with DNA recognition properties and an understanding of how the sequence-specific targeting of these interactions can be achieved for gene engineering applications.


Asunto(s)
ADN/química , Compuestos Organometálicos/química , ADN/genética , Edición Génica , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis química
12.
Chemistry ; 27(3): 971-983, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-32519773

RESUMEN

We report a series of copper(II) artificial metallo-nucleases (AMNs) and demonstrate their DNA damaging properties and in-vitro cytotoxicity against human-derived pancreatic cancer cells. The compounds combine a tris-chelating polypyridyl ligand, di-(2-pycolyl)amine (DPA), and a DNA intercalating phenanthrene unit. Their general formula is Cu-DPA-N,N' (where N,N'=1,10-phenanthroline (Phen), dipyridoquinoxaline (DPQ) or dipyridophenazine (DPPZ)). Characterisation was achieved by X-ray crystallography and continuous-wave EPR (cw-EPR), hyperfine sublevel correlation (HYSCORE) and Davies electron-nuclear double resonance (ENDOR) spectroscopies. The presence of the DPA ligand enhances solution stability and facilitates enhanced DNA recognition with apparent binding constants (Kapp ) rising from 105 to 107 m-1 with increasing extent of planar phenanthrene. Cu-DPA-DPPZ, the complex with greatest DNA binding and intercalation effects, recognises the minor groove of guanine-cytosine (G-C) rich sequences. Oxidative DNA damage also occurs in the minor groove and can be inhibited by superoxide and hydroxyl radical trapping agents. The complexes, particularly Cu-DPA-DPPZ, display promising anticancer activity against human pancreatic tumour cells with in-vitro results surpassing the clinical platinum(II) drug oxaliplatin.


Asunto(s)
Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Cobre/química , ADN/análisis , ADN/química , Fenantrenos/química , Fenantrenos/farmacología , Línea Celular Tumoral , Cristalografía por Rayos X , Daño del ADN/efectos de los fármacos , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Neoplasias Pancreáticas/genética , Fenantrolinas/química
13.
Chembiochem ; 21(7): 991-1000, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31680391

RESUMEN

A systematic study of several new types of hybrids of Cu-chelated clamped phenanthroline artificial metallonuclease (AMN) with triplex-forming oligonucleotides (TFO) for sequence-specific cleavage of double-stranded DNA (dsDNA) is reported. The synthesis of these AMN-TFO hybrids is based on application of the alkyne-azide cycloaddition click reaction as the key step. The AMN was attached through different linkers at either the 5'- or 3'-ends or in the middle of the TFO stretch. The diverse hybrids efficiently formed triplexes with the target purine-rich sequence and their copper complexes were studied for their ability to cleave dsDNA in the presence of ascorbate as a reductant. In all cases, the influence of the nature and length of the AMN-TFO, time, conditions and amounts of ascorbate were studied, and optimum conjugates and a procedure that gave reasonably efficient (up to 34 %) cleavage of the target sequence, while rendering an off-target dsDNA intact, were found. The footprint of cleavage on PAGE was identified only in one case, with low conversion; this means that cleavage does not proceed with single nucleotide precision. On the other hand, these AMN-TFO hybrids are useful for the selective degradation of target dsDNA sequences. Future improvements to this design may provide higher resolution and selectivity.


Asunto(s)
División del ADN , ADN/química , Oligonucleótidos/química , Fenantrolinas/química , Secuencia de Bases , Química Clic , ADN/metabolismo , Desoxirribonucleasas/química , Desoxirribonucleasas/metabolismo , Conformación de Ácido Nucleico , Fenantrolinas/síntesis química , Temperatura de Transición , Rayos Ultravioleta
14.
Chembiochem ; 21(24): 3563-3574, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-32755000

RESUMEN

In the field of nucleic acid therapy there is major interest in the development of libraries of DNA-reactive small molecules which are tethered to vectors that recognize and bind specific genes. This approach mimics enzymatic gene editors, such as ZFNs, TALENs and CRISPR-Cas, but overcomes the limitations imposed by the delivery of a large protein endonuclease which is required for DNA cleavage. Here, we introduce a chemistry-based DNA-cleavage system comprising an artificial metallo-nuclease (AMN) that oxidatively cuts DNA, and a triplex-forming oligonucleotide (TFO) that sequence-specifically recognises duplex DNA. The AMN-TFO hybrids coordinate CuII ions to form chimeric catalytic complexes that are programmable - based on the TFO sequence employed - to bind and cut specific DNA sequences. Use of the alkyne-azide cycloaddition click reaction allows scalable and high-throughput generation of hybrid libraries that can be tuned for specific reactivity and gene-of-interest knockout. As a first approach, we demonstrate targeted cleavage of purine-rich sequences, optimisation of the hybrid system to enhance stability, and discrimination between target and off-target sequences. Our results highlight the potential of this approach where the cutting unit, which mimics the endonuclease cleavage machinery, is directly bound to a TFO guide by click chemistry.


Asunto(s)
Cobre/metabolismo , ADN/metabolismo , Endonucleasas/metabolismo , Metaloproteínas/metabolismo , Oligonucleótidos/metabolismo , Química Clic , Cobre/química , ADN/química , Metaloproteínas/síntesis química , Metaloproteínas/química , Estructura Molecular , Oligonucleótidos/síntesis química , Oligonucleótidos/química
15.
J Biol Inorg Chem ; 25(1): 49-60, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31655896

RESUMEN

Four estrogen-functionalised copper complexes were synthesised and investigated as electrochemical active DNA binding and cleavage agents. These complexes strategically contain a biocompatible metal centre [Cu(II)], a planar aromatic ligand as DNA intercalative agent and an estradiol-derivative moiety which acts as delivery vector to target estrogen-receptor-positive (ER+) cancer cells. Cytotoxic activity was studied over a panel of estrogen-receptor-positive (ER+) and negative (ER-) human cancer cell lines by means of both 2D and 3D cell viability studies. The complexes showed high in vitro intercalative interaction with nuclear DNA and demonstrated to be strong DNA cleaving agents. This series of Cu compounds are potent anticancer agents with low and sub-micromolar IC50 values and the cellular uptake follows the lipophilicity order meaning that the internalisation mainly happened via passive diffusion. Finally, the estrogen-complexes are involved in the cellular redox stress by stimulating the production of ROS (reactive oxygen species).


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Cobre/química , ADN/metabolismo , Estrógenos/química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/química , Humanos , Especies Reactivas de Oxígeno/metabolismo , Receptores de Estrógenos/metabolismo
16.
Chemistry ; 26(70): 16782-16792, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32706904

RESUMEN

Nucleic acid click chemistry was used to prepare a family of chemically modified triplex forming oligonucleotides (TFOs) for application as a new gene-targeted technology. Azide-bearing phenanthrene ligands-designed to promote triplex stability and copper binding-were 'clicked' to alkyne-modified parallel TFOs. Using this approach, a library of TFO hybrids was prepared and shown to effectively target purine-rich genetic elements in vitro. Several of the hybrids provide significant stabilisation toward melting in parallel triplexes (>20 °C) and DNA damage can be triggered upon copper binding in the presence of added reductant. Therefore, the TFO and 'clicked' ligands work synergistically to provide sequence-selectivity to the copper cutting unit which, in turn, confers high stabilisation to the DNA triplex. To extend the boundaries of this hybrid system further, a click chemistry-based di-copper binding ligand was developed to accommodate designer ancillary ligands such as DPQ and DPPZ. When this ligand was inserted into a TFO, a dramatic improvement in targeted oxidative cleavage is afforded.


Asunto(s)
Química Clic , ADN/química , Marcación de Gen/métodos , Oligonucleótidos/química , Cobre/química , Daño del ADN , Ligandos , Conformación de Ácido Nucleico , Oxidación-Reducción
17.
Nucleic Acids Res ; 46(6): 2733-2750, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29474633

RESUMEN

In order to expand the current repertoire of cancer treatments and to help circumvent limitations associated with resistance, the identification of new metallodrugs with high potency and novel mechanisms of action is of significant importance. Here we present a class of di-copper(II) complex based on the synthetic chemical nuclease [Cu(Phen)2]+ (where Phen = 1,10-phenanthroline) that is selective against solid epithelial cancer cells from the National Cancer Institute's 60 human cell line panel (NCI-60). Two metallodrug leads are studied and in each case two [Cu(Phen)2]+ units are bridged by a dicarboxylate linker but the length and rigidity of the linkers differ distinctly. Both agents catalyze intracellular superoxide (O2•-) and singlet oxygen (1O2) formation with radical species mediating oxidative damage within nuclear DNA in the form of double strand breaks and to the mitochondria in terms of membrane depolarization. The complexes are effective DNA binders and can discriminate AT/AT from TA/TA steps of duplex DNA through induction of distinctive Z-like DNA or by intercalative interactions.


Asunto(s)
Complejos de Coordinación/farmacología , Roturas del ADN de Doble Cadena , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Oligonucleótidos/metabolismo , Oxígeno Singlete/metabolismo , Superóxidos/metabolismo , Línea Celular Tumoral , Complejos de Coordinación/química , Cobre/química , Humanos , Sustancias Intercalantes/química , Sustancias Intercalantes/farmacología , Oligonucleótidos/genética , Fenantrolinas/química
18.
Nucleic Acids Res ; 46(19): 9918-9931, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30239938

RESUMEN

Free radical generation is an inevitable consequence of aerobic existence and is implicated in a wide variety of pathological conditions including cancer, cardiovascular disease, ageing and neurodegenerative disorder. Free radicals can, however, be used to our advantage since their production is catalysed by synthetic inorganic molecules-termed artificial metallonucleases-that cut DNA strands by oxidative cleavage reactions. Here, we report the rational design and DNA binding interactions of a novel di-Cu2+ artificial metallonuclease [Cu2(tetra-(2-pyridyl)-NMe-naphthalene)Cl4] (Cu2TPNap). Cu2TPNap is a high-affinity binder of duplex DNA with an apparent binding constant (Kapp) of 107 M(bp)-1. The agent binds non-intercalatively in the major groove causing condensation and G-C specific destabilization. Artificial metallonuclease activity occurs in the absence of exogenous reductant, is dependent on superoxide and hydrogen peroxide, and gives rise to single strand DNA breaks. Pre-associative molecular docking studies with the 8-mer d(GGGGCCCC)2, a model for poly[d(G-C)2], identified selective major groove incorporation of the complex with ancillary Cu2+-phosphate backbone binding. Molecular mechanics methods then showed the d(GGGGCCCC)2 adduct to relax about the complex and this interaction is supported by UV melting experiments where poly[d(G-C)2] is selectively destabilized.


Asunto(s)
Cobre/química , División del ADN/efectos de los fármacos , ADN/química , ADN/metabolismo , Compuestos Organometálicos/farmacocinética , Fosfatos/química , Cobre/farmacocinética , Cobre/farmacología , ADN/efectos de los fármacos , Radicales Libres/química , Radicales Libres/farmacocinética , Radicales Libres/farmacología , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico/efectos de los fármacos , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Fosfatos/farmacocinética , Fosfatos/farmacología
19.
Chem Soc Rev ; 48(4): 971-988, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30714595

RESUMEN

The binding of small molecule metallodrugs to discrete regions of nucleic acids is an important branch of medicinal chemistry and the nature of these interactions, allied with sequence selectivity, forms part of the backbone of modern medicinal inorganic chemistry research. In this tutorial review we describe a range of molecular methods currently employed within our laboratories to explore novel metallodrug-DNA interactions. At the outset, an introduction to DNA from a structural perspective is provided along with descriptions of non-covalent DNA recognition focusing on intercalation, insertion, and phosphate binding. Molecular methods, described from a non-expert perspective, to identify non-covalent and pre-associative nucleic acid recognition are then demonstrated using a variety of techniques including direct (non-optical) and indirect (optical) methods. Direct methods include: X-ray crystallography; NMR spectroscopy; mass spectrometry; and viscosity while indirect approaches detail: competitive inhibition experiments; fluorescence and absorbance spectroscopy; circular dichroism; and electrophoresis-based techniques. For each method described we provide an overview of the technique, a detailed examination of results obtained and relevant follow-on of advanced biophysical/analytical techniques. To achieve this, a selection of relevant copper(ii) and platinum(ii) complexes developed within our laboratories are discussed and are compared, where possible, to classical DNA binding agents. Applying these molecular methods enables us to determine structure-activity factors important to rational metallodrug design. In many cases, combinations of molecular methods are required to comprehensively elucidate new metallodrug-DNA interactions and, from a drug discovery perspective, coupling this data with cellular responses helps to inform understanding of how metallodrug-DNA binding interactions manifest cytotoxic action.


Asunto(s)
Complejos de Coordinación/química , ADN/química , Sustancias Intercalantes/química , Fosfatos/química , Cobre/química , Diseño de Fármacos , Humanos , Modelos Moleculares , Estructura Molecular , Platino (Metal)/química
20.
Chemistry ; 25(1): 221-237, 2019 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-30221802

RESUMEN

The building of robust and versatile inorganic scaffolds with artificial metallo-nuclease (AMN) activity is an important goal for bioinorganic, biotechnology, and metallodrug research fields. Here, a new type of AMN combining a tris-(2-pyridylmethyl)amine (TPMA) scaffold with the copper(II) N,N'-phenanthrene chemical nuclease core is reported. In designing these complexes, the stabilization and flexibility of TPMA together with the prominent chemical nuclease activity of copper 1,10-phenanthroline (Phen) were targeted. A second aspect was the opportunity to introduce designer phenazine DNA intercalators (e.g., dipyridophenazine; DPPZ) for improved DNA recognition. Five compounds of formula [Cu(TPMA)(N,N')]2+ (where N,N' is 2,2-bipyridine (Bipy), Phen, 1,10-phenanthroline-5,6-dione (PD), dipyridoquinoxaline (DPQ), or dipyridophenazine (DPPZ)) were developed and characterized by X-ray crystallography. Solution stabilities were studied by continuous-wave EPR (cw-EPR), hyperfine sublevel correlation (HYSCORE), and Davies electron-nuclear double resonance (ENDOR) spectroscopies, which demonstrated preferred geometries in which phenanthrene ligands were coordinated to the copper(II) TPMA core. Complexes with Phen, DPQ, and DPPZ ligands possessed enhanced DNA binding activity, with DPQ and DPPZ compounds showing excellent intercalative effects. These complexes are effective AMNs and analysis with spin-trapping scavengers of reactive oxygen species and DNA repair enzymes with glycosylase/endonuclease activity demonstrated a distinctive DNA oxidation activity compared to classical Sigman- and Fenton-type reagents.


Asunto(s)
Complejos de Coordinación/química , Cobre/química , Fenantrenos/química , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Complejos de Coordinación/síntesis química , Complejos de Coordinación/metabolismo , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Daño del ADN , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Endonucleasas/química , Endonucleasas/metabolismo , Espectroscopía de Resonancia Magnética , Conformación Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA