Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Magn Reson Med ; 75(4): 1434-43, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25980630

RESUMEN

PURPOSE: We sought to develop and test a clinically feasible 1-point Dixon, three-dimensional (3D) radial acquisition strategy to create isotropic 3D MR images of (129)Xe in the airspaces, barrier, and red blood cells (RBCs) in a single breath. The approach was evaluated in healthy volunteers and subjects with idiopathic pulmonary fibrosis (IPF). METHODS: A calibration scan determined the echo time at which (129)Xe in RBCs and barrier were 90° out of phase. At this TE, interleaved dissolved and gas-phase images were acquired using a 3D radial acquisition and were reconstructed separately using the NUFFT algorithm. The dissolved-phase image was phase-shifted to cast RBC and barrier signal into the real and imaginary channels such that the image-derived RBC:barrier ratio matched that from spectroscopy. The RBC and barrier images were further corrected for regional field inhomogeneity using a phase map created from the gas-phase (129)Xe image. RESULTS: Healthy volunteers exhibited largely uniform (129)Xe-barrier and (129)Xe-RBC images. By contrast, (129)Xe-RBC images in IPF subjects exhibited significant signal voids. These voids correlated qualitatively with regions of fibrosis visible on CT. CONCLUSIONS: This study illustrates the feasibility of acquiring single-breath, 3D isotropic images of (129)Xe in the airspaces, barrier, and RBCs using a 1-point Dixon 3D radial acquisition.


Asunto(s)
Eritrocitos/fisiología , Imagenología Tridimensional/métodos , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Isótopos de Xenón/uso terapéutico , Adulto , Anciano , Algoritmos , Eritrocitos/citología , Femenino , Humanos , Pulmón/irrigación sanguínea , Pulmón/fisiología , Masculino , Persona de Mediana Edad , Adulto Joven
2.
Radiology ; 262(1): 279-89, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22056683

RESUMEN

PURPOSE: To evaluate the safety and tolerability of inhaling multiple 1-L volumes of undiluted hyperpolarized xenon 129 ((129)Xe) followed by up to a 16-second breath hold and magnetic resonance (MR) imaging. MATERIALS AND METHODS: This study was approved by the institutional review board and was HIPAA compliant. Written informed consent was obtained. Forty-four subjects (19 men, 25 women; mean age, 46.1 years ± 18.8 [standard deviation]) were enrolled, consisting of 24 healthy volunteers, 10 patients with chronic obstructive pulmonary disease (COPD), and 10 age-matched control subjects. All subjects received three or four 1-L volumes of undiluted hyperpolarized (129)Xe, followed by breath-hold MR imaging. Oxygen saturation, heart rate and rhythm, and blood pressure were continuously monitored. These parameters, along with respiratory rate and subjective symptoms, were assessed after each dose. Subjects' serum biochemistry and hematology were recorded at screening and at 24-hour follow-up. A 12-lead electrocardiogram (ECG) was obtained at these times and also within 2 hours prior to and 1 hour after (129)Xe MR imaging. Xenon-related symptoms were evaluated for relationship to subject group by using a χ(2) test and to subject age by using logistic regression. Changes in vital signs were tested for significance across subject group and time by using a repeated-measures multivariate analysis of variance test. RESULTS: The 44 subjects tolerated all xenon inhalations, no subjects withdrew, and no serious adverse events occurred. No significant changes in vital signs (P > .27) were observed, and no subjects exhibited changes in laboratory test or ECG results at follow-up that were deemed clinically important or required intervention. Most subjects (91%) did experience transient xenon-related symptoms, most commonly dizziness (59%), paresthesia (34%), euphoria (30%), and hypoesthesia (30%). All symptoms resolved without clinical intervention in 1.6 minutes ± 0.9. CONCLUSION: Inhalation of hyperpolarized (129)Xe is well tolerated in healthy subjects and in those with mild or moderate COPD. Subjects do experience mild, transient, xenon-related symptoms, consistent with its known anesthetic properties.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Adulto , Análisis de Varianza , Estudios de Casos y Controles , Distribución de Chi-Cuadrado , Electrocardiografía , Femenino , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Isótopos de Xenón
4.
J Appl Physiol (1985) ; 115(6): 850-60, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23845983

RESUMEN

Although some central aspects of pulmonary function (ventilation and perfusion) are known to be heterogeneous, the distribution of diffusive gas exchange remains poorly characterized. A solution is offered by hyperpolarized 129Xe magnetic resonance (MR) imaging, because this gas can be separately detected in the lung's air spaces and dissolved in its tissues. Early dissolved-phase 129Xe images exhibited intensity gradients that favored the dependent lung. To quantitatively corroborate this finding, we developed an interleaved, three-dimensional radial sequence to image the gaseous and dissolved 129Xe distributions in the same breath. These images were normalized and divided to calculate "129Xe gas-transfer" maps. We hypothesized that, for healthy volunteers, 129Xe gas-transfer maps would retain the previously observed posture-dependent gradients. This was tested in nine subjects: when the subjects were supine, 129Xe gas transfer exhibited a posterior-anterior gradient of -2.00 ± 0.74%/cm; when the subjects were prone, the gradient reversed to 1.94 ± 1.14%/cm (P < 0.001). The 129Xe gas-transfer maps also exhibited significant heterogeneity, as measured by the coefficient of variation, that correlated with subject total lung capacity (r = 0.77, P = 0.015). Gas-transfer intensity varied nonmonotonically with slice position and increased in slices proximal to the main pulmonary arteries. Despite substantial heterogeneity, the mean gas transfer for all subjects was 1.00 ± 0.01 while supine and 1.01 ± 0.01 while prone (P = 0.25), indicating good "matching" between gas- and dissolved-phase distributions. This study demonstrates that single-breath gas- and dissolved-phase 129Xe MR imaging yields 129Xe gas-transfer maps that are sensitive to altered gas exchange caused by differences in lung inflation and posture.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Intercambio Gaseoso Pulmonar/fisiología , Isótopos de Xenón , Adulto , Anciano , Femenino , Voluntarios Sanos , Humanos , Imagenología Tridimensional , Pulmón/fisiología , Masculino , Persona de Mediana Edad , Posición Prona/fisiología , Posición Supina/fisiología , Adulto Joven
5.
PLoS One ; 5(8): e12192, 2010 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-20808950

RESUMEN

BACKGROUND: One of the central physiological functions of the lungs is to transfer inhaled gases from the alveoli to pulmonary capillary blood. However, current measures of alveolar gas uptake provide only global information and thus lack the sensitivity and specificity needed to account for regional variations in gas exchange. METHODS AND PRINCIPAL FINDINGS: Here we exploit the solubility, high magnetic resonance (MR) signal intensity, and large chemical shift of hyperpolarized (HP) (129)Xe to probe the regional uptake of alveolar gases by directly imaging HP (129)Xe dissolved in the gas exchange tissues and pulmonary capillary blood of human subjects. The resulting single breath-hold, three-dimensional MR images are optimized using millisecond repetition times and high flip angle radio-frequency pulses, because the dissolved HP (129)Xe magnetization is rapidly replenished by diffusive exchange with alveolar (129)Xe. The dissolved HP (129)Xe MR images display significant, directional heterogeneity, with increased signal intensity observed from the gravity-dependent portions of the lungs. CONCLUSIONS: The features observed in dissolved-phase (129)Xe MR images are consistent with gravity-dependent lung deformation, which produces increased ventilation, reduced alveolar size (i.e., higher surface-to-volume ratios), higher tissue densities, and increased perfusion in the dependent portions of the lungs. Thus, these results suggest that dissolved HP (129)Xe imaging reports on pulmonary function at a fundamental level.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Alveolos Pulmonares/fisiología , Intercambio Gaseoso Pulmonar , Adulto , Artefactos , Volumen Sanguíneo , Estudios de Factibilidad , Humanos , Imagenología Tridimensional , Persona de Mediana Edad , Respiración , Factores de Tiempo , Isótopos de Xenón , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA