Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Am Chem Soc ; 146(10): 6591-6603, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38420768

RESUMEN

Polymer-in-ceramic composite solid electrolytes (PIC-CSEs) provide important advantages over individual organic or inorganic solid electrolytes. In conventional PIC-CSEs, the ion conduction pathway is primarily confined to the ceramics, while the faster routes associated with the ceramic-polymer interface remain blocked. This challenge is associated with two key factors: (i) the difficulty in establishing extensive and uninterrupted ceramic-polymer interfaces due to ceramic aggregation; (ii) the ceramic-polymer interfaces are unresponsive to conducting ions because of their inherent incompatibility. Here, we propose a strategy by introducing polymer-compatible ionic liquids (PCILs) to mediate between ceramics and the polymer matrix. This mediation involves the polar groups of PCILs interacting with Li+ ions on the ceramic surfaces as well as the interactions between the polar components of PCILs and the polymer chains. This strategy addresses the ceramic aggregation issue, resulting in uniform PIC-CSEs. Simultaneously, it activates the ceramic-polymer interfaces by establishing interpenetrating channels that promote the efficient transport of Li+ ions across the ceramic phase, the ceramic-polymer interfaces, and the intervening pathways. Consequently, the obtained PIC-CSEs exhibit high ionic conductivity, exceptional flexibility, and robust mechanical strength. A PIC-CSE comprising poly(vinylidene fluoride) (PVDF) and 60 wt % PCIL-coated Li3Zr2Si2PO12 (LZSP) fillers showcasing an ionic conductivity of 0.83 mS cm-1, a superior Li+ ion transference number of 0.81, and an elongation of ∼300% at 25 °C could be produced on meter-scale. Its lithium metal pouch cells show high energy densities of 424.9 Wh kg-1 (excluding packing films) and puncture safety. This work paves the way for designing PIC-CSEs with commercial viability.

2.
Phys Chem Chem Phys ; 25(6): 4997-5006, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36722925

RESUMEN

We investigate the impact of Al incorporation on the structure and dynamics of Al-doped lithium thiophosphates (Li3-3xAlxPS4) based on ß-Li3PS4. 27Al and 6Li magic-angle spinning NMR spectra confirm that Al3+ ions occupy octahedral sites in the structure. Quantitative analyses of 27Al NMR spectra show that the maximum Al incorporation is x = 0.06 in Li3-3xAlxPS4. The ionic conductivity of ß-Li3PS4 is enhanced by over a factor 3 due to Al incorporation. Further increase of the Al doping level leads to the formation of a more complicated material consisting of multiple crystalline and distorted phases as indicated by 31P NMR spectra and powder X-ray diffraction. Consequently, novel Li ion diffusion pathways develop leading to a very high ionic conductivity at room temperature. NMR relaxometry shows that the activation barrier for long-range Li ion diffusion in ß-Li3PS4 hardly changes upon Al incorporation, but the onset temperature for motional narrowing comes down significantly due to Al doping. The activation barrier in the subsequently formed multiphase material decreases significantly, however, indicating a different more efficient Li ion conduction pathway.

3.
Anal Chem ; 94(48): 16667-16674, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36417314

RESUMEN

The physicochemical properties of active pharmaceutical ingredients (APIs) can depend on their solid-state forms. Therefore, characterization of API forms is crucial for upholding the performance of pharmaceutical products. Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a powerful technique for API quantification due to its selectivity. However, quantitative SSNMR experiments can be time consuming, sometimes requiring days to perform. Sensitivity can be considerably improved using 1H SSNMR spectroscopy. Nonetheless, quantification via 1H can be a challenging task due to low spectral resolution. Here, we offer a novel 1H SSNMR method for rapid API quantification, termed CRAMPS-MAR. The technique is based on combined rotation and multiple-pulse spectroscopy (CRAMPS) and mixture analysis using references (MAR). CRAMPS-MAR can provide high 1H spectral resolution with standard equipment, and data analysis can be accomplished with ease, even for structurally complex APIs. Using several API species as model systems, we show that CRAMPS-MAR can provide a lower quantitation limit than standard approaches such as fast MAS with peak integration. Furthermore, CRAMPS-MAR was found to be robust for cases that are inapproachable by conventional ultra-fast (i.e., 100 kHz) MAS methods even when state-of-the-art SSNMR equipment was employed. Our results demonstrate CRAMPS-MAR as an alternative quantification technique that can generate new opportunities for analytical research.


Asunto(s)
Calambre Muscular , Humanos , Espectroscopía de Resonancia Magnética/métodos , Preparaciones Farmacéuticas
4.
Magn Reson Med ; 87(3): 1165-1173, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34657308

RESUMEN

PURPOSE: Deuterium metabolic imaging could potentially be used to investigate metabolism in skeletal muscle noninvasively. However, skeletal muscle is a tissue with a high degree of spatial organization. In this study, we investigated the effect of incomplete motional averaging on the naturally abundant deuterated water signal in 7 Tesla deuterium spectra of the lower leg muscles and the dependence on the angle between the muscle fibers and the main magnetic field B0 , as determined by DTI. METHODS: Natural abundance deuterium MRSI measurements of the right lower leg muscles were performed at 7 Tesla. Three subjects were scanned in a supine position, with the right leg parallel with the B0 field. One subject was scanned twice; during the second scan, the subject was laying on his right side and the right knee was bent such that the angle between the right lower leg and B0 was approximately 45°. DTI was performed in the same subjects in the same positions at 3 Tesla to determine muscle fiber angles. RESULTS: We observed splittings in the natural abundance deuterated water signal. The size of the splittings varied between different muscles in the lower leg but were mostly similar among subjects for each muscle. The splittings depended on the orientation of the muscle fibers with respect to the main magnetic field B0 . CONCLUSION: Partial molecular alignment in skeletal muscle leads to residual deuteron quadrupolar couplings in deuterated water, the size of which depends on the angle between the muscle fibers and B0 .


Asunto(s)
Fibras Musculares Esqueléticas , Músculo Esquelético , Deuterio , Humanos , Extremidad Inferior , Músculo Esquelético/diagnóstico por imagen
5.
Inorg Chem ; 59(6): 3730-3739, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32118409

RESUMEN

Recently, a number of variations to the hybrid perovskite structure have been suggested in order to improve on the properties of methylammonium lead iodide, the archetypical hybrid halide perovskite material. In particular, with respect to the chemical stability of the material, steps should be taken. We performed an in-depth analysis of the structure of MAPbI3 upon incorporation of dimethylammonium (DMA) in order to probe the integrity of the perovskite lattice in relation to changes in the organic cation. This material, with formula MA1-xDMAxPbI3, adopts a 3D perovskite structure for 0 < x < 0.2, while a nonperovskite yellow phase is formed for 0.72 < x < 1. In the perovskite phase, the methylammonium and dimethylammonium ions are distributed randomly throughout the lattice. For 0.05 < x < 0.2, the phase-transition temperature of the material is lowered when compared to that of pure MAPbI3 (x = 0). The material, although disordered, has apparent cubic symmetry at room temperature. This leads to a small increase in the band gap of the material of about 20 meV. Using 14N NMR relaxation experiments, the reorientation times of the MA and DMA cations in MA0.8DMA0.2PbI3 were established to be 1.6 and 2.6 ps, respectively, indicating that both ions are very mobile in this material, on par with the MA ions in MAPbI3. All of the produced MA1-xDMAxPbI3 materials were richer in DMA than the precursor solution from which they were crystallized, indicating that DMA incorporation is energetically favorable and suggesting a higher thermodynamic stability of these materials when compared to that of pure MAPbI3.

6.
J Am Chem Soc ; 141(13): 5369-5380, 2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30864795

RESUMEN

We present an in-depth study of the acetylation of benzyl alcohol in the presence of N, N-diisopropylethylamine (DIPEA) by nuclear magnetic resonance (NMR) monitoring of the reaction from 1.5 s to several minutes. We have adapted the NMR setup to be compatible to microreactor technology, scaling down the typical sample volume of commercial NMR probes (500 µL) to a microfluidic stripline setup with 150 nL detection volume. Inline spectra are obtained to monitor the kinetics and unravel the reaction mechanism of this industrially relevant reaction. The experiments are combined with conventional 2D NMR measurements to identify the reaction products. In addition, we replace DIPEA with triethylamine and pyridine to validate the reaction mechanism for different amine catalysts. In all three acetylation reactions, we find that the acetyl ammonium ion is a key intermediate. The formation of ketene is observed during the first minutes of the reaction when tertiary amines were present. The pyridine-catalyzed reaction proceeds via a different mechanism.


Asunto(s)
Alcohol Bencilo/química , Etilaminas/química , Técnicas Analíticas Microfluídicas , Acetilación , Catálisis , Espectroscopía de Resonancia Magnética , Estructura Molecular
7.
Anal Chem ; 91(20): 12636-12643, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31508941

RESUMEN

We present a novel setup that can be used for the in-line monitoring of solid-catalyzed gas-liquid reactions. The method combines the high sensitivity and resolution of a stripline NMR detector with a microfluidic network that can withstand elevated pressures. In our setup we dissolve hydrogen gas in the solvent, then flow it with the added substrate through a catalyst cartridge, and finally flow the reaction mixture directly through the stripline NMR detector. The method is quantitative and can be used to determine the solubility of hydrogen gas in liquids; it allows in-line monitoring of hydrogenation reactions and can be used to determine the reaction kinetics of these reactions. In this work, as proof of concept we demonstrate the optimization of the Pd-catalyzed hydrogenation reactions of styrene, phenylacetylene, cyclohexene, and hex-5-en-2-one in a microfluidic context.

8.
Solid State Nucl Magn Reson ; 100: 36-44, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30927717

RESUMEN

Recent advances in the development of perovskite based solar cells have increased the demand for in-depth characterisation of the perovskite structures and the dynamics of their various constituents in relation to the potential impact on the photovoltaic performance. NMR can play an important role in this respect; NMR has been used to study the incorporation of different ionic species, characterize their internal dynamics and diffusion, and monitor the chemical stability of these technologically relevant materials, including upcoming lower dimensional perovskite materials. Furthermore, the flexibility of NMR allows the study of the materials under relevant conditions e.g. under illumination. Here we present an overview of the recent literature on NMR of (hybrid) halide perovskites, focusing on the insights that NMR can provide.

9.
Chemphyschem ; 19(22): 3107-3115, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30221826

RESUMEN

Over the last years, several different pathways have been suggested for producing perovskite thin films for solar cell applications. While the merit of these methods with respect to the solar cell efficiency have been shown, the actual composition of the resulting thin films is often not investigated. Here, we show that methylammonium lead iodide films produced using lead acetate as a lead source can have up to 15 % dimethylammonium incorporated into their crystal structure, even though this ion is often consider to be too large for incorporation. The origin of this ion lies in the precursor solution, where it is formed in a reaction that is facilitated by the basic character of the acetate ions. We further show that these dimethylammonium ions are incorporated in a random fashion throughout the crystal structure, owing to the lack of observable ordered domains.

10.
Phys Chem Chem Phys ; 20(12): 7974-7988, 2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29511750

RESUMEN

The most commonly used cocatalyst species in Ziegler-Natta catalysts are aluminium alkyls. In this study we aim to find the interaction between aluminium centres of these activators and other components in the ZNC system. Initially we look at binary systems of Al-alkyl/MgCl2 and ternary systems of Al-alkyl/MgCl2/TiCl4, followed by donor containing systems. The aluminium alkyls prove to be very reactive species and only in the case of trimethylaluminium the alkyl is strongly present in the sample. This species appears to convert, however, over time. 1H NMR proves to be an efficient method to detect the presence of the Al-alkyl species. The use of high magnetic field strengths and 27Al MQMAS NMR alleviates signal overlap and gives insight in the dominant line broadening mechanisms thus providing an in-depth view of the cocatalyst. Various Al species with different coordinations can be identified in the samples. The heterogeneity of the samples turns out to have a larger effect on the 27Al NMR spectra than the quadrupolar interaction, which argues against the presence of highly distorted sites with mixed coordinations. Nevertheless for the samples indicating the presence of alkyls in the 1H NMR spectra, we observe an aluminium site at 97 ppm in the 27Al spectra that might be coordinated to an organic group.

11.
Phys Chem Chem Phys ; 20(48): 30174-30188, 2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30484791

RESUMEN

19F nuclei are useful labels in solid-state NMR studies, since their chemical shift and tensor elements are very sensitive to the electrostatic and space-filling properties of their local environment. In this study we have exploited a fluorine substituent, strategically placed at the C-12-position of 11-cis retinal, the chromophore of visual rhodopsins. This label was used to explore the local environment of the chromophore in the ground state of bovine rhodopsin and its active photo-intermediate Meta II. In addition, the chemical shift and tensor elements of the chromophore in the free state in a membrane environment and the bound state in the protein were determined. Upon binding of the chromophore into rhodopsin and Meta II, the isotropic chemical shift changes in the opposite direction by +9.7 and -8.4 ppm, respectively. An unusually large isotropic shift difference of 35.9 ppm was observed between rhodopsin and Meta II. This partly originates in the light-triggered 11-cis to all-trans isomerization of the chromophore. The other part reflects the local conformational rearrangements in the chromophore and the binding pocket. These NMR data were correlated with the available X-ray structures of rhodopsin and Meta II using bond polarization theory. For this purpose hydrogen atoms have to be inserted and hereto a family of structures were derived that best correlated with the well-established 13C chemical shifts. Based upon these structures, a 12-F derivative was obtained that best corresponded with the experimentally determined 19F chemical shifts and tensor elements. The combined data indicate strong changes in the local environment of the C-12 position and a substantially different interaction pattern with the protein in Meta II as compared to rhodopsin.


Asunto(s)
Retinaldehído/análogos & derivados , Retinaldehído/química , Rodopsina/química , Animales , Bovinos , Flúor/química , Luz , Espectroscopía de Resonancia Magnética , Modelos Químicos , Retinaldehído/efectos de la radiación , Rodopsina/aislamiento & purificación , Rodopsina/efectos de la radiación
12.
Anal Chem ; 89(4): 2296-2303, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28194934

RESUMEN

Microfluidic stripline NMR technology not only allows for NMR experiments to be performed on small sample volumes in the submicroliter range, but also experiments can easily be performed in continuous flow because of the stripline's favorable geometry. In this study we demonstrate the possibility of dual-channel operation of a microfluidic stripline NMR setup showing one- and two-dimensional 1H, 13C and heteronuclear NMR experiments under continuous flow. We performed experiments on ethyl crotonate and menthol, using three different types of NMR chips aiming for straightforward microfluidic connectivity. The detection volumes are approximately 150 and 250 nL, while flow rates ranging from 0.5 µL/min to 15 µL/min have been employed. We show that in continuous flow the pulse delay is determined by the replenishment time of the detector volume, if the sample trajectory in the magnet toward NMR detector is long enough to polarize the spin systems. This can considerably speed up quantitative measurement of samples needing signal averaging. So it can be beneficial to perform continuous flow measurements in this setup for analysis of, e.g., reactive, unstable, or mass-limited compounds.

13.
Chemphyschem ; 18(4): 394-405, 2017 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-28111874

RESUMEN

Factors affecting the performance of 1 H heteronuclear decoupling sequences for magic-angle spinning (MAS) NMR spectroscopy of organic solids are explored, as observed by time constants for the decay of nuclear magnetisation under a spin-echo (T2' ). By using a common protocol over a wide range of experimental conditions, including very high magnetic fields and very high radio-frequency (RF) nutation rates, decoupling performance is observed to degrade consistently with increasing magnetic field. Inhomogeneity of the RF field is found to have a significant impact on T2' values, with differences of about 20 % observed between probes with different coil geometries. Increasing RF nutation rates dramatically improve robustness with respect to RF offset, but the performance of phase-modulated sequences degrades at the very high nutation rates achievable in microcoils as a result of RF transients. The insights gained provide better understanding of the factors limiting decoupling performance under different conditions, and the high values of T2' observed (which generally exceed previous literature values) provide reference points for experiments involving spin magnetisation refocussing, such as 2D correlation spectra and measuring small spin couplings.

14.
J Am Chem Soc ; 138(35): 11192-201, 2016 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-27511442

RESUMEN

One of the main challenges of all-solid-state Li-ion batteries is the restricted power density due to the poor Li-ion transport between the electrodes via the electrolyte. However, to establish what diffusional process is the bottleneck for Li-ion transport requires the ability to distinguish the various processes. The present work investigates the Li-ion diffusion in argyrodite Li6PS5Cl, a promising electrolyte based on its high Li-ion conductivity, using a combination of (7)Li NMR experiments and DFT based molecular dynamics simulations. This allows us to distinguish the local Li-ion mobility from the long-range Li-ion motional process, quantifying both and giving a coherent and consistent picture of the bulk diffusion in Li6PS5Cl. NMR exchange experiments are used to unambiguously characterize Li-ion transport over the solid electrolyte-electrode interface for the electrolyte-electrode combination Li6PS5Cl-Li2S, giving unprecedented and direct quantitative insight into the impact of the interface on Li-ion charge transport in all-solid-state batteries. The limited Li-ion transport over the Li6PS5Cl-Li2S interface, orders of magnitude smaller compared with that in the bulk Li6PS5Cl, appears to be the bottleneck for the performance of the Li6PS5Cl-Li2S battery, quantifying one of the major challenges toward improved performance of all-solid-state batteries.

15.
Phys Chem Chem Phys ; 18(6): 4902-10, 2016 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-26806199

RESUMEN

To be able to study mass-limited samples and small single crystals, a triple resonance micro-magic angle spinning (µMAS) probehead for the application of high-resolution solid-state NMR of nanoliter samples was developed. Due to its excellent rf performance this allows us to explore the limits of proton NMR resolution in strongly coupled solids. Using homonuclear decoupling we obtain unprecedented (1)H linewidths for a single crystal of glycine (Δν(CH2) = 0.14 ppm) at high field (20 T) in a directly detected spectrum. The triple channel design allowed the recording of high-resolution µMAS (13)C-(15)N correlations of [U-(13)C-(15)N] arginine HCl and shows that the superior (1)H resolution opens the way for high-sensitivity inverse detection of heteronuclei even at moderate spinning speeds and rf-fields. Efficient decoupling leads to long coherence times which can be exploited in many correlation experiments.

16.
Analyst ; 140(18): 6217-21, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26229986

RESUMEN

A protocol is presented for offline microfluidic NMR analysis hyphenated with supercritical chromatographic separation. The method demonstrates quantitative detection with good sensitivity. Typical sample amounts of 10 nanomoles can be detected in a fast and cost-effective manner.

17.
Solid State Nucl Magn Reson ; 68-69: 37-56, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25957882

RESUMEN

Ziegler-Natta catalysts are the workhorses of polyolefin production. However, although they have been used and intensively studied for half a century, there is still no comprehensive picture of their mechanistic operation. New techniques are needed to gain more insight in these catalysts. Solid-state NMR has reached a high level of sophistication over the last few decades and holds great promise for providing a deeper insight in Ziegler-Natta catalysis. This review outlines the possibilities for solid-state NMR to characterize the different components and interactions in Ziegler-Natta and metallocene catalysts. An overview is given of some of the expected mechanisms and the resulting polymer microstructure and other characteristics. In the second part of this review we present studies that have used solid-state NMR to investigate the composition of Ziegler-Natta and metallocene catalysts or the interactions between their components.

18.
J Magn Reson ; 361: 107666, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38537481

RESUMEN

In situ NMR is a valuable tool for studying electrochemical devices, including redox flow batteries and electrocatalytic reactors, capable of detecting reaction intermediates, metastable states, time evolution of processes or monitoring stability as a function of electrochemical conditions. Here we report a parallel line detector for spatially selective in situ electrochemical NMR spectroscopy. The detector consists of 17 copper wires and is doubly tuned to 1H/19F and X nuclei ranging from 63Cu (106.1 MHz) to 7Li (155.5 MHz). The flat geometry of the parallel line detector allows its insertion into a high electrode surface-to-volume electrochemical flow reactor, enabling a detector-in-a-reactor design. This integrated device is named "eReactor NMR probe". Combined with B1-selective pulse sequences, selective detection of the nuclei at the electrode-electrolyte interface, that is within a distance of 800 µm from the electrode surface, has been achieved. The selective detection of 7Li and 19F nuclei is demonstrated using two electrolytes, LiCl and LiBF4 solutions, respectively. A good B1 homogeneity with an 810° to 90° pulse intensity ratio of 68-72 % was achieved. Using electrochemical plating of lithium metal as a model reaction, we further demonstrated the operando functionality of the probe. The new eReactor NMR probe offers a general method for studying flow electrochemistry, and we envision applications in a wide range of environmentally relevant energy systems, for example, Li metal batteries, electrochemical ammonia synthesis, carbon dioxide capture and reduction, redox flow batteries, fuel cells, water desalination, lignin oxidation etc.

19.
Anal Bioanal Chem ; 405(21): 6711-20, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23812883

RESUMEN

Flow-through electrochemical conversion (EC) of drug-like molecules was hyphenated to miniaturized nuclear magnetic resonance spectroscopy (NMR) via on-line solid-phase extraction (SPE). After EC of the prominent p38α mitogen-activated protein kinase inhibitor BIRB796 into its reactive products, the SPE step provided preconcentration of the EC products and solvent exchange for NMR analysis. The acquisition of NMR spectra of the mass-limited samples was achieved in a stripline probe with a detection volume of 150 nL offering superior mass sensitivity. This hyphenated EC-SPE-stripline-NMR setup enabled the detection of the reactive products using only minute amounts of substrate. Furthermore, the integration of conversion and detection into one flow setup counteracts incorrect assessments caused by the degradation of reactive products. However, apparent interferences of the NMR magnetic field with the EC, leading to a low product yield, so far demanded relatively long signal averaging. A critical assessment of what is and what is not (yet) possible with this approach is presented, for example in terms of structure elucidation and the estimation of concentrations. Additionally, promising routes for further improvement of EC-SPE-stripline-NMR are discussed.


Asunto(s)
Electroquímica/instrumentación , Análisis de Inyección de Flujo/métodos , Espectroscopía de Resonancia Magnética/instrumentación , Proteína Quinasa 14 Activada por Mitógenos/análisis , Proteína Quinasa 14 Activada por Mitógenos/química , Extracción en Fase Sólida/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Estudios de Factibilidad , Miniaturización , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
J Magn Reson ; 351: 107448, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37099853

RESUMEN

Redox flow batteries (RFBs) provide a promising battery technology for grid-scale energy storage. High-field operando NMR analyses of RFBs have yielded useful insight into their working mechanisms and helped improve battery performance. Nevertheless, the high cost and large footprint of a high-field NMR system limit its implementation by a wider electrochemistry community. Here, we demonstrate an operando NMR study of an anthraquinone/ferrocyanide-based RFB on a low-cost and compact 43 MHz benchtop system. The chemical shifts induced by bulk magnetic susceptibility effects differ remarkably from those obtained in high-field NMR experiments, due to the different orientations of the sample relative to the external magnetic field. We apply Evans method to estimate the concentrations of paramagnetic anthraquinone radical and ferricyanide anions. The degradation of 2,6-dihydroxy-anthraquinone (DHAQ) to 2,6-dihydroxy-anthrone and 2,6-dihydroxy-anthranol has been quantified. We further identified the impurities commonly present in the DHAQ solution to be acetone, methanol and formamide. The crossover of DHAQ and impurity molecules through the sseparation Nafion® membrane was captured and quantified, and a negative correlation between the molecular size and crossover rate was established. We show that a benchtop NMR system has sufficient spectral and temporal resolution and sensitivity for the operando study of RFBs, and anticipate a broad application of operando benchtop NMR methods for studying flow electrochemistry targeted for different applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA