Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Bioinformatics ; 34(11): 1859-1867, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29342249

RESUMEN

Motivation: Current bioinformatics methods to detect changes in gene isoform usage in distinct phenotypes compare the relative expected isoform usage in phenotypes. These statistics model differences in isoform usage in normal tissues, which have stable regulation of gene splicing. Pathological conditions, such as cancer, can have broken regulation of splicing that increases the heterogeneity of the expression of splice variants. Inferring events with such differential heterogeneity in gene isoform usage requires new statistical approaches. Results: We introduce Splice Expression Variability Analysis (SEVA) to model increased heterogeneity of splice variant usage between conditions (e.g. tumor and normal samples). SEVA uses a rank-based multivariate statistic that compares the variability of junction expression profiles within one condition to the variability within another. Simulated data show that SEVA is unique in modeling heterogeneity of gene isoform usage, and benchmark SEVA's performance against EBSeq, DiffSplice and rMATS that model differential isoform usage instead of heterogeneity. We confirm the accuracy of SEVA in identifying known splice variants in head and neck cancer and perform cross-study validation of novel splice variants. A novel comparison of splice variant heterogeneity between subtypes of head and neck cancer demonstrated unanticipated similarity between the heterogeneity of gene isoform usage in HPV-positive and HPV-negative subtypes and anticipated increased heterogeneity among HPV-negative samples with mutations in genes that regulate the splice variant machinery. These results show that SEVA accurately models differential heterogeneity of gene isoform usage from RNA-seq data. Availability and implementation: SEVA is implemented in the R/Bioconductor package GSReg. Contact: bahman@jhu.edu or favorov@sensi.org or ejfertig@jhmi.edu. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Empalme Alternativo , Neoplasias/genética , Isoformas de Proteínas/genética , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Biología Computacional/métodos , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Humanos , Modelos Genéticos
2.
Epigenetics ; 15(9): 959-971, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32164487

RESUMEN

Human papillomavirus-related oropharyngeal squamous cell carcinoma (HPV+ OPSCC) represents a unique disease entity within head and neck cancer with rising incidence. Previous work has shown that alternative splicing events (ASEs) are prevalent in HPV+ OPSCC, but further validation is needed to understand the regulation of this process and its role in these tumours. In this study, eleven ASEs (GIT2, CTNNB1, MKNK2, MRPL33, SIPA1L3, SNHG6, SYCP2, TPRG1, ZHX2, ZNF331, and ELOVL1) were selected for validation from 109 previously published candidate ASEs to elucidate the post-transcriptional mechanisms of oncogenesis in HPV+ disease. In vitro qRT-PCR confirmed differential expression of 9 of 11 ASE candidates, and in silico analysis within the TCGA cohort confirmed 8 of 11 candidates. Six ASEs (MRPL33, SIPA1L3, SNHG6, TPRG1, ZHX2, and ELOVL1) showed significant differential expression across both methods. Further evaluation of chromatin modification revealed that ASEs strongly correlated with cancer-specific distribution of acetylated lysine 27 of histone 3 (H3K27ac). Subsequent epigenetic treatment of HPV+ HNSCC cell lines (UM-SCC-047 and UPCI-SCC-090) with JQ1 not only induced downregulation of cancer-specific ASE isoforms, but also growth inhibition in both cell lines. The UPCI-SCC-090 cell line, with greater ASE expression, also showed more significant growth inhibition after JQ1 treatment. This study confirms several novel cancer-specific ASEs in HPV+OPSCC and provides evidence for the role of chromatin modifications in regulation of alternative splicing in HPV+OPSCC. This highlights the role of epigenetic changes in the oncogenesis of HPV+OPSCC, which represents a unique, unexplored target for therapeutics that can alter the global post-transcriptional landscape.


Asunto(s)
Empalme Alternativo , Carcinoma de Células Escamosas/genética , Ensamble y Desensamble de Cromatina , Regulación Neoplásica de la Expresión Génica , Neoplasias Orofaríngeas/genética , Alphapapillomavirus/patogenicidad , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/virología , Línea Celular Tumoral , Epigénesis Genética , Sitios Genéticos , Código de Histonas , Histonas/química , Histonas/metabolismo , Humanos , Neoplasias Orofaríngeas/metabolismo , Neoplasias Orofaríngeas/virología
3.
Sci Rep ; 9(1): 15034, 2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31636280

RESUMEN

Current literature suggests that epigenetically regulated super-enhancers (SEs) are drivers of aberrant gene expression in cancers. Many tumor types are still missing chromatin data to define cancer-specific SEs and their role in carcinogenesis. In this work, we develop a simple pipeline, which can utilize chromatin data from etiologically similar tumors to discover tissue-specific SEs and their target genes using gene expression and DNA methylation data. As an example, we applied our pipeline to human papillomavirus-related oropharyngeal squamous cell carcinoma (HPV + OPSCC). This tumor type is characterized by abundant gene expression changes, which cannot be explained by genetic alterations alone. Chromatin data are still limited for this disease, so we used 3627 SE elements from public domain data for closely related tissues, including normal and tumor lung, and cervical cancer cell lines. We integrated the available DNA methylation and gene expression data for HPV + OPSCC samples to filter the candidate SEs to identify functional SEs and their affected targets, which are essential for cancer development. Overall, we found 159 differentially methylated SEs, including 87 SEs that actively regulate expression of 150 nearby genes (211 SE-gene pairs) in HPV + OPSCC. Of these, 132 SE-gene pairs were validated in a related TCGA cohort. Pathway analysis revealed that the SE-regulated genes were associated with pathways known to regulate nasopharyngeal, breast, melanoma, and bladder carcinogenesis and are regulated by the epigenetic landscape in those cancers. Thus, we propose that gene expression in HPV + OPSCC may be controlled by epigenetic alterations in SE elements, which are common between related tissues. Our pipeline can utilize a diversity of data inputs and can be further adapted to SE analysis of diseased and non-diseased tissues from different organisms.


Asunto(s)
Carcinoma de Células Escamosas/genética , Metilación de ADN/genética , Elementos de Facilitación Genéticos/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Carcinoma de Células Escamosas/virología , Neoplasias de Cabeza y Cuello/virología , Humanos , Papillomaviridae/fisiología , Regiones Promotoras Genéticas/genética , Reproducibilidad de los Resultados
4.
Brief Funct Genomics ; 17(1): 49-63, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28968850

RESUMEN

Cancer is a complex disease, driven by aberrant activity in numerous signaling pathways in even individual malignant cells. Epigenetic changes are critical mediators of these functional changes that drive and maintain the malignant phenotype. Changes in DNA methylation, histone acetylation and methylation, noncoding RNAs, posttranslational modifications are all epigenetic drivers in cancer, independent of changes in the DNA sequence. These epigenetic alterations were once thought to be crucial only for the malignant phenotype maintenance. Now, epigenetic alterations are also recognized as critical for disrupting essential pathways that protect the cells from uncontrolled growth, longer survival and establishment in distant sites from the original tissue. In this review, we focus on DNA methylation and chromatin structure in cancer. The precise functional role of these alterations is an area of active research using emerging high-throughput approaches and bioinformatics analysis tools. Therefore, this review also describes these high-throughput measurement technologies, public domain databases for high-throughput epigenetic data in tumors and model systems and bioinformatics algorithms for their analysis. Advances in bioinformatics data that combine these epigenetic data with genomics data are essential to infer the function of specific epigenetic alterations in cancer. These integrative algorithms are also a focus of this review. Future studies using these emerging technologies will elucidate how alterations in the cancer epigenome cooperate with genetic aberrations during tumor initiation and progression. This deeper understanding is essential to future studies with epigenetics biomarkers and precision medicine using emerging epigenetic therapies.


Asunto(s)
Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Técnicas Genéticas , Neoplasias/genética , Metilación de ADN/genética , Humanos , Modelos Genéticos
5.
Transl Res ; 202: 109-119, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30118659

RESUMEN

We have recently performed the characterization of alternative splicing events (ASEs) in head and neck squamous cell carcinoma, which allows dysregulation of protein expression common for cancer cells. Such analysis demonstrated a high ASE prevalence among tumor samples, including tumor-specific alternative splicing in the GSN gene.In vitro studies confirmed that overall expression of either ASE-GSN or wild-type GSN (WT-GSN) isoform inversely correlated with cell proliferation, whereas the high ratio of ASE-GSN to WT-GSN correlated with increased cellular invasion. Additionally, a change in expression of either isoform caused compensatory changes in expression of the other isoform. Our results suggest that the overall expression and the balance between GSN isoforms are mediating factors in proliferation, while increased overall expression of ASE-GSN is specific to cancer tissues. As a result, we propose ASE-GSN can serve not only as a biomarker of disease and disease progression, but also as a neoantigen for head and neck squamous cell carcinoma treatment, for which only a limited number of disease-specific targeted therapies currently exist.


Asunto(s)
Gelsolina/genética , Empalme Alternativo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Supervivencia Celular/genética , Gelsolina/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Modelos Biológicos , Invasividad Neoplásica , Metástasis de la Neoplasia , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
6.
Cancer Res ; 77(19): 5248-5258, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28733453

RESUMEN

The incidence of HPV-related oropharyngeal squamous cell carcinoma (OPSCC) has increased more than 200% in the past 20 years. Recent genetic sequencing efforts have elucidated relevant genes in head and neck cancer, but HPV-related tumors have consistently shown few DNA mutations. In this study, we sought to analyze alternative splicing events (ASE) that could alter gene function independent of mutations. To identify ASE unique to HPV-related tumors, RNA sequencing was performed on 46 HPV-positive OPSCC and 25 normal tissue samples. A novel algorithm using outlier statistics on RNA-sequencing junction expression identified 109 splicing events, which were confirmed in a validation set from The Cancer Genome Atlas. Because the most common type of splicing event identified was an alternative start site (39%), MBD-seq genome-wide CpG methylation data were analyzed for methylation alterations at promoter regions. ASE in six genes showed significant negative correlation between promoter methylation and expression of an alternative transcriptional start site, including AKT3 The novel AKT3 transcriptional variant and methylation changes were confirmed using qRT-PCR and qMSP methods. In vitro silencing of the novel AKT3 variant resulted in significant growth inhibition of multiple head and neck cell lines, an effect not observed with wild-type AKT3 knockdown. Analysis of ASE in HPV-related OPSCC identified multiple alterations likely involved in carcinogenesis, including a novel, functionally active transcriptional variant of AKT3 Our data indicate that ASEs represent a significant mechanism of oncogenesis with untapped potential for understanding complex genetic changes that result in the development of cancer. Cancer Res; 77(19); 5248-58. ©2017 AACR.


Asunto(s)
Empalme Alternativo , Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/genética , Neoplasias Orofaríngeas/genética , Infecciones por Papillomavirus/genética , Proteínas Proto-Oncogénicas c-akt/genética , Adolescente , Adulto , Anciano , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/virología , Estudios de Casos y Controles , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Neoplasias Orofaríngeas/patología , Neoplasias Orofaríngeas/virología , Papillomaviridae/aislamiento & purificación , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/virología , Pronóstico , Tasa de Supervivencia , Adulto Joven
7.
Cancer Res ; 77(23): 6538-6550, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28947419

RESUMEN

Chromatin alterations mediate mutations and gene expression changes in cancer. Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) has been utilized to study genome-wide chromatin structure in human cancer cell lines, yet numerous technical challenges limit comparable analyses in primary tumors. Here we have developed a new whole-genome analytic pipeline to optimize ChIP-Seq protocols on patient-derived xenografts from human papillomavirus-related (HPV+) head and neck squamous cell carcinoma (HNSCC) samples. We further associated chromatin aberrations with gene expression changes from a larger cohort of the tumor and normal samples with RNA-Seq data. We detect differential histone enrichment associated with tumor-specific gene expression variation, sites of HPV integration in the human genome, and HPV-associated histone enrichment sites upstream of cancer driver genes, which play central roles in cancer-associated pathways. These comprehensive analyses enable unprecedented characterization of the complex network of molecular changes resulting from chromatin alterations that drive HPV-related tumorigenesis. Cancer Res; 77(23); 6538-50. ©2017 AACR.


Asunto(s)
Cromatina/genética , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/virología , Papillomaviridae/genética , Integración Viral/genética , Secuencia de Bases , Línea Celular Tumoral , Cromatina/patología , Inmunoprecipitación de Cromatina , Genoma Humano/genética , Humanos , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA