Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Genet Med ; : 101198, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38943479

RESUMEN

PURPOSE: We compared the rate of errors in genome sequencing (GS) result disclosures by genetic counselors (GC) and trained non-genetics healthcare professionals (NGHP) in SouthSeq, a randomized trial utilizing GS in critically ill infants. METHODS: Over 400 recorded GS result disclosures were analyzed for major and minor errors. We used Fisher's exact test to compare error rates between GCs and NGHPs and performed a qualitative content analysis to characterize error themes. RESULTS: Major errors were identified in 7.5% of disclosures by NGHPs and in no disclosures by GCs. Minor errors were identified in 32.1% of disclosures by NGHPs and in 11.4% of disclosures by GCs. While most disclosures lacked errors, NGHPs were significantly more likely to make any error than GCs for all result types (positive, negative, or uncertain). Common major error themes include omission of critical information, overstating a negative result, and overinterpreting an uncertain result. The most common minor error was failing to disclose negative secondary findings. CONCLUSION: Trained NGHPs made clinically significant errors in GS result disclosures. Characterizing common errors in result disclosure can illuminate gaps in education to inform the development of future genomics training and alternative service delivery models.

2.
Genet Med ; 25(9): 100899, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37212252

RESUMEN

PURPOSE: Accurate and understandable information after genetic testing is critical for patients, family members, and professionals alike. METHODS: As part of a cross-site study from the Clinical Sequencing Evidence-Generating Research consortium, we investigated the information-seeking practices among patients and family members at 5 to 7 months after genetic testing results disclosure, assessing the perceived utility of a variety of information sources, such as family and friends, health care providers, support groups, and the internet. RESULTS: We found that individuals placed a high value on information obtained from genetics professionals and health care workers, independent of genetic testing result case classifications as positive, inconclusive, or negative. The internet was also highly utilized and ranked. Study participants rated some information sources as more useful for positive results compared with inconclusive or negative outcomes, emphasizing that it may be difficult to identify helpful information for individuals receiving an uncertain or negative result. There were few data from non-English speakers, highlighting the need to develop strategies to reach this population. CONCLUSION: Our study emphasizes the need for clinicians to provide accurate and comprehensible information to individuals from diverse populations after genetic testing.


Asunto(s)
Pruebas Genéticas , Conducta en la Búsqueda de Información , Humanos , Grupos de Población , Incertidumbre , Familia
3.
Genet Med ; 25(7): 100859, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37092538

RESUMEN

PURPOSE: The study aimed to clinically and molecularly characterize the neurodevelopmental disorder associated with heterozygous de novo variants in CNOT9. METHODS: Individuals were clinically examined. Variants were identified using exome or genome sequencing. These variants were evaluated using in silico predictions, and their functional relevance was further assessed by molecular models and research in the literature. The variants have been classified according to the criteria of the American College of Medical Genetics. RESULTS: We report on 7 individuals carrying de novo missense variants in CNOT9, p.(Arg46Gly), p.(Pro131Leu), and p.(Arg227His), and, recurrent in 4 unrelated individuals, p.(Arg292Trp). All affected persons have developmental delay/intellectual disability, with 5 of them showing seizures. Other symptoms include muscular hypotonia, facial dysmorphism, and behavioral abnormalities. Molecular modeling predicted that the variants are damaging and would lead to reduced protein stability or impaired recognition of interaction partners. Functional analyses in previous studies showed a pathogenic effect of p.(Pro131Leu) and p.(Arg227His). CONCLUSION: We propose CNOT9 as a novel gene for neurodevelopmental disorder and epilepsy.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Epilepsia/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Mutación Missense/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Fenotipo , Convulsiones/genética
4.
Genet Med ; 25(8): 100884, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37161864

RESUMEN

PURPOSE: Neurodevelopmental disorders (NDDs) often result from rare genetic variation, but genomic testing yield for NDDs remains below 50%, suggesting that clinically relevant variants may be missed by standard analyses. Here, we analyze "poison exons" (PEs), which are evolutionarily conserved alternative exons often absent from standard gene annotations. Variants that alter PE inclusion can lead to loss of function and may be highly penetrant contributors to disease. METHODS: We curated published RNA sequencing data from developing mouse cortex to define 1937 conserved PE regions potentially relevant to NDDs, and we analyzed variants found by genome sequencing in multiple NDD cohorts. RESULTS: Across 2999 probands, we found 6 novel clinically relevant variants in PE regions. Five of these variants are in genes that are part of the sodium voltage-gated channel alpha subunit family (SCN1A, SCN2A, and SCN8A), which is associated with epilepsies. One variant is in SNRPB, associated with cerebrocostomandibular syndrome. These variants have moderate to high computational impact assessments, are absent from population variant databases, and in genes with gene-phenotype associations consistent with each probands reported features. CONCLUSION: With a very minimal increase in variant analysis burden (average of 0.77 variants per proband), annotation of PEs can improve diagnostic yield for NDDs and likely other congenital conditions.


Asunto(s)
Epilepsia , Animales , Ratones , Humanos , Exones/genética , Epilepsia/diagnóstico , Epilepsia/genética , Fenotipo , Secuencia de Bases , Genómica
5.
Genet Med ; 25(11): 100922, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37403762

RESUMEN

PURPOSE: RPH3A encodes a protein involved in the stabilization of GluN2A subunit of N-methyl-D-aspartate (NMDA)-type glutamate receptors at the cell surface, forming a complex essential for synaptic plasticity and cognition. We investigated the effect of variants in RPH3A in patients with neurodevelopmental disorders. METHODS: By using trio-based exome sequencing, GeneMatcher, and screening of 100,000 Genomes Project data, we identified 6 heterozygous variants in RPH3A. In silico and in vitro models, including rat hippocampal neuronal cultures, have been used to characterize the effect of the variants. RESULTS: Four cases had a neurodevelopmental disorder with untreatable epileptic seizures [p.(Gln73His)dn; p.(Arg209Lys); p.(Thr450Ser)dn; p.(Gln508His)], and 2 cases [p.(Arg235Ser); p.(Asn618Ser)dn] showed high-functioning autism spectrum disorder. Using neuronal cultures, we demonstrated that p.(Thr450Ser) and p.(Asn618Ser) reduce the synaptic localization of GluN2A; p.(Thr450Ser) also increased the surface levels of GluN2A. Electrophysiological recordings showed increased GluN2A-dependent NMDA ionotropic glutamate receptor currents for both variants and alteration of postsynaptic calcium levels. Finally, expression of the Rph3AThr450Ser variant in neurons affected dendritic spine morphology. CONCLUSION: Overall, we provide evidence that missense gain-of-function variants in RPH3A increase GluN2A-containing NMDA ionotropic glutamate receptors at extrasynaptic sites, altering synaptic function and leading to a clinically variable neurodevelopmental presentation ranging from untreatable epilepsy to autism spectrum disorder.


Asunto(s)
Trastorno del Espectro Autista , Epilepsia , Animales , Humanos , Ratas , Trastorno del Espectro Autista/genética , Epilepsia/genética , Mutación Missense/genética , N-Metilaspartato/metabolismo , Neuronas/metabolismo , Rabfilina-3A
6.
Clin Genet ; 104(4): 434-442, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37340305

RESUMEN

As the uptake of population screening expands, assessment of medical and psychosocial outcomes is needed. Through the Alabama Genomic Health Initiative (AGHI), a state-funded genomic research program, individuals received screening for pathogenic or likely pathogenic variants in 59 actionable genes via genotyping. Of the 3874 eligible participants that received screening results, 858 (22%) responded to an outcomes survey. The most commonly reported motivation for seeking testing through AGHI was contribution to genetic research (64%). Participants with positive results reported a higher median number of planned actions (median = 5) due to AGHI results as compared to negative results (median = 3). Interviews were conducted with survey participants with positive screening results. As determined by certified genetic counselors, 50% of interviewees took appropriate medical action based on their result. There were no negative or harmful actions taken. These findings indicate population genomic screening of an unselected adult population is feasible, is not harmful, and may have positive outcomes on participants now and in the future; however, further research is needed in order to assess clinical utility.


Asunto(s)
Genómica , Metagenómica , Adulto , Humanos , Pruebas Genéticas
7.
Fam Pract ; 40(5-6): 760-767, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36856778

RESUMEN

CONTENT: This study examines the potential utility of genetic testing as a supplement to family health history to screen for increased risk of inherited disease. Medical conditions are often misreported or misunderstood, especially those related to different forms of cardiac disease (arrhythmias vs. structural heart disease vs. coronary artery disease), female organ cancers (uterine vs. ovarian vs. cervical), and type of cancer (differentiating primary cancer from metastases to other organs). While these nuances appear subtle, they can dramatically alter medical management. For example, different types of cardiac failure (structural, arrhythmia, and coronary artery disease) have inherited forms that are managed with vastly different approaches. METHODS: Using a dataset of over 6,200 individuals who underwent genetic screening, we compared the ability of genetic testing and traditional family health history to identify increased risk of inherited disease. A further, in-depth qualitative study of individuals for whom risk identified through each method was discordant, explored whether this discordance could be addressed through changes in family health history intake. FINDINGS: Of 90 individuals for whom genetic testing indicated significant increased risk for inherited disease, two-thirds (66%) had no corroborating family health history. Specifically, we identify cardiomyopathy, arrhythmia, and malignant hyperthermia as conditions for which discordance between genetic testing and traditional family health history was greatest, and familial hypercholesterolaemia, Lynch syndrome, and hereditary breast and ovarian cancer as conditions for which greater concordance existed. CONCLUSION: We conclude that genetic testing offers utility as a supplement to traditional family health history intake over certain conditions.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Enfermedad de la Arteria Coronaria , Cardiopatías , Femenino , Humanos , Enfermedad de la Arteria Coronaria/genética , Pruebas Genéticas , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Anamnesis , Arritmias Cardíacas/genética
8.
Genet Med ; 24(4): 851-861, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34930662

RESUMEN

PURPOSE: SouthSeq is a translational research study that undertook genome sequencing (GS) for infants with symptoms suggestive of a genetic disorder. Recruitment targeted racial/ethnic minorities and rural, medically underserved areas in the Southeastern United States, which are historically underrepresented in genomic medicine research. METHODS: GS and analysis were performed for 367 infants to detect disease-causal variation concurrent with standard of care evaluation and testing. RESULTS: Definitive diagnostic (DD) or likely diagnostic (LD) genetic findings were identified in 30% of infants, and 14% of infants harbored an uncertain result. Only 43% of DD/LD findings were identified via concurrent clinical genetic testing, suggesting that GS testing is better for obtaining early genetic diagnosis. We also identified phenotypes that correlate with the likelihood of receiving a DD/LD finding, such as craniofacial, ophthalmologic, auditory, skin, and hair abnormalities. We did not observe any differences in diagnostic rates between racial/ethnic groups. CONCLUSION: We describe one of the largest-to-date GS cohorts of ill infants, enriched for African American and rural patients. Our results show the utility of GS because it provides early-in-life detection of clinically relevant genetic variations not detected by current clinical genetic testing, particularly for infants exhibiting certain phenotypic features.


Asunto(s)
Pruebas Diagnósticas de Rutina , Pruebas Genéticas , Secuencia de Bases , Mapeo Cromosómico , Pruebas Genéticas/métodos , Genómica , Humanos
9.
Genet Med ; 23(2): 280-288, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32989269

RESUMEN

PURPOSE: To evaluate the effectiveness and specificity of population-based genomic screening in Alabama. METHODS: The Alabama Genomic Health Initiative (AGHI) has enrolled and evaluated 5369 participants for the presence of pathogenic/likely pathogenic (P/LP) variants using the Illumina Global Screening Array (GSA), with validation of all P/LP variants via Sanger sequencing in a CLIA-certified laboratory before return of results. RESULTS: Among 131 variants identified by the GSA that were evaluated by Sanger sequencing, 67 (51%) were false positives (FP). For 39 of the 67 FP variants, a benign/likely benign variant was present at or near the targeted P/LP variant. Variants detected within African American individuals were significantly enriched for FPs, likely due to a higher rate of nontargeted alternative alleles close to array-targeted P/LP variants. CONCLUSION: In AGHI, we have implemented an array-based process to screen for highly penetrant genetic variants in actionable disease genes. We demonstrate the need for clinical validation of array-identified variants in direct-to-consumer or population testing, especially for diverse populations.


Asunto(s)
Pruebas Genéticas , Genómica , Alabama , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
10.
Genet Med ; 23(4): 777-781, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33244164

RESUMEN

PURPOSE: The Alabama Genomic Health Initiative (AGHI) is a state-funded effort to provide genomic testing. AGHI engages two distinct cohorts across the state of Alabama. One cohort includes children and adults with undiagnosed rare disease; a second includes an unselected adult population. Here we describe findings from the first 176 rare disease and 5369 population cohort AGHI participants. METHODS: AGHI participants enroll in one of two arms of a research protocol that provides access to genomic testing results and biobank participation. Rare disease cohort participants receive genome sequencing to identify primary and secondary findings. Population cohort participants receive genotyping to identify pathogenic and likely pathogenic variants for actionable conditions. RESULTS: Within the rare disease cohort, genome sequencing identified likely pathogenic or pathogenic variation in 20% of affected individuals. Within the population cohort, 1.5% of individuals received a positive genotyping result. The rate of genotyping results corroborated by reported personal or family history varied by gene. CONCLUSIONS: AGHI demonstrates the ability to provide useful health information in two contexts: rare undiagnosed disease and population screening. This utility should motivate continued exploration of ways in which emerging genomic technologies might benefit broad populations.


Asunto(s)
Genómica , Enfermedades Raras , Adulto , Alabama , Niño , Mapeo Cromosómico , Estudios de Cohortes , Humanos , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética
11.
J Genet Couns ; 29(3): 471-478, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32220047

RESUMEN

Lack of diversity among genomic research participants results in disparities in benefits from genetic testing. To address this, the Alabama Genomic Health Initiative employed community engagement strategies to recruit diverse populations where they lived. In this paper, we describe our engagement techniques and recruitment strategies, which resulted in significant improvement in representation of African American participants. While African American participation has not reached the representation of this community as a percentage of Alabama's overall population (26%-27%), we have achieved an overall representation exceeding 20% for African Americans. We believe this demonstrates the value of engagement and recruitment where diverse populations reside.


Asunto(s)
Negro o Afroamericano/genética , Diversidad Cultural , Genoma Humano , Alabama , Humanos
12.
Genet Med ; 21(5): 1100-1110, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30287922

RESUMEN

PURPOSE: Clinical sequencing emerging in health care may result in secondary findings (SFs). METHODS: Seventy-four of 6240 (1.2%) participants who underwent genome or exome sequencing through the Clinical Sequencing Exploratory Research (CSER) Consortium received one or more SFs from the original American College of Medical Genetics and Genomics (ACMG) recommended 56 gene-condition pair list; we assessed clinical and psychosocial actions. RESULTS: The overall adjusted prevalence of SFs in the ACMG 56 genes across the CSER consortium was 1.7%. Initially 32% of the family histories were positive, and post disclosure, this increased to 48%. The average cost of follow-up medical actions per finding up to a 1-year period was $128 (observed, range: $0-$678) and $421 (recommended, range: $141-$1114). Case reports revealed variability in the frequency of and follow-up on medical recommendations patients received associated with each SF gene-condition pair. Participants did not report adverse psychosocial impact associated with receiving SFs; this was corroborated by 18 participant (or parent) interviews. All interviewed participants shared findings with relatives and reported that relatives did not pursue additional testing or care. CONCLUSION: Our results suggest that disclosure of SFs shows little to no adverse impact on participants and adds only modestly to near-term health-care costs; additional studies are needed to confirm these findings.


Asunto(s)
Pruebas Genéticas/economía , Hallazgos Incidentales , Secuenciación Completa del Genoma/ética , Adulto , Toma de Decisiones/ética , Revelación , Exoma , Femenino , Pruebas Genéticas/ética , Pruebas Genéticas/normas , Genómica/métodos , Costos de la Atención en Salud , Conocimientos, Actitudes y Práctica en Salud , Personal de Salud , Secuenciación de Nucleótidos de Alto Rendimiento/ética , Humanos , Intención , Masculino , Pacientes , Prevalencia , Secuenciación Completa del Genoma/economía
14.
Brain ; 141(9): 2576-2591, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30107533

RESUMEN

Synaptotagmin 1 (SYT1) is a critical mediator of fast, synchronous, calcium-dependent neurotransmitter release and also modulates synaptic vesicle endocytosis. This paper describes 11 patients with de novo heterozygous missense mutations in SYT1. All mutations alter highly conserved residues, and cluster in two regions of the SYT1 C2B domain at positions Met303 (M303K), Asp304 (D304G), Asp366 (D366E), Ile368 (I368T) and Asn371 (N371K). Phenotypic features include infantile hypotonia, congenital ophthalmic abnormalities, childhood-onset hyperkinetic movement disorders, motor stereotypies, and developmental delay varying in severity from moderate to profound. Behavioural characteristics include sleep disturbance and episodic agitation. Absence of epileptic seizures and normal orbitofrontal head circumference are important negative features. Structural MRI is unremarkable but EEG disturbance is universal, characterized by intermittent low frequency high amplitude oscillations. The functional impact of these five de novo SYT1 mutations has been assessed by expressing rat SYT1 protein containing the equivalent human variants in wild-type mouse primary hippocampal cultures. All mutant forms of SYT1 were expressed at levels approximately equal to endogenous wild-type protein, and correctly localized to nerve terminals at rest, except for SYT1M303K, which was expressed at a lower level and failed to localize at nerve terminals. Following stimulation, SYT1I368T and SYT1N371K relocalized to nerve terminals at least as efficiently as wild-type SYT1. However, SYT1D304G and SYT1D366E failed to relocalize to nerve terminals following stimulation, indicative of impairments in endocytic retrieval and trafficking of SYT1. In addition, the presence of SYT1 variants at nerve terminals induced a slowing of exocytic rate following sustained action potential stimulation. The extent of disturbance to synaptic vesicle kinetics is mirrored by the severity of the affected individuals' phenotypes, suggesting that the efficiency of SYT1-mediated neurotransmitter release is critical to cognitive development. In summary, de novo dominant SYT1 missense mutations are associated with a recognizable neurodevelopmental syndrome, and further cases can now be diagnosed based on clinical features, electrophysiological signature and mutation characteristics. Variation in phenotype severity may reflect mutation-specific impact on the diverse physiological functions of SYT1.


Asunto(s)
Sinaptotagmina I/genética , Sinaptotagmina I/fisiología , Potenciales de Acción , Adolescente , Animales , Calcio/metabolismo , Niño , Preescolar , Fenómenos Electrofisiológicos , Endocitosis , Femenino , Humanos , Discapacidad Intelectual/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Trastornos del Movimiento/genética , Mutación Missense/genética , Trastornos del Neurodesarrollo/metabolismo , Neuronas/metabolismo , Ratas , Transmisión Sináptica , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/fisiología , Adulto Joven
15.
J Genet Couns ; 28(2): 438-448, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30964585

RESUMEN

Advances in genomic knowledge and technology have increased the use of comprehensive clinical sequencing tests. Genome sequencing has established utility for diagnosing patients with rare, undiagnosed diseases as well as interest in an elective context, without a clinical indication for testing. The Smith Family Clinic for Genomic Medicine, LLC in Huntsville, AL is a private practice genomic medicine clinic caring for both diagnostic (79%) and elective (21%) patients. Diagnostic and elective patients are seen on a clinical basis and receive standard care. Genome sequencing is provided on a self-pay basis, with assistance available for diagnostic patients who have financial need. Here, we describe demographics and motivations of the distinct patient populations and our experiences engaging patients in online education. Diagnostic patients were motivated by the possibility of receiving an explanation for symptoms (96%) while elective patients were motivated by the chance to learn about future disease risk (57%). Elective patients were less likely to engage with online education, with only 28% reading all assigned topics compared to 54% of diagnostic patients. Understanding the needs, interests, and barriers unique to diagnostic and elective patients is critical to inform individualized and scalable best practices in patient education and engagement.


Asunto(s)
Genoma Humano , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Pruebas Genéticas , Humanos , Proyectos de Investigación
16.
Genet Med ; 20(12): 1635-1643, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29790872

RESUMEN

PURPOSE: Clinically relevant secondary variants were identified in parents enrolled with a child with developmental delay and intellectual disability. METHODS: Exome/genome sequencing and analysis of 789 "unaffected" parents was performed. RESULTS: Pathogenic/likely pathogenic variants were identified in 21 genes within 25 individuals (3.2%), with 11 (1.4%) participants harboring variation in a gene defined as clinically actionable by the American College of Medical Genetics and Genomics. These 25 individuals self-reported either relevant clinical diagnoses (5); relevant family history or symptoms (13); or no relevant family history, symptoms, or clinical diagnoses (7). A limited carrier screen was performed yielding 15 variants in 48 (6.1%) parents. Parents were also analyzed as mate pairs (n = 365) to identify cases in which both parents were carriers for the same recessive disease, yielding three such cases (0.8%), two of which had children with the relevant recessive disease. Four participants had two findings (one carrier and one noncarrier variant). In total, 71 of the 789 enrolled parents (9.0%) received secondary findings. CONCLUSION: We provide an overview of the rates and types of clinically relevant secondary findings, which may be useful in the design and implementation of research and clinical sequencing efforts to identify such findings.


Asunto(s)
Secuenciación del Exoma , Exoma/genética , Enfermedades Genéticas Congénitas/genética , Pruebas Genéticas , Adulto , Mapeo Cromosómico , Femenino , Tamización de Portadores Genéticos , Enfermedades Genéticas Congénitas/clasificación , Enfermedades Genéticas Congénitas/fisiopatología , Variación Genética , Genoma Humano/genética , Humanos , Masculino , Persona de Mediana Edad , Mutación , Padres , Secuenciación Completa del Genoma
17.
Genet Med ; 19(3): 337-344, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27561086

RESUMEN

PURPOSE: Eliciting and understanding patient and research participant preferences regarding return of secondary test results are key aspects of genomic medicine. A valid instrument should be easily understood without extensive pretest counseling while still faithfully eliciting patients' preferences. METHODS: We conducted focus groups with 110 adults to understand patient perspectives on secondary genomic findings and the role that preferences should play. We then developed and refined a draft instrument and used it to elicit preferences from parents participating in a genomic sequencing study in children with intellectual disabilities. RESULTS: Patients preferred filtering of secondary genomic results to avoid information overload and to avoid learning what the future holds, among other reasons. Patients preferred to make autonomous choices about which categories of results to receive and to have their choices applied automatically before results are returned to them and their clinicians. The Preferences Instrument for Genomic Secondary Results (PIGSR) is designed to be completed by patients or research participants without assistance and to guide bioinformatic analysis of genomic raw data. Most participants wanted to receive all secondary results, but a significant minority indicated other preferences. CONCLUSIONS: Our novel instrument-PIGSR-should be useful in a wide variety of clinical and research settings.Genet Med 19 3, 337-344.


Asunto(s)
Pruebas Genéticas/métodos , Adulto , Anciano , Conducta de Elección , Comprensión , Femenino , Grupos Focales , Pruebas Genéticas/ética , Pruebas Genéticas/instrumentación , Genoma/ética , Genoma/genética , Genómica/ética , Genómica/métodos , Conocimientos, Actitudes y Práctica en Salud , Humanos , Hallazgos Incidentales , Discapacidad Intelectual/genética , Masculino , Persona de Mediana Edad , Padres/psicología , Prioridad del Paciente/psicología , Análisis de Secuencia de ADN , Encuestas y Cuestionarios
19.
medRxiv ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38585854

RESUMEN

Variant detection from long-read genome sequencing (lrGS) has proven to be considerably more accurate and comprehensive than variant detection from short-read genome sequencing (srGS). However, the rate at which lrGS can increase molecular diagnostic yield for rare disease is not yet precisely characterized. We performed lrGS using Pacific Biosciences "HiFi" technology on 96 short-read-negative probands with rare disease that were suspected to be genetic. We generated hg38-aligned variants and de novo phased genome assemblies, and subsequently annotated, filtered, and curated variants using clinical standards. New disease-relevant or potentially relevant genetic findings were identified in 16/96 (16.7%) probands, eight of which (8/96, 8.33%) harbored pathogenic or likely pathogenic variants. Newly identified variants were visible in both srGS and lrGS in nine probands (~9.4%) and resulted from changes to interpretation mostly from recent gene-disease association discoveries. Seven cases included variants that were only interpretable in lrGS, including copy-number variants, an inversion, a mobile element insertion, two low-complexity repeat expansions, and a 1 bp deletion. While evidence for each of these variants is, in retrospect, visible in srGS, they were either: not called within srGS data, were represented by calls with incorrect sizes or structures, or failed quality-control and filtration. Thus, while reanalysis of older data clearly increases diagnostic yield, we find that lrGS allows for substantial additional yield (7/96, 7.3%) beyond srGS. We anticipate that as lrGS analysis improves, and as lrGS datasets grow allowing for better variant frequency annotation, the additional lrGS-only rare disease yield will grow over time.

20.
bioRxiv ; 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36711854

RESUMEN

Purpose: Neurodevelopmental disorders (NDDs) often result from rare genetic variation, but genomic testing yield for NDDs remains around 50%, suggesting some clinically relevant rare variants may be missed by standard analyses. Here we analyze "poison exons" (PEs) which, while often absent from standard gene annotations, are alternative exons whose inclusion results in a premature termination codon. Variants that alter PE inclusion can lead to loss-of-function and may be highly penetrant contributors to disease. Methods: We curated published RNA-seq data from developing mouse cortex to define 1,937 PE regions conserved between humans and mice and potentially relevant to NDDs. We then analyzed variants found by genome sequencing in multiple NDD cohorts. Results: Across 2,999 probands, we found six clinically relevant variants in PE regions that were previously overlooked. Five of these variants are in genes that are part of the sodium voltage-gated channel alpha subunit family ( SCN1A, SCN2A , and SCN8A ), associated with epilepsies. One variant is in SNRPB , associated with Cerebrocostomandibular Syndrome. These variants have moderate to high computational impact assessments, are absent from population variant databases, and were observed in probands with features consistent with those reported for the associated gene. Conclusion: With only a minimal increase in variant analysis burden (most probands had zero or one candidate PE variants in a known NDD gene, with an average of 0.77 per proband), annotation of PEs can improve diagnostic yield for NDDs and likely other congenital conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA