Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(1): 42-61, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34774127

RESUMEN

The construction of the human nervous system is a distinctly complex although highly regulated process. Human tissue inaccessibility has impeded a molecular understanding of the developmental specializations from which our unique cognitive capacities arise. A confluence of recent technological advances in genomics and stem cell-based tissue modeling is laying the foundation for a new understanding of human neural development and dysfunction in neuropsychiatric disease. Here, we review recent progress on uncovering the cellular and molecular principles of human brain organogenesis in vivo as well as using organoids and assembloids in vitro to model features of human evolution and disease.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Epilepsia/metabolismo , Neurogénesis/fisiología , Esquizofrenia/metabolismo , Animales , Trastorno del Espectro Autista/genética , Encéfalo/metabolismo , Epilepsia/genética , Humanos , Mutación , Neuronas/citología , Neuronas/metabolismo , Organoides/embriología , Organoides/crecimiento & desarrollo , Esquizofrenia/genética
2.
Cell ; 183(7): 1913-1929.e26, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33333020

RESUMEN

Neurons in the cerebral cortex connect through descending pathways to hindbrain and spinal cord to activate muscle and generate movement. Although components of this pathway have been previously generated and studied in vitro, the assembly of this multi-synaptic circuit has not yet been achieved with human cells. Here, we derive organoids resembling the cerebral cortex or the hindbrain/spinal cord and assemble them with human skeletal muscle spheroids to generate 3D cortico-motor assembloids. Using rabies tracing, calcium imaging, and patch-clamp recordings, we show that corticofugal neurons project and connect with spinal spheroids, while spinal-derived motor neurons connect with muscle. Glutamate uncaging or optogenetic stimulation of cortical spheroids triggers robust contraction of 3D muscle, and assembloids are morphologically and functionally intact for up to 10 weeks post-fusion. Together, this system highlights the remarkable self-assembly capacity of 3D cultures to form functional circuits that could be used to understand development and disease.


Asunto(s)
Corteza Cerebral/fisiología , Corteza Motora/fisiología , Organoides/fisiología , Animales , Calcio/metabolismo , Diferenciación Celular , Células Cultivadas , Vértebras Cervicales , Regulación de la Expresión Génica , Glutamatos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Ratones , Músculos/fisiología , Mioblastos/metabolismo , Red Nerviosa/fisiología , Optogenética , Organoides/ultraestructura , Rombencéfalo/fisiología , Esferoides Celulares/citología , Médula Espinal/citología
3.
Cell ; 165(4): 921-35, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27114033

RESUMEN

Microglia maintain homeostasis in the brain, but whether aberrant microglial activation can cause neurodegeneration remains controversial. Here, we use transcriptome profiling to demonstrate that deficiency in frontotemporal dementia (FTD) gene progranulin (Grn) leads to an age-dependent, progressive upregulation of lysosomal and innate immunity genes, increased complement production, and enhanced synaptic pruning in microglia. During aging, Grn(-/-) mice show profound microglia infiltration and preferential elimination of inhibitory synapses in the ventral thalamus, which lead to hyperexcitability in the thalamocortical circuits and obsessive-compulsive disorder (OCD)-like grooming behaviors. Remarkably, deleting C1qa gene significantly reduces synaptic pruning by Grn(-/-) microglia and mitigates neurodegeneration, behavioral phenotypes, and premature mortality in Grn(-/-) mice. Together, our results uncover a previously unrecognized role of progranulin in suppressing aberrant microglia activation during aging. These results represent an important conceptual advance that complement activation and microglia-mediated synaptic pruning are major drivers, rather than consequences, of neurodegeneration caused by progranulin deficiency.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/metabolismo , Activación de Complemento , Complemento C1q/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Microglía/metabolismo , Envejecimiento/inmunología , Animales , Líquido Cefalorraquídeo , Complemento C1q/genética , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Granulinas , Humanos , Inmunidad Innata , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Péptidos y Proteínas de Señalización Intercelular/genética , Lisosomas/metabolismo , Redes y Vías Metabólicas , Ratones , Trastorno Obsesivo Compulsivo/genética , Trastorno Obsesivo Compulsivo/metabolismo , Progranulinas , Sinapsis/metabolismo , Tálamo/metabolismo
4.
Nature ; 622(7982): 359-366, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37758944

RESUMEN

The assembly of cortical circuits involves the generation and migration of interneurons from the ventral to the dorsal forebrain1-3, which has been challenging to study at inaccessible stages of late gestation and early postnatal human development4. Autism spectrum disorder and other neurodevelopmental disorders (NDDs) have been associated with abnormal cortical interneuron development5, but which of these NDD genes affect interneuron generation and migration, and how they mediate these effects remains unknown. We previously developed a platform to study interneuron development and migration in subpallial organoids and forebrain assembloids6. Here we integrate assembloids with CRISPR screening to investigate the involvement of 425 NDD genes in human interneuron development. The first screen aimed at interneuron generation revealed 13 candidate genes, including CSDE1 and SMAD4. We subsequently conducted an interneuron migration screen in more than 1,000 forebrain assembloids that identified 33 candidate genes, including cytoskeleton-related genes and the endoplasmic reticulum-related gene LNPK. We discovered that, during interneuron migration, the endoplasmic reticulum is displaced along the leading neuronal branch before nuclear translocation. LNPK deletion interfered with this endoplasmic reticulum displacement and resulted in abnormal migration. These results highlight the power of this CRISPR-assembloid platform to systematically map NDD genes onto human development and reveal disease mechanisms.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Trastornos del Neurodesarrollo , Femenino , Humanos , Recién Nacido , Embarazo , Movimiento Celular/genética , Sistemas CRISPR-Cas/genética , Interneuronas/citología , Interneuronas/metabolismo , Interneuronas/patología , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Organoides/citología , Organoides/embriología , Organoides/crecimiento & desarrollo , Organoides/metabolismo , Organoides/patología , Retículo Endoplásmico/metabolismo , Prosencéfalo/citología , Prosencéfalo/embriología , Prosencéfalo/crecimiento & desarrollo , Prosencéfalo/metabolismo , Prosencéfalo/patología , Transporte Activo de Núcleo Celular
5.
Nature ; 610(7931): 319-326, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36224417

RESUMEN

Self-organizing neural organoids represent a promising in vitro platform with which to model human development and disease1-5. However, organoids lack the connectivity that exists in vivo, which limits maturation and makes integration with other circuits that control behaviour impossible. Here we show that human stem cell-derived cortical organoids transplanted into the somatosensory cortex of newborn athymic rats develop mature cell types that integrate into sensory and motivation-related circuits. MRI reveals post-transplantation organoid growth across multiple stem cell lines and animals, whereas single-nucleus profiling shows progression of corticogenesis and the emergence of activity-dependent transcriptional programs. Indeed, transplanted cortical neurons display more complex morphological, synaptic and intrinsic membrane properties than their in vitro counterparts, which enables the discovery of defects in neurons derived from individuals with Timothy syndrome. Anatomical and functional tracings show that transplanted organoids receive thalamocortical and corticocortical inputs, and in vivo recordings of neural activity demonstrate that these inputs can produce sensory responses in human cells. Finally, cortical organoids extend axons throughout the rat brain and their optogenetic activation can drive reward-seeking behaviour. Thus, transplanted human cortical neurons mature and engage host circuits that control behaviour. We anticipate that this approach will be useful for detecting circuit-level phenotypes in patient-derived cells that cannot otherwise be uncovered.


Asunto(s)
Vías Nerviosas , Organoides , Animales , Animales Recién Nacidos , Trastorno Autístico , Humanos , Síndrome de QT Prolongado , Motivación , Neuronas/fisiología , Optogenética , Organoides/citología , Organoides/inervación , Organoides/trasplante , Ratas , Recompensa , Corteza Somatosensorial/citología , Corteza Somatosensorial/fisiología , Células Madre/citología , Sindactilia
6.
Nature ; 588(7838): 459-465, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32866962

RESUMEN

Aberrant aggregation of the RNA-binding protein TDP-43 in neurons is a hallmark of frontotemporal lobar degeneration caused by haploinsufficiency in the gene encoding progranulin1,2. However, the mechanism leading to TDP-43 proteinopathy remains unclear. Here we use single-nucleus RNA sequencing to show that progranulin deficiency promotes microglial transition from a homeostatic to a disease-specific state that causes endolysosomal dysfunction and neurodegeneration in mice. These defects persist even when Grn-/- microglia are cultured ex vivo. In addition, single-nucleus RNA sequencing reveals selective loss of excitatory neurons at disease end-stage, which is characterized by prominent nuclear and cytoplasmic TDP-43 granules and nuclear pore defects. Remarkably, conditioned media from Grn-/- microglia are sufficient to promote TDP-43 granule formation, nuclear pore defects and cell death in excitatory neurons via the complement activation pathway. Consistent with these results, deletion of the genes encoding C1qa and C3 mitigates microglial toxicity and rescues TDP-43 proteinopathy and neurodegeneration. These results uncover previously unappreciated contributions of chronic microglial toxicity to TDP-43 proteinopathy during neurodegeneration.


Asunto(s)
Microglía/metabolismo , Microglía/patología , Neuronas/metabolismo , Neuronas/patología , Progranulinas/deficiencia , Proteinopatías TDP-43/metabolismo , Proteinopatías TDP-43/patología , Envejecimiento/genética , Envejecimiento/patología , Animales , Núcleo Celular/genética , Núcleo Celular/patología , Activación de Complemento/efectos de los fármacos , Activación de Complemento/inmunología , Complemento C1q/antagonistas & inhibidores , Complemento C1q/inmunología , Complemento C3b/antagonistas & inhibidores , Complemento C3b/inmunología , Medios de Cultivo Condicionados/química , Medios de Cultivo Condicionados/farmacología , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Poro Nuclear/metabolismo , Poro Nuclear/patología , Progranulinas/genética , RNA-Seq , Análisis de la Célula Individual , Proteinopatías TDP-43/tratamiento farmacológico , Proteinopatías TDP-43/genética , Tálamo/metabolismo , Tálamo/patología , Transcriptoma
7.
Nature ; 555(7696): 377-381, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29513649

RESUMEN

New neurons continue to be generated in the subgranular zone of the dentate gyrus of the adult mammalian hippocampus. This process has been linked to learning and memory, stress and exercise, and is thought to be altered in neurological disease. In humans, some studies have suggested that hundreds of new neurons are added to the adult dentate gyrus every day, whereas other studies find many fewer putative new neurons. Despite these discrepancies, it is generally believed that the adult human hippocampus continues to generate new neurons. Here we show that a defined population of progenitor cells does not coalesce in the subgranular zone during human fetal or postnatal development. We also find that the number of proliferating progenitors and young neurons in the dentate gyrus declines sharply during the first year of life and only a few isolated young neurons are observed by 7 and 13 years of age. In adult patients with epilepsy and healthy adults (18-77 years; n = 17 post-mortem samples from controls; n = 12 surgical resection samples from patients with epilepsy), young neurons were not detected in the dentate gyrus. In the monkey (Macaca mulatta) hippocampus, proliferation of neurons in the subgranular zone was found in early postnatal life, but this diminished during juvenile development as neurogenesis decreased. We conclude that recruitment of young neurons to the primate hippocampus decreases rapidly during the first years of life, and that neurogenesis in the dentate gyrus does not continue, or is extremely rare, in adult humans. The early decline in hippocampal neurogenesis raises questions about how the function of the dentate gyrus differs between humans and other species in which adult hippocampal neurogenesis is preserved.


Asunto(s)
Hipocampo/citología , Neurogénesis , Neuronas/citología , Adolescente , Adulto , Anciano , Animales , Animales Recién Nacidos , Recuento de Células , Proliferación Celular , Niño , Preescolar , Giro Dentado/citología , Giro Dentado/embriología , Epilepsia/patología , Femenino , Desarrollo Fetal , Voluntarios Sanos , Hipocampo/anatomía & histología , Hipocampo/embriología , Humanos , Lactante , Macaca mulatta , Masculino , Persona de Mediana Edad , Células-Madre Neurales/citología , Adulto Joven
8.
Nature ; 509(7499): 189-94, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24776795

RESUMEN

Astrocytes, the most abundant cells in the central nervous system, promote synapse formation and help to refine neural connectivity. Although they are allocated to spatially distinct regional domains during development, it is unknown whether region-restricted astrocytes are functionally heterogeneous. Here we show that postnatal spinal cord astrocytes express several region-specific genes, and that ventral astrocyte-encoded semaphorin 3a (Sema3a) is required for proper motor neuron and sensory neuron circuit organization. Loss of astrocyte-encoded Sema3a leads to dysregulated α-motor neuron axon initial segment orientation, markedly abnormal synaptic inputs, and selective death of α- but not of adjacent γ-motor neurons. In addition, a subset of TrkA(+) sensory afferents projects to ectopic ventral positions. These findings demonstrate that stable maintenance of a positional cue by developing astrocytes influences multiple aspects of sensorimotor circuit formation. More generally, they suggest that regional astrocyte heterogeneity may help to coordinate postnatal neural circuit refinement.


Asunto(s)
Astrocitos/fisiología , Neuronas Motoras/fisiología , Vías Nerviosas/fisiología , Células Receptoras Sensoriales/fisiología , Animales , Astrocitos/citología , Axones/fisiología , Polaridad Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Ratones , Neuronas Motoras/citología , Neuronas Motoras/efectos de los fármacos , Semaforina-3A/deficiencia , Semaforina-3A/genética , Semaforina-3A/metabolismo , Semaforina-3A/farmacología , Células Receptoras Sensoriales/citología , Médula Espinal/citología , Sinapsis/metabolismo
9.
J Appl Clin Med Phys ; 21(12): 263-271, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33270974

RESUMEN

PURPOSE/OBJECTIVES: The purpose of this study is to dually evaluate the effectiveness of PlanIQ in predicting the viability and outcome of dosimetric planning in cases of complex re-irradiation as well as generating an equivalent plan through Pinnacle integration. The study also postulates that a possible strength of PlanIQ lies in mitigating pre-optimization uncertainties tied directly to dose overlap regions where re-irradiation is necessary. METHODS: A retrospective patient selection (n = 20) included a diverse range of re-irradiation cases to be planned using Pinnacle auto-planning with PlanIQ integration. A consistent planning template was developed and applied across all cases. Direct plan comparisons of manual plans against feasibility-produced plans were performed by physician(s) with dosimetry recording relevant proximal OAR and planning timeline data. RESULTS AND DISCUSSION: All re-irradiation cases were successfully predicted to be achievable per PlanIQ analyses with three cases (3/20) necessitating 95% target coverage conditions, previously exhibited in the manually planned counterparts, and determined acceptable under institutional standards. At the same time, PlanIQ consistently produced plans of equal or greater quality to the previously manually planned re-irradiation across all (20/20) trials (P = 0.05). Proximal OAR exhibited similar to slightly improved maximum point doses from feasibility-based planning with the largest advantages gained found within the subset of cranial and spine overlap cases, where improvements upward of 10.9% were observed. Mean doses to proximal tissues were found to be a statistically significant (P < 0.05) 5.0% improvement across the entire study. Documented planning times were markedly less than or equal to the time contributed to manual planning across all cases. CONCLUSION: Initial findings indicate that PlanIQ effectively provides the user clear feasibility feedback capable of facilitating decision-making on whether re-irradiation dose objectives and prescription dose coverage are possible at the onset of treatment planning thus eliminating possible trial and error associated with some manual planning. Introducing model-based prediction tools into planning of complex re-irradiation cases yielded positive outcomes on the final treatment plans.


Asunto(s)
Radioterapia de Intensidad Modulada , Reirradiación , Benchmarking , Estudios de Factibilidad , Humanos , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Estudios Retrospectivos
10.
Cereb Cortex ; 28(6): 1946-1958, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28449024

RESUMEN

The neocortex of primates, including humans, contains more abundant and diverse inhibitory neurons compared with rodents, but the molecular foundations of these observations are unknown. Through integrative gene coexpression analysis, we determined a consensus transcriptional profile of GABAergic neurons in mid-gestation human neocortex. By comparing this profile to genes expressed in GABAergic neurons purified from neonatal mouse neocortex, we identified conserved and distinct aspects of gene expression in these cells between the species. We show here that the calcium-binding protein secretagogin (SCGN) is robustly expressed by neocortical GABAergic neurons derived from caudal ganglionic eminences (CGE) and lateral ganglionic eminences during human but not mouse brain development. Through electrophysiological and morphometric analyses, we examined the effects of SCGN expression on GABAergic neuron function and form. Forced expression of SCGN in CGE-derived mouse GABAergic neurons significantly increased total neurite length and arbor complexity following transplantation into mouse neocortex, revealing a molecular pathway that contributes to morphological differences in these cells between rodents and primates.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Neocórtex/embriología , Neurogénesis/fisiología , Secretagoginas/metabolismo , Animales , Humanos , Interneuronas/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuritas/metabolismo , Transcriptoma
11.
Ann Allergy Asthma Immunol ; 121(2): 174-178, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29684568

RESUMEN

OBJECTIVE: To review the evidence and current policies regarding the use of epinephrine at schools and child care centers DATA SOURCES AND STUDY SELECTIONS: A narrative review was performed based on the result of conference proceedings of a group of interprofessional stakeholders who attended the USAnaphylaxis Summit 2017 presented by Allergy & Asthma Network. RESULTS: Anaphylaxis is a well-recognized medical emergency that requires prompt treatment with intramuscular epinephrine. Anaphylaxis can be associated with poor quality of life. There is renewed recent focus on anaphylaxis management in schools. This interest has been spurred by an increase in the number of children with food allergy who are attending school, data that support up to 25% of first-time anaphylactic events occurring on school grounds, and a well-publicized fatality that helped to initiate a movement for stock, undesignated, non-student-specific epinephrine. Stock epinephrine is now available in 49 states, with an increasing number of states instituting mandatory reporting for use of such devices. Nursing efforts are paramount to support and implement stock epinephrine programs. Many states do not have clarity on delegation of authority for who can administer stock epinephrine, and there is evidence of variability in storage of stock devices. Few states have outcomes data that support successful implementation of stock epinephrine programs. CONCLUSION: Additional data are needed to demonstrate successful implementations of stock epinephrine programs and their outcomes. Such programs should include support for school nursing and clearer delineation of authority for medication administration as well as standards for where and how devices are stored.


Asunto(s)
Anafilaxia/tratamiento farmacológico , Epinefrina/uso terapéutico , Hipersensibilidad a los Alimentos/tratamiento farmacológico , Población , Adolescente , Niño , Urgencias Médicas , Humanos , Guías de Práctica Clínica como Asunto , Servicios de Salud Escolar , Instituciones Académicas , Estados Unidos
12.
Am J Hum Genet ; 93(6): 1061-71, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24268657

RESUMEN

Obesity is a major public health concern, and complementary research strategies have been directed toward the identification of the underlying causative gene mutations that affect the normal pathways and networks that regulate energy balance. Here, we describe an autosomal-recessive morbid-obesity syndrome and identify the disease-causing gene defect. The average body mass index of affected family members was 48.7 (range = 36.7-61.0), and all had features of the metabolic syndrome. Homozygosity mapping localized the disease locus to a region in 3q29; we designated this region the morbid obesity 1 (MO1) locus. Sequence analysis identified a homozygous nonsense mutation in CEP19, the gene encoding the ciliary protein CEP19, in all affected family members. CEP19 is highly conserved in vertebrates and invertebrates, is expressed in multiple tissues, and localizes to the centrosome and primary cilia. Homozygous Cep19-knockout mice were morbidly obese, hyperphagic, glucose intolerant, and insulin resistant. Thus, loss of the ciliary protein CEP19 in humans and mice causes morbid obesity and defines a target for investigating the molecular pathogenesis of this disease and potential treatments for obesity and malnutrition.


Asunto(s)
Proteínas de Ciclo Celular/genética , Silenciador del Gen , Obesidad Mórbida/genética , Adulto , Secuencia de Aminoácidos , Animales , Clonación Molecular , Consanguinidad , Secuencia Conservada , Modelos Animales de Enfermedad , Femenino , Orden Génico , Marcación de Gen , Estudios de Asociación Genética , Ligamiento Genético , Genotipo , Prueba de Tolerancia a la Glucosa , Humanos , Insulina/metabolismo , Resistencia a la Insulina/genética , Masculino , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Mutación , Obesidad Mórbida/diagnóstico , Linaje , Fenotipo , Mapeo Físico de Cromosoma , Transducción de Señal , Adulto Joven
13.
Nat Protoc ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075308

RESUMEN

Human neural organoids represent promising models for studying neural function; however, organoids grown in vitro lack certain microenvironments and sensory inputs that are thought to be essential for maturation. The transplantation of patient-derived neural organoids into animal hosts helps overcome some of these limitations and offers an approach for neural organoid maturation and circuit integration. Here, we describe a method for transplanting human stem cell-derived cortical organoids (hCOs) into the somatosensory cortex of newborn rats. The differentiation of human induced pluripotent stem cells into hCOs occurs over 30-60 days, and the transplantation procedure itself requires ~0.5-1 hours per animal. The use of neonatal hosts provides a developmentally appropriate stage for circuit integration and allows the generation and experimental manipulation of a unit of human neural tissue within the cortex of a living animal host. After transplantation, animals can be maintained for hundreds of days, and transplanted hCO growth can be monitored by using brain magnetic resonance imaging. We describe the assessment of human neural circuit function in vivo by monitoring genetically encoded calcium responses and extracellular activity. To demonstrate human neuron-host functional integration, we also describe a procedure for engaging host neural circuits and for modulating animal behavior by using an optogenetic behavioral training paradigm. The transplanted human neurons can then undergo ex vivo characterization across modalities including dendritic morphology reconstruction, single-nucleus transcriptomics, optogenetic manipulation and electrophysiology. This approach may enable the discovery of cellular phenotypes from patient-derived cells and uncover mechanisms that contribute to human brain evolution from previously inaccessible developmental stages.

14.
bioRxiv ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-37645893

RESUMEN

Tumors may contain billions of cells including distinct malignant clones and nonmalignant cell types. Clarifying the evolutionary histories, prevalence, and defining molecular features of these cells is essential for improving clinical outcomes, since intratumoral heterogeneity provides fuel for acquired resistance to targeted therapies. Here we present a statistically motivated strategy for deconstructing intratumoral heterogeneity through multiomic and multiscale analysis of serial tumor sections (MOMA). By combining deep sampling of IDH-mutant astrocytomas with integrative analysis of single-nucleotide variants, copy-number variants, and gene expression, we reconstruct and validate the phylogenies, spatial distributions, and transcriptional profiles of distinct malignant clones. By genotyping nuclei analyzed by single-nucleus RNA-seq for truncal mutations, we further show that commonly used algorithms for identifying cancer cells from single-cell transcriptomes may be inaccurate. We also demonstrate that correlating gene expression with tumor purity in bulk samples can reveal optimal markers of malignant cells and use this approach to identify a core set of genes that is consistently expressed by astrocytoma truncal clones, including AKR1C3, whose expression is associated with poor outcomes in several types of cancer. In summary, MOMA provides a robust and flexible strategy for precisely deconstructing intratumoral heterogeneity and clarifying the core molecular properties of distinct cellular populations in solid tumors.

15.
Cancers (Basel) ; 16(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39001492

RESUMEN

Tumors may contain billions of cells, including distinct malignant clones and nonmalignant cell types. Clarifying the evolutionary histories, prevalence, and defining molecular features of these cells is essential for improving clinical outcomes, since intratumoral heterogeneity provides fuel for acquired resistance to targeted therapies. Here we present a statistically motivated strategy for deconstructing intratumoral heterogeneity through multiomic and multiscale analysis of serial tumor sections (MOMA). By combining deep sampling of IDH-mutant astrocytomas with integrative analysis of single-nucleotide variants, copy-number variants, and gene expression, we reconstruct and validate the phylogenies, spatial distributions, and transcriptional profiles of distinct malignant clones. By genotyping nuclei analyzed by single-nucleus RNA-seq for truncal mutations, we further show that commonly used algorithms for identifying cancer cells from single-cell transcriptomes may be inaccurate. We also demonstrate that correlating gene expression with tumor purity in bulk samples can reveal optimal markers of malignant cells and use this approach to identify a core set of genes that are consistently expressed by astrocytoma truncal clones, including AKR1C3, whose expression is associated with poor outcomes in several types of cancer. In summary, MOMA provides a robust and flexible strategy for precisely deconstructing intratumoral heterogeneity and clarifying the core molecular properties of distinct cellular populations in solid tumors.

16.
Glia ; 61(9): 1518-32, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23840004

RESUMEN

Developmental regulation of gliogenesis in the mammalian CNS is incompletely understood, in part due to a limited repertoire of lineage-specific genes. We used Aldh1l1-GFP as a marker for gliogenic radial glia and later-stage precursors of developing astrocytes and performed gene expression profiling of these cells. We then used this dataset to identify candidate transcription factors that may serve as glial markers or regulators of glial fate. Our analysis generated a database of developmental stage-related markers of Aldh1l1+ cells between murine embryonic day 13.5-18.5. Using these data we identify the bZIP transcription factor Nfe2l1 and demonstrate that it promotes glial fate under direct Sox9 regulatory control. Thus, this dataset represents a resource for identifying novel regulators of glial development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Isoenzimas/metabolismo , Factor 1 Relacionado con NF-E2/metabolismo , Neuroglía/metabolismo , Retinal-Deshidrogenasa/metabolismo , Factor de Transcripción SOX9/metabolismo , Médula Espinal/citología , Factores de Edad , Familia de Aldehído Deshidrogenasa 1 , Animales , Diferenciación Celular , Células Cultivadas , Pollos , Biología Computacional , Electroporación , Embrión de Mamíferos , Citometría de Flujo , Perfilación de la Expresión Génica , Proteína Ácida Fibrilar de la Glía , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Isoenzimas/genética , Ratones , Ratones Transgénicos , Factor 1 Relacionado con NF-E2/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/clasificación , Neuronas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Retinal-Deshidrogenasa/genética , Factor de Transcripción SOX9/genética , Médula Espinal/embriología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
J Am Chem Soc ; 135(18): 6860-71, 2013 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-23627695

RESUMEN

Amyloid fibrils formed by the 40-residue ß-amyloid peptide (Aß(1-40)) are highly polymorphic, with molecular structures that depend on the details of growth conditions. Underlying differences in physical properties are not well understood. Here, we investigate differences in growth kinetics and thermodynamic stabilities of two Aß(1-40) fibril polymorphs for which detailed structural models are available from solid-state nuclear magnetic resonance (NMR) studies. Rates of seeded fibril elongation in the presence of excess soluble Aß(1-40) and shrinkage in the absence of soluble Aß(1-40) are determined with atomic force microscopy (AFM). From these rates, we derive polymorph-specific values for the soluble Aß(1-40) concentration at quasi-equilibrium, from which relative stabilities can be derived. The AFM results are supported by direct measurements by ultraviolet absorbance, using a novel dialysis system to establish quasi-equilibrium. At 24 °C, the two polymorphs have significantly different elongation and shrinkage kinetics but similar thermodynamic stabilities. At 37 °C, differences in kinetics are reduced, and thermodynamic stabilities are increased significantly. Fibril length distributions in AFM images provide support for an intermittent growth model, in which fibrils switch randomly between an "on" state (capable of elongation) and an "off" state (incapable of elongation). We also monitor interconversion between polymorphs at 24 °C by solid-state NMR, showing that the two-fold symmetric "agitated" (A) polymorph is more stable than the three-fold symmetric "quiescent" (Q) polymorph. Finally, we show that the two polymorphs have significantly different rates of fragmentation in the presence of shear forces, a difference that helps explain the observed predominance of the A structure when fibrils are grown in agitated solutions.


Asunto(s)
Péptidos beta-Amiloides/química , Fragmentos de Péptidos/química , Termodinámica , Cinética , Tamaño de la Partícula , Propiedades de Superficie
18.
Am J Hum Genet ; 87(3): 436-44, 2010 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-20826270

RESUMEN

The lymphatic vasculature is essential for the recirculation of extracellular fluid, fat absorption, and immune function and as a route of tumor metastasis. The dissection of molecular mechanisms underlying lymphangiogenesis has been accelerated by the identification of tissue-specific lymphatic endothelial markers and the study of congenital lymphedema syndromes. We report the results of genetic analyses of a kindred inheriting a unique autosomal-recessive lymphedema-choanal atresia syndrome. These studies establish linkage of the trait to chromosome 1q32-q41 and identify a loss-of-function mutation in PTPN14, which encodes a nonreceptor tyrosine phosphatase. The causal role of PTPN14 deficiency was confirmed by the generation of a murine Ptpn14 gene trap model that manifested lymphatic hyperplasia with lymphedema. Biochemical studies revealed a potential interaction between PTPN14 and the vascular endothelial growth factor receptor 3 (VEGFR3), a receptor tyrosine kinase essential for lymphangiogenesis. These results suggest a unique and conserved role for PTPN14 in the regulation of lymphatic development in mammals and a nonconserved role in choanal development in humans.


Asunto(s)
Vasos Linfáticos/enzimología , Vasos Linfáticos/fisiología , Nasofaringe/embriología , Nasofaringe/enzimología , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Animales , Secuencia de Bases , Atresia de las Coanas/enzimología , Atresia de las Coanas/genética , Análisis Mutacional de ADN , ADN Complementario/genética , Activación Enzimática , Femenino , Haplotipos/genética , Humanos , Vasos Linfáticos/patología , Vasos Linfáticos/fisiopatología , Linfedema/enzimología , Linfedema/genética , Masculino , Ratones , Modelos Genéticos , Datos de Secuencia Molecular , Linaje , Proteínas Tirosina Fosfatasas no Receptoras/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo
19.
Environ Monit Assess ; 185(5): 3697-710, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-22899460

RESUMEN

Urban pesticide use has a direct impact on surface water quality. To determine the extent of pesticide contamination, the California Department of Pesticide Regulation initiated a multi-area urban monitoring program in 2008. Water and sediment samples were collected at sites unaffected by agricultural inputs in three areas: Sacramento (SAC), San Francisco Bay (SFB), and Orange County (OC). Samples were analyzed for up to 64 pesticides or degradates. Multiple detections were common; 50 % of the water samples contained five or more pesticides. Statewide, the most frequently detected insecticides in water were bifenthrin, imidacloprid, fipronil, fipronil sulfone, fipronil desulfinyl, carbaryl, and malathion. Bifenthrin was the most common contaminant in sediment samples. Key differences by area: OC had more pesticides detected than SAC or SFB with higher concentrations of fipronil, whereas SAC had higher concentrations of bifenthrin. The most frequently detected herbicides were 2,4-D, triclopyr, dicamba, diuron, and pendimethalin. Key differences by area: OC and SFB had higher concentrations of triclopyr, whereas SAC had higher concentrations of 2,4-D and dicamba. Detection frequency, number of pesticides per sample, and pesticide concentration increased during rainstorm events. In water samples, all of the bifenthrin, malathion, fipronil, permethrin, and λ-cyhalothrin detections, and most of the fipronil sulfone and cyfluthrin detections were above their lowest US EPA aquatic benchmark. Diuron was the only herbicide that was detected above its lowest benchmark. Based on the number of pesticides and exceedances of aquatic benchmarks or the high number of sediment toxicity units, pesticides are abundant in California surface waters.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos/química , Plaguicidas/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , California , Ciudades/estadística & datos numéricos , Contaminación Química del Agua/estadística & datos numéricos
20.
Endocrinology ; 164(3)2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36631163

RESUMEN

The function of a hormone receptor requires mechanisms to control precisely where, when, and at what level the receptor gene is expressed. An intriguing case concerns the selective induction of thyroid hormone receptor ß2 (TRß2), encoded by Thrb, in the pituitary and also in cone photoreceptors, in which it critically regulates expression of the opsin photopigments that mediate color vision. Here, we investigate the physiological significance of a candidate enhancer for induction of TRß2 by mutagenesis of a conserved intron region in its natural context in the endogenous Thrb gene in mice. Mutation of e-box sites for bHLH (basic-helix-loop-helix) transcription factors preferentially impairs TRß2 expression in cones whereas mutation of nearby sequences preferentially impairs expression in pituitary. A deletion encompassing all sites impairs expression in both tissues, indicating bifunctional activity. In cones, the e-box mutations disrupt chromatin acetylation, blunt the developmental induction of TRß2, and ultimately impair cone opsin expression and sensitivity to longer wavelengths of light. These results demonstrate the necessity of studying an enhancer in its natural chromosomal context for defining biological relevance and reveal surprisingly critical nuances of level and timing of enhancer function. Our findings illustrate the influence of noncoding sequences over thyroid hormone functions.


Asunto(s)
Receptores de Hormona Tiroidea , Células Fotorreceptoras Retinianas Conos , Ratones , Animales , Células Fotorreceptoras Retinianas Conos/metabolismo , Receptores de Hormona Tiroidea/genética , Receptores de Hormona Tiroidea/metabolismo , Hormonas Tiroideas/metabolismo , Opsinas de Bastones/genética , Opsinas de Bastones/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA