RESUMEN
BACKGROUND AND AIM: An essential aspect of ensuring availability and stability of mesenchymal stem/stromal cells (MSCs) products for clinical use is that these cells are cryopreserved before individual infusion into patients. Currently, cryopreservation of MSCs involves use of a cryoprotectant solution containing dimethyl sulfoxide (DMSO). However, it is recognized that DMSO may be toxic for both the patient and the MSC product. In this Production Assistance for Cellular Therapies (PACT) and Biomedical Excellence for Safer Transfusion (BEST) Collaborative study, we compared a novel DMSO-free solution with DMSO containing cryoprotectant solutions for freezing MSCs. METHODS: A DMSO-free cryoprotectant solution containing sucrose, glycerol, and isoleucine (SGI) in a base of Plasmalyte A was prepared at the University of Minnesota. Cryoprotectant solutions containing 5-10% DMSO (in-house) were prepared at seven participating centers (five from USA, one each from Australia and Germany). The MSCs were isolated from bone marrow or adipose tissue and cultured ex vivo per local protocols at each center. The cells in suspension were frozen by aliquoting into vials/bags. For six out of the seven centers, the vials/bags were placed in a controlled rate freezer (one center placed them at -80°C freezer overnight) before transferring to liquid nitrogen. The cells were kept frozen for at least one week before thawing and testing. Pre- and post-thaw assessment included cell viability and recovery, immunophenotype as well as transcriptional and gene expression profiles. Linear regression, mixed effects models and two-sided t-tests were applied for statistical analysis. RESULTS: MSCs had an average viability of 94.3% (95% CI: 87.2-100%) before cryopreservation, decreasing by 4.5% (95% CI: 0.03-9.0%; P: 0.049) and 11.4% (95% CI: 6.9-15.8%; P< 0.001), for MSCs cryopreserved in the in-house and SGI solutions, respectively. The average recovery of viable MSCs cryopreserved in the SGI was 92.9% (95% CI: 85.7-100.0%), and it was lower by 5.6% (95% CI: 1.3-9.8%, P < 0.013) for the in-house solution. Additionally, MSCs cryopreserved in the two solutions had expected level of expressions for CD45, CD73, CD90, and CD105 with no significant difference in global gene expression profiles. CONCLUSION: MSCs cryopreserved in a DMSO-free solution containing sucrose, glycerol, and isoleucine in a base of Plasmalyte A had slightly lower cell viability, better recovery, and comparable immunophenotype and global gene expression profiles compared to MSCs cryopreserved in DMSO containing solutions. The average viability of MSCs in the novel solution was above 80% and, thus, likely clinically acceptable. Future studies are suggested to test the post-thaw functions of MSCs cryopreserved in the novel DMSO-free solution.
RESUMEN
BACKGROUND: Although ethylene oxide (EtO) gas is designated as a human carcinogen, extant literature reports mixed findings on the health effects of exposure. The disparate findings may reflect industry bias as many studies were funded by a large chemical industry lobby. OBJECTIVE: To conduct an integrative review of studies free from industry bias to facilitate compilation of a comprehensive list of reported signs and symptoms of EtO exposure. METHODS: We reviewed 1887 papers of which 42 articles met inclusion criteria. The authors conducted this review in accordance with PRISMA guidelines. The presence of bias was assessed using Joanna Briggs Institute checklists. RESULTS: Non-industry biased literature confirmed serious adverse health effects associated with EtO exposure at the occupational, hospital, and community level. EtO represents a carcinogen, neurotoxin, and respiratory irritant. CONCLUSION: After removal of industry-biased studies, EtO was unequivocally found to pose a threat to human health. There remains a gap in the number of studies examining community-level exposure, which is essential to understanding the impact of EtO. Given that EtO-emitting facilities are concentrated in diverse and disadvantaged communities, further study of EtO exposure health effects is warranted to inform public policy on toxic air emissions.
Asunto(s)
Carcinógenos , Óxido de Etileno , Humanos , Óxido de Etileno/toxicidadRESUMEN
BACKGROUND AIMS: The final harvest or wash of a cell therapy product is an important step in manufacturing, as viable cell recovery is critical to the overall success of a cell therapy. Most harvest/wash approaches in the clinical lab involve centrifugation, which can lead to loss of cells and decreased viability of the final product. Here the authors report on a multi-center assessment of the LOVO Cell Processing System (Fresenius Kabi, Bad Homburg, Germany), a cell processing device that uses a spinning filtration membrane instead of centrifugation. METHODS: Four National Institutes of Health Production Assistance for Cellular Therapies cell processing facilities (CPFs) assessed the LOVO Cell Processing System for final harvest and/or wash of the following three different cell products: activated T cells (ATCs), tumor-infiltrating lymphocytes (TILs) and bone marrow-derived mesenchymal stromal cells (MSCs). Each site compared their current in-house, routinely used method of final cell harvest and/or wash with that of the LOVO device. RESULTS: Final harvest and/or wash of ATCs, TILs and MSCs using the LOVO system resulted in satisfactory cell viability and recovery with some substantial improvement over the in-house methods of CPFs. Processing time was variable among cell types/facilities. CONCLUSIONS: The LOVO Cell Processing System provides an alternative to centrifuge-based technologies. The system employs a spinning membrane filter, exposing cells to minimal g-forces compared with centrifugation, and is automated and closed. This small multi-center study demonstrated the ability of the LOVO device to yield satisfactory cell viability and recovery of T cells and MSCs.
Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Células Madre Mesenquimatosas , CentrifugaciónRESUMEN
BACKGROUND: Growth in size and complexity of clinical hematopoietic progenitor cell (HPC) transplant programs necessitates parallel increases in cellular therapy laboratory (CTL) workload. Typically individually developed, HPC product processing is labor and time intensive. Variation in procedure type and numbers across CTLs complicates direct comparisons, and benchmark data are not readily available. STUDY DESIGN AND METHODS: Studies were undertaken at seven CTLs. Transplant volume and staff numbers were determined. Staff recorded time performing tasks broken down into steps: paperwork, product acceptance, transport/infusion, processing, and cryopreservation. Times were added to obtain total times for 15 common CTL procedures. RESULTS: Annual transplant volume ranged from 53.4 to 463.2, with products processed by a range of 2 to 10 dedicated CTL staff. Paperwork time constituted 23.7% to 62.3% total time; product processing time accounted for 1.8 (for National Marrow Donor Program product receipt) to 62.6% (for red blood cell reduction of allogeneic HPC products from bone marrow) of total processing time. Mean time for 15 procedures ranged from 1.27 to 8.28 hours (standard deviation range, 0.35-2.71 hr). Mean time for products from bone marrow versus peripheral blood was 6.6 ± 2.0 versus 5.5 ± 1.1 hours (p = 0.02). Cryopreservation (6.5 ± 1.6 vs. 4.4 ± 0.85 hr; p < 0.01) and manipulation (6.4 ± 1.5 vs. 4.4 ± 0.85 hr; p < 0.01) added time. CONCLUSION: CTL procedures are time intensive, with wide intra- and inter-CTL variation. Paperwork accounted for substantial portion of total time across procedures. Bone marrow source, cryopreservation, and manipulation contributed to longer times. These findings provide concrete data on which to build regarding CTL workload capacity.
Asunto(s)
Trasplante de Médula Ósea , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Laboratorios de Hospital , Carga de Trabajo , Aloinjertos , HumanosRESUMEN
Adoptive cell therapy of tumor-infiltrating lymphocytes has shown promise for treatment of refractory melanoma and other solid malignancies; however, challenges to manufacturing have limited its widespread use. Traditional manufacturing efforts were lengthy, cumbersome and used open culture systems. We describe changes in testing and manufacturing that decreased the process cycle time, enhanced the robustness of critical quality attribute testing and facilitated a functionally closed system. These changes have enabled export of the manufacturing process to support multi-center clinical trials.
Asunto(s)
Técnicas de Cultivo Celular por Lotes/métodos , Técnicas de Cultivo Celular por Lotes/tendencias , Inmunoterapia Adoptiva/métodos , Linfocitos Infiltrantes de Tumor , Control de Calidad , Supervivencia Celular , Técnicas de Cocultivo , Endotoxinas/análisis , Humanos , Melanoma/patología , Melanoma/terapia , MycoplasmaRESUMEN
The GM.CD40L vaccine, which recruits and activates dendritic cells, migrates to lymph nodes, activating T cells and leading to systemic tumor cell killing. When combined with the CCL21 chemokine, which recruits T cells and enhances T-cell responses, additive effects have been demonstrated in non-small cell lung cancer mouse models. Here, we compared GM.CD40L versus GM.CD40L plus CCL21 (GM.CD40L.CCL21) in lung adenocarcinoma patients with ≥ 1 line of treatment. In this phase I/II randomized trial (NCT01433172), patients received intradermal vaccines every 14 days (3 doses) and then monthly (3 doses). A two-stage minimax design was used. During phase I, no dose-limiting toxicities were shown in three patients who received GM.CD40L.CCL21. During phase II, of evaluable patients, 5/33 patients (15.2%) randomized for GM.DCD40L (p = .023) and 3/32 patients (9.4%) randomized for GM.DCD40L.CCL21 (p = .20) showed 6-month progression-free survival. Median overall survival was 9.3 versus 9.5 months with GM.DCD40L versus GM.DCD40L.CCL21 (95% CI 0.70-2.25; p = .44). For GM.CD40L versus GM.CD40L.CCL21, the most common treatment-related adverse events (TRAEs) were grade 1/2 injection site reaction (51.4% versus 61.1%) and grade 1/2 fatigue (35.1% versus 47.2%). Grade 1 immune-mediated TRAEs were isolated to skin. No patients showed evidence of pseudo-progression or immune-related TRAEs of grade 1 or greater of pneumonitis, endocrinopathy, or colitis, and none discontinued treatment due to toxicity. Although we found no significant associations between vaccine immunogenicity and outcomes, in limited biopsies, one patient treated with GMCD40L.CCL21 displayed abundant tumor-infiltrating lymphocytes. This possible effectiveness warrants further investigation of GM.CD40L in combination approaches.
Asunto(s)
Adenocarcinoma/terapia , Ligando de CD40/administración & dosificación , Vacunas contra el Cáncer/administración & dosificación , Carcinoma de Pulmón de Células no Pequeñas/terapia , Quimiocina CCL21/administración & dosificación , Factor Estimulante de Colonias de Granulocitos y Macrófagos/administración & dosificación , Inmunoterapia , Adenocarcinoma/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Femenino , Estudios de Seguimiento , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/terapia , Masculino , Persona de Mediana Edad , Pronóstico , Tasa de SupervivenciaRESUMEN
BACKGROUND AIMS: Fetal bovine serum (FBS) is commonly used as a serum supplement for culturing human mesenchymal stromal cells (hMSCs). However, human cells grown in FBS, especially for extended periods, risk potential exposure to bovine immunogenic proteins and infectious agents. To address this issue, we investigated the ability of a novel human platelet serum supplement to substitute for FBS in hMSC cultures. METHODS: Platelet lysate-serum (PL-serum) was converted from platelet lysate-plasma (PL-plasma) that was manufactured from pooled platelet-rich plasma (PRP) apheresis units. Growth factor levels and the number of residual intact platelets in PL-serum and PL-plasma were compared with enzyme-linked immunosorbent assays and flow cytometry, respectively. Proliferation responses of hMSCs cultured in PL-serum, PL-plasma, or FBS were assessed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, the immunophenotype of harvested hMSCs was evaluated by flow cytometry and tri-lineage differentiation potential was evaluated by assessing adipogenic, osteogenic and chondrogenic development. RESULTS: Selected growth factor levels in PL-serum were not significantly different from PL-plasma (P > 0.05). hMSC cultures supplemented with PL-serum had comparable growth kinetics to PL-plasma, and hMSC yields were consistently greater than with FBS. hMSCs harvested from cultures supplemented with PL-serum, PL-plasma or FBS had similar cell surface phenotypes and maintained tri-lineage differentiation potential. CONCLUSIONS: PL-serum, similar to PL-plasma, can substitute for FBS in hMSC cultures. Use of PL-serum, in contrast to PL-plasma, has an added advantage of not requiring addition of a xenogeneic source of heparin, providing a completely xeno-free culture medium.
Asunto(s)
Técnicas de Cultivo de Célula , Medios de Cultivo/química , Células Madre Mesenquimatosas/citología , Plasma Rico en Plaquetas/química , Suero/química , Tejido Adiposo , Animales , Bovinos , Proliferación Celular , Citometría de Flujo , HumanosRESUMEN
PURPOSE: We investigated whether a dendritic cell (DC) vaccine transduced with an adenoviral vector encoded with full-length survivin (Ad-S), with mutations neutralizing its antiapoptotic function, could safely generate an immune response and deepen clinical responses when administered before and after autologous stem cell transplant (ASCT) for multiple myeloma. PATIENTS AND METHODS: This phase I first-in-human trial (NCT02851056) evaluated the safety of DC:Ad-S in newly diagnosed multiple myeloma not having achieved complete response with induction, given 7 to 30 days prior to stem cell collection and 20 to 34 days after ASCT. Anti-survivin antibodies and CD4+ and CD8+ specific T cells were quantified. RESULTS: A total of 14 patients were treated and 13 included in the primary efficacy analysis. No serious adverse events were attributed to DC:Ad-S vaccine. Detectable anti-survivin antibodies increased from baseline in 9 of 13 (69%) patients, and 11 of 13 (85%) mounted either a cellular or humoral immune response to survivin. Seven patients had an improved clinical response at day +90, all of whom had mounted an immune response, and 6 of 7 patients remain event-free at a median follow-up of 4.2 years. Estimated progression-free survival at 4 years is 71% (95% confidence interval, 41-88). CONCLUSIONS: Two doses of DC:Ad-S, one given immediately before and another after ASCT, were feasible and safe. A high frequency of vaccine-specific immune responses was seen in combination with durable clinical outcomes, supporting ongoing investigation into the potential of this approach. See related commentary by Dhodapkar, p. 4524.
Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Survivin , Autoinjertos , Trasplante Autólogo , Inmunidad , Células Dendríticas , Trasplante de Células Madre Hematopoyéticas/efectos adversosRESUMEN
BACKGROUND: Allogeneic hematopoietic stem cell transplants from unrelated donors are routinely used in the treatment of patients with hematologic malignancies. These cellular products are often collected off-site and require transport from the collection site to transplantation centers. However, the effects of transport conditions and media on stem cell graft composition during short-term storage have not been well described. STUDY DESIGN AND METHODS: Five bone marrow (BM), four filgrastim-mobilized peripheral blood stem cell (PBSC), and four nonmobilized peripheral blood mononuclear cell (PBMNC) products were collected from healthy volunteer donors and stored at 4 or 20°C for up to 72 hours in 10% PlasmaLyte A plus anticoagulants such as 10% acid citrate dextran-A (ACD-A) and/or 10 IU/mL heparin. Products were evaluated at 0, 24, 48, and 72 hours for cellular content, viability, and metabolic activities. RESULTS: BM products maintained equivalent cell viability when stored at either 4 or 20°C over 72 hours, but cell viability was better maintained for PBSC products stored at 4°C. The mean viable CD34+ cell recovery for PBSC and BM products stored over 72 hours at 4°C was higher than 75%. Significantly lower CD34+ cell and colony-forming unit recoveries were seen in PBSC products but not BM products stored at room temperature. Faster lactic acid accumulation was observed in PBMNC and PBSC products stored without ACD-A. CONCLUSIONS: Seventy-two-hour storage of BM, PBSC, and PBMNC products at refrigerated temperature maintains optimal cell viability and recovery. Anticoagulation with ACD-A is preferred over heparin to reduce lactic acid accumulation in the product media.
Asunto(s)
Células Madre Hematopoyéticas/citología , Leucocitos Mononucleares/citología , Conservación de Tejido/métodos , Supervivencia Celular , Trasplante de Células Madre Hematopoyéticas , Humanos , Temperatura , Factores de Tiempo , Trasplante HomólogoRESUMEN
Although Vγ9Vδ2 T cells are a minor subset of T lymphocytes, this population is sought after for its ability to recognize antigens in a major histocompatibility complex (MHC)-independent manner and develop strong cytolytic effector function that makes it an ideal candidate for cancer immunotherapy. Due to the low frequency of Gamma-Delta (γδ) T cells in the peripheral blood, we developed an effective protocol to greatly expand a highly pure γδ T cells drug product for first-in-human use of allogeneic γδ T cells in patients with acute myeloid leukemia (AML). Using healthy donor apheresis as an allogenic cell source, the lymphocytes are isolated using a validated device for a counterflow centrifugation method of separating cells by size and density. The lymphocyte-rich fraction is utilized, and the γδ T cells are preferentially activated with zoledronic acid (FDA-approved) and interleukin (IL)-2 for 7 days. Following the preferential expansion of γδ T cells, a clinical-grade magnetic cell-separation device and TCRαß beads are used to deplete contaminating T-cell receptor (TCR)αß T cells. The highly enriched γδ T cells then undergo a second expansion using engineered artificial antigen-presenting cells (aAPCs) derived from K562 cells-genetically engineered to express single-chain variable fragment (scFv) for CD3 and CD28, 41BBL (CD137L) and IL15-RA-together with zoledronic acid and IL-2. Seeding all day-7 enriched γδ T cells in co-culture with the aAPCs facilitates the manufacture of highly pure γδ T cells with an average fold expansion of >229,000-fold from healthy donor blood.
Asunto(s)
Eliminación de Componentes Sanguíneos , Receptores de Antígenos de Linfocitos T gamma-delta , Humanos , Interleucina-2 , Receptores de Antígenos de Linfocitos T alfa-beta , Linfocitos TRESUMEN
The Production Assistance for Cellular Therapies (PACT) Program, is funded and supported by the US Department of Health and Human Services' National Institutes of Health (NIH) National Heart Lung and Blood Institute (NHLBI) to advance development of somatic cell and genetically modified cell therapeutics in the areas of heart, lung, and blood diseases. The program began in 2003, continued under two competitive renewals, and ended June 2021. PACT has supported cell therapy product manufacturing, investigational new drug enabling preclinical studies, and translational services, and has provided regulatory assistance for candidate cell therapy products that may aid in the repair and regeneration of damaged/diseased cells, tissues, and organs. PACT currently supports the development of novel cell therapies through five cell processing facilities. These facilities offer manufacturing processes, analytical development, technology transfer, process scale-up, and preclinical development expertise necessary to produce cell therapy products that are compliant with Good Laboratory Practices, current Good Manufacturing Practices, and current Good Tissue Practices regulations. The Emmes Company, LLC, serves as the Coordinating Center and assists with the management and coordination of PACT and its application submission and review process. This paper discusses the impact and accomplishments of the PACT program on the cell therapy field and its evolution over the duration of the program. It highlights the work that has been accomplished and provides a foundation to build future programs with similar goals to advance cellular therapeutics in a coordinated and centralized programmatic manner to support unmet medical needs within NHLBI purview.
Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/economía , Financiación Gubernamental , National Heart, Lung, and Blood Institute (U.S.) , Academias e Institutos , Regulación Gubernamental , Estados UnidosRESUMEN
Adoptive cell transfer (ACT) with tumor-infiltrating lymphocytes (TILs) can generate durable clinical responses in patients with metastatic melanoma and ongoing trials are evaluating efficacy in other advanced solid tumors. The aim of this study was to develop methods for the expansion of tumor-reactive TIL from resected soft tissue sarcoma to a degree required for the ACT. From 2015 to 2018, 70 patients were consented to an institutional review board-approved protocol, and fresh surgical specimens were taken directly from the operating room to the laboratory. Fragments of the tumor (1 mm3) or fresh tumor digest were placed in culture for a period of 4 weeks. Successfully propagated TIL from these cultures were collected and analyzed by flow cytometry. TIL were cocultured with autologous tumor and function was assessed by measurement of interferon-γ in the supernatant by enzyme-linked immunosorbent assay. Initial TIL cultures were further expanded using a rapid expansion protocol. Nearly all specimens generated an initial TIL culture (91% fragment method, 100% digest method). The phenotype of the TIL indicated a predominant CD3+ population after culture (43% fragment, 52% digest) and TIL were responsive to the autologous tumor (56% fragment, 40% digest). The cultured TIL expanded to a degree required for clinical use following rapid expansion protocol (median: 490-fold fragment, 403-fold digest). The data demonstrate the feasibility of TIL culture from fresh soft tissue sarcoma. The derived TIL have tumor-specific reactivity and can be expanded to clinically relevant numbers. An active ACT clinical trial using the methods described in this report is now approved for patients with metastatic soft tissue sarcoma.
Asunto(s)
Linfocitos Infiltrantes de Tumor/inmunología , Sarcoma/inmunología , Sarcoma/patología , Microambiente Tumoral , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores , Terapia Combinada/efectos adversos , Terapia Combinada/métodos , Citotoxicidad Inmunológica , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Femenino , Humanos , Inmunofenotipificación , Inmunoterapia/efectos adversos , Inmunoterapia/métodos , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/patología , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Sarcoma/terapia , Adulto JovenRESUMEN
Adoptive cell therapy with ex vivo expanded tumor infiltrating lymphocytes or gene engineering T cells expressing chimeric antigen receptors (CAR) is a promising treatment for cancer patients. This production utilizes T-cell activation and transduction with activation beads and RetroNectin, respectively. However, the high cost of production is an obstacle for the broad clinical application of novel immunotherapeutic cell products. To facilitate production we refined our approach by using artificial antigen presenting cells (aAPCs) with receptors that ligate CD3, CD28, and the CD137 ligand (CD137L or 41BBL), as well as express the heparin binding domain (HBD), which binds virus for gene-transfer. We have used these aAPC for ex vivo gene engineering and expansion of tumor infiltrating lymphocytes and CAR T cells. We found that aAPCs can support efficacious T-cell expansion and transduction. Moreover, aAPCs expanded T cells exhibit higher production of IFN-γ and lower traits of T-cell exhaustion compared with bead expanded T cells. Our results suggest that aAPC provide a more physiological stimulus for T-cell activation than beads that persistently ligate T cells. The use of a renewable cell line to replace 2 critical reagents (beads and retronectin) for CAR T-cell production can significantly reduce the cost of production and make these therapies more accessible to patients.
Asunto(s)
Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Inmunoterapia Adoptiva , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Biomarcadores , Línea Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Citotoxicidad Inmunológica , Técnicas de Transferencia de Gen , Humanos , Inmunofenotipificación , Inmunoterapia Adoptiva/métodos , Células K562 , Activación de Linfocitos/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Ratones , Neoplasias/etiología , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/terapiaRESUMEN
PURPOSE: Adoptive cell therapy (ACT) using tumor-infiltrating lymphocytes (TIL) for metastatic melanoma can be highly effective, but attrition due to progression before TIL administration (32% in prior institutional experience) remains a limitation. We hypothesized that combining ACT with cytotoxic T lymphocyte-associated antigen 4 blockade would decrease attrition and allow more patients to receive TIL. EXPERIMENTAL DESIGN: Thirteen patients with metastatic melanoma were enrolled. Patients received four doses of ipilimumab (3 mg/kg) beginning 2 weeks prior to tumor resection for TIL generation, then 1 week after resection, and 2 and 5 weeks after preconditioning chemotherapy and TIL infusion followed by interleukin-2. The primary endpoint was safety and feasibility. Secondary endpoints included of clinical response at 12 weeks and at 1 year after TIL transfer, progression free survival (PFS), and overall survival (OS). RESULTS: All patients received at least two doses of ipilimumab, and 12 of the 13 (92%) received TIL. A median of 6.5 × 1010 (2.3 × 1010 to 1.0 × 1011) TIL were infused. At 12 weeks following infusion, there were five patients who experienced objective response (38.5%), four of whom continued in objective response at 1 year and one of which became a complete response at 52 months. Median progression-free survival was 7.3 months (95% CI 6.1-29.9 months). Grade ≥ 3 immune-related adverse events included hypothyroidism (3), hepatitis (2), uveitis (1), and colitis (1). CONCLUSION: Ipilimumab plus ACT for metastatic melanoma is feasible, well tolerated, and associated with a low rate of attrition due to progression during cell expansion. This combination approach serves as a model for future efforts to improve the efficacy of ACT.
RESUMEN
Advanced bladder cancer patients have limited therapeutic options resulting in a median overall survival (OS) between 12 and 15 months. Adoptive cell therapy (ACT) using tumor infiltrating lymphocytes (TIL) has been used successfully in treating patients with metastatic melanoma, resulting in a median OS of 52 months. In this study, we investigated the feasibility of expanding TIL from the tumors of bladder cancer patients. Primary bladder tumors and lymph node (LN) metastases were collected. Tumor specimens were minced into fragments, placed in individual wells of a 24-well plate, and propagated in high dose IL-2 for four weeks. Expanded TIL were phenotyped by flow cytometry and anti-tumor reactivity was assessed after co-culture with autologous tumor digest and IFN-gamma ELISA. Of the 28 transitional cell bladder or LN tumors collected, 14/20 (70%) primary tumors and all of the LN metastases demonstrated TIL expansion. Expanded TIL were predominantly CD3+ (median 63%, range 10-87%) with a median of 30% CD8 + T cells (range 5-70%). TIL secreted IFN-gamma in response to autologous tumor. Addition of agonisitic 4-1BB antibody improved TIL expansion from primary bladder tumors regardless of pre-treatment with chemotherapy. This study establishes the practical first step towards an autologous TIL therapy process for therapeutic testing in patients with bladder cancer.
RESUMEN
OBJECTIVE: To determine the effect of preinjection ocular decompression by cotton swabs on the immediate rise in intraocular pressure (IOP) after intravitreal injections. METHODS: Forty-eight patients receiving 0.05 mL ranibizumab injections in a retina clinic were randomized to 2 anesthetic methods in each eye on the same day (if bilateral disease) or on consecutive visits (if unilateral disease). One method utilized cotton swabs soaked in 4% lidocaine applied to the globe with moderate pressure and the other 3.5% lidocaine gel applied without pressure. IOPs were recorded at baseline (before injection) and at 0, 5, 10, and 15 minutes after the injection until the IOP was ≤30 mm Hg. The IOP elevations from baseline were compared after the 2 anesthetic methods. RESULTS: The preinjection mean IOP (SD, mm Hg) was 15.5 (3.3) before the cotton swabs and 15.9 (3.0) before the gel (P=0.28). Mean IOP (SD, mm Hg) change immediately after injection was 25.7 (9.2) after the cotton swabs and 30.9 (9.9) after the gel (P=0.001). Thirty-five percent of gel eyes had IOP≥50 mm Hg compared with only 10% of cotton swab eyes immediately after the injection (P<0.001). CONCLUSION: Decompressing the eye with cotton swabs during anesthetic preparation before an intravitreal injection produces a significantly lower IOP spike after the injection.
Asunto(s)
Anestesia Local/métodos , Anestésicos Locales/administración & dosificación , Anticuerpos Monoclonales Humanizados/administración & dosificación , Descompresión Quirúrgica/métodos , Presión Intraocular/fisiología , Lidocaína/administración & dosificación , Adulto , Anciano , Anciano de 80 o más Años , Anestesia Local/instrumentación , Descompresión Quirúrgica/instrumentación , Oftalmopatías/fisiopatología , Oftalmopatías/terapia , Femenino , Geles/administración & dosificación , Humanos , Inyecciones Intravítreas , Masculino , Persona de Mediana Edad , Dolor/prevención & control , Estudios Prospectivos , RanibizumabRESUMEN
OBJECTIVE: To compare same-day and next-day pain control and safety of two anesthetic techniques utilizing 4% liquid lidocaine applied with sterile cotton swabs versus 3.5% lidocaine gel for intravitreal injections. Main outcome measures were: discomfort during anesthetic preparation and needle penetration, 1 and 24 h after injection. METHODS: Patients were randomized to alternate anesthetic method at two consecutive injections in one eye or in different eyes on the same day if requiring bilateral injections. Overall satisfaction, corneal staining, and subconjunctival hemorrhage (SCH) were compared. RESULTS: Fifty patients were enrolled. Both methods resulted in similar mild discomfort during anesthetic preparation, 1 and 24 h later. The gel resulted in slightly higher discomfort during needle penetration (p = 0.026). Patients were satisfied with both techniques (p = 0.91), however, 52% patients preferred gel, 33% were indifferent, and 15% preferred cotton swabs (p = 0.002). There were significantly less corneal staining (p = 0.001) and SCH (p = 0.004) after the gel. CONCLUSION: Both techniques are equally effective and yield mild discomfort scores during the procedure and the next day. The gel method results in significantly less ocular surface irritation.
Asunto(s)
Anestésicos Locales/uso terapéutico , Inyecciones Intravítreas/efectos adversos , Lidocaína/uso terapéutico , Dolor/tratamiento farmacológico , Administración Tópica , Adulto , Anciano , Anciano de 80 o más Años , Anestésicos Locales/administración & dosificación , Femenino , Geles , Humanos , Lidocaína/administración & dosificación , Masculino , Persona de Mediana Edad , Dolor/etiología , Dolor/fisiopatología , Dimensión del Dolor , Estudios ProspectivosRESUMEN
Elastin is an essential component of arteries which provides structural integrity and instructs smooth muscle cells to adopt a quiescent state. Despite interaction of endothelial cells with elastin in the internal elastic lamina, the potential for exploiting this interaction therapeutically has not been explored in detail. In this study, we show that tropoelastin (a precursor of elastin) stimulates endothelial cell migration and adhesion more than smooth muscle cells. The biological activity of tropoelastin on endothelial cells is contained in the VGVAPG domain and in the carboxy-terminal 17-amino acids. We show that the effects of the carboxy-terminal 17 amino acids, but not those of VGVAPG, are mediated by integrin α(V)ß(3). We demonstrate that tropoelastin covalently linked to stainless steel disks promotes adhesion of endothelial progenitor cells and endothelial cells to the metal surfaces. The adherent cells on the tropoelastin-coated metal surfaces form monolayers that can withstand and respond to arterial shear stress. Because of the unique effects of tropoelastin on endothelial and smooth muscle cells, coating intravascular devices with tropoelastin may stimulate their endothelialization, inhibit smooth muscle hyperplasia, and improve device performance.
Asunto(s)
Movimiento Celular/efectos de los fármacos , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Tropoelastina/administración & dosificación , Adhesión Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , HumanosRESUMEN
Cellular abnormalities are not limited to motor neurons in amyotrophic lateral sclerosis (ALS). There are numerous observations of astrocyte dysfunction in both humans with ALS and in SOD1(G93A) rodents, a widely studied ALS model. The present study therapeutically targeted astrocyte replacement in this model via transplantation of human Glial-Restricted Progenitors (hGRPs), lineage-restricted progenitors derived from human fetal neural tissue. Our previous findings demonstrated that transplantation of rodent-derived GRPs into cervical spinal cord ventral gray matter (in order to target therapy to diaphragmatic function) resulted in therapeutic efficacy in the SOD1(G93A) rat. Those findings demonstrated the feasibility and efficacy of transplantation-based astrocyte replacement for ALS, and also show that targeted multi-segmental cell delivery to cervical spinal cord is a promising therapeutic strategy, particularly because of its relevance to addressing respiratory compromise associated with ALS. The present study investigated the safety and in vivo survival, distribution, differentiation, and potential efficacy of hGRPs in the SOD1(G93A) mouse. hGRP transplants robustly survived and migrated in both gray and white matter and differentiated into astrocytes in SOD1(G93A) mice spinal cord, despite ongoing disease progression. However, cervical spinal cord transplants did not result in motor neuron protection or any therapeutic benefits on functional outcome measures. This study provides an in vivo characterization of this glial progenitor cell and provides a foundation for understanding their capacity for survival, integration within host tissues, differentiation into glial subtypes, migration, and lack of toxicity or tumor formation.