RESUMEN
During mammalian development, differences in chromatin state coincide with cellular differentiation and reflect changes in the gene regulatory landscape1. In the developing brain, cell fate specification and topographic identity are important for defining cell identity2 and confer selective vulnerabilities to neurodevelopmental disorders3. Here, to identify cell-type-specific chromatin accessibility patterns in the developing human brain, we used a single-cell assay for transposase accessibility by sequencing (scATAC-seq) in primary tissue samples from the human forebrain. We applied unbiased analyses to identify genomic loci that undergo extensive cell-type- and brain-region-specific changes in accessibility during neurogenesis, and an integrative analysis to predict cell-type-specific candidate regulatory elements. We found that cerebral organoids recapitulate most putative cell-type-specific enhancer accessibility patterns but lack many cell-type-specific open chromatin regions that are found in vivo. Systematic comparison of chromatin accessibility across brain regions revealed unexpected diversity among neural progenitor cells in the cerebral cortex and implicated retinoic acid signalling in the specification of neuronal lineage identity in the prefrontal cortex. Together, our results reveal the important contribution of chromatin state to the emerging patterns of cell type diversity and cell fate specification and provide a blueprint for evaluating the fidelity and robustness of cerebral organoids as a model for cortical development.
Asunto(s)
Encéfalo/citología , Epigenómica , Neurogénesis , Análisis de la Célula Individual , Atlas como Asunto , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Susceptibilidad a Enfermedades , Elementos de Facilitación Genéticos , Humanos , Neuronas/citología , Neuronas/metabolismo , Organoides/citología , Tretinoina/metabolismoRESUMEN
Efforts to genetically reverse C9orf72 pathology have been hampered by our incomplete understanding of the regulation of this complex locus. We generated five different genomic excisions at the C9orf72 locus in a patient-derived induced pluripotent stem cell (iPSC) line and a non-diseased wild-type (WT) line (11 total isogenic lines), and examined gene expression and pathological hallmarks of C9 frontotemporal dementia/amyotrophic lateral sclerosis in motor neurons differentiated from these lines. Comparing the excisions in these isogenic series removed the confounding effects of different genomic backgrounds and allowed us to probe the effects of specific genomic changes. A coding single nucleotide polymorphism in the patient cell line allowed us to distinguish transcripts from the normal vs. mutant allele. Using digital droplet PCR (ddPCR), we determined that transcription from the mutant allele is upregulated at least 10-fold, and that sense transcription is independently regulated from each allele. Surprisingly, excision of the WT allele increased pathologic dipeptide repeat poly-GP expression from the mutant allele. Importantly, a single allele was sufficient to supply a normal amount of protein, suggesting that the C9orf72 gene is haplo-sufficient in induced motor neurons. Excision of the mutant repeat expansion reverted all pathology (RNA abnormalities, dipeptide repeat production, and TDP-43 pathology) and improved electrophysiological function, whereas silencing sense expression did not eliminate all dipeptide repeat proteins, presumably because of the antisense expression. These data increase our understanding of C9orf72 gene regulation and inform gene therapy approaches, including antisense oligonucleotides (ASOs) and CRISPR gene editing.
Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Alelos , Esclerosis Amiotrófica Lateral/metabolismo , Demencia Frontotemporal/metabolismo , Neuronas Motoras/metabolismo , Mutación , Expansión de las Repeticiones de ADN/genética , Dipéptidos/metabolismoRESUMEN
The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of COVID-19. The main receptor of SARS-CoV-2, angiotensin I converting enzyme 2 (ACE2), is now undergoing extensive scrutiny to understand the routes of transmission and sensitivity in different species. Here, we utilized a unique dataset of ACE2 sequences from 410 vertebrate species, including 252 mammals, to study the conservation of ACE2 and its potential to be used as a receptor by SARS-CoV-2. We designed a five-category binding score based on the conservation properties of 25 amino acids important for the binding between ACE2 and the SARS-CoV-2 spike protein. Only mammals fell into the medium to very high categories and only catarrhine primates into the very high category, suggesting that they are at high risk for SARS-CoV-2 infection. We employed a protein structural analysis to qualitatively assess whether amino acid changes at variable residues would be likely to disrupt ACE2/SARS-CoV-2 spike protein binding and found the number of predicted unfavorable changes significantly correlated with the binding score. Extending this analysis to human population data, we found only rare (frequency <0.001) variants in 10/25 binding sites. In addition, we found significant signals of selection and accelerated evolution in the ACE2 coding sequence across all mammals, and specific to the bat lineage. Our results, if confirmed by additional experimental data, may lead to the identification of intermediate host species for SARS-CoV-2, guide the selection of animal models of COVID-19, and assist the conservation of animals both in native habitats and in human care.
Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/metabolismo , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/genética , Neumonía Viral/metabolismo , Aminoácidos , Animales , Betacoronavirus/metabolismo , Sitios de Unión , COVID-19 , Infecciones por Coronavirus/virología , Evolución Molecular , Variación Genética , Especificidad del Huésped , Humanos , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/virología , Unión Proteica , Receptores Virales/química , Receptores Virales/genética , Receptores Virales/metabolismo , SARS-CoV-2 , Selección Genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , VertebradosRESUMEN
On August 4, 2014, the Acute Communicable Disease Control Program of the Los Angeles County Department of Public Health received a report of three aseptic meningitis cases among football players at a county high school. An investigation was conducted to determine the extent of the outbreak, identify potential exposures, and recommend control measures. An outbreak-associated aseptic meningitis case was defined as an illness of any team or family member with onset during July 28-August 11 with 1) cerebrospinal fluid pleocytosis and negative bacterial culture or 2) an emergency department visit with headache, fever, and stiff neck. Ten cases were identified; nine in males, and one in a female; patient ages ranged from 13 to 17 years. All the patients sought care at an emergency department, and five were hospitalized, resulting in 12 total hospital days. All 10 patients have recovered. Eight patients were football players, and two were siblings of football players. The most affected subgroup was the junior varsity football team, with seven cases out of 57 players (attack rate = 12.3%); the relative risk for aseptic meningitis was higher among players who were linemen than among those who were not linemen (relative risk = 5.4 [p = 0.03]). Of the 10 patients, eight tested positive by polymerase chain reaction for enterovirus, and two were not tested. Echovirus testing was performed at the California Viral and Rickettsial Disease Laboratory. Of the eight specimens testing positive for enterovirus, seven tested positive for echovirus 30, and one specimen could not be typed because of insufficient quantity.
Asunto(s)
Brotes de Enfermedades , Infecciones por Echovirus/epidemiología , Enterovirus Humano B/aislamiento & purificación , Meningitis Aséptica/diagnóstico , Meningitis Aséptica/epidemiología , Adolescente , Infecciones por Echovirus/virología , Femenino , Fútbol Americano , Humanos , Los Angeles/epidemiología , Masculino , Instituciones AcadémicasRESUMEN
The activation state of many blood and vascular cells is tightly controlled by a delicate balance between receptors that contain immunoreceptor tyrosine-based activation motifs (ITAMs) and those that contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Precisely how the timing of cellular activation by ITAM-coupled receptors is regulated by ITIM-containing receptors is, however, poorly understood. Using platelet endothelial cell adhesion molecule 1 (PECAM-1) as a prototypical ITIM-bearing receptor, we demonstrate that initiation of inhibitory signaling occurs via a novel, sequential process in which Src family kinases phosphorylate the C-terminal ITIM, thereby enabling phosphorylation of the N-terminal ITIM of PECAM-1 by other Src homology 2 domain-containing nonreceptor tyrosine kinases (NRTKs). NRTKs capable of mediating the second phosphorylation event include C-terminal Src kinase (Csk) and Bruton's tyrosine kinase (Btk). Btk and Csk function downstream of phosphatidylinositol 3-kinase (PI3K) activation during ITAM-dependent platelet activation. In ITAM-activated platelets that were treated with a PI3K inhibitor, PECAM-1 was phosphorylated but did not bind the tandem SH2 domain-containing tyrosine phosphatase SHP-2, indicating that it was not phosphorylated on its N-terminal ITIM. Csk bound to and phosphorylated PECAM-1 more efficiently than did Btk and required its SH2 domain to perform these functions. Additionally, the phosphorylation of the N-terminal ITIM of Siglec-9 by Csk is enhanced by the prior phosphorylation of its C-terminal ITIM, providing evidence that the ITIMs of other dual ITIM-containing receptors are also sequentially phosphorylated. On the basis of these findings, we propose that sequential ITIM phosphorylation provides a general mechanism for precise temporal control over the recruitment and activation of tandem SH2 domain-containing tyrosine phosphatases that dampen ITAM-dependent signals.
Asunto(s)
Plaquetas/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Transducción de Señal , Agammaglobulinemia Tirosina Quinasa , Secuencias de Aminoácidos , Proteína Tirosina Quinasa CSK , Citoplasma/metabolismo , Humanos , Fosfopéptidos/metabolismo , Fosforilación , Glicoproteínas de Membrana Plaquetaria/metabolismo , Estructura Terciaria de Proteína , Proteínas Tirosina Quinasas/metabolismo , Dominios Homologos src , Familia-src Quinasas/metabolismoRESUMEN
Human accelerated regions (HARs) are conserved genomic loci that evolved at an accelerated rate in the human lineage and may underlie human-specific traits. We generated HARs and chimpanzee accelerated regions with an automated pipeline and an alignment of 241 mammalian genomes. Combining deep learning with chromatin capture experiments in human and chimpanzee neural progenitor cells, we discovered a significant enrichment of HARs in topologically associating domains containing human-specific genomic variants that change three-dimensional (3D) genome organization. Differential gene expression between humans and chimpanzees at these loci suggests rewiring of regulatory interactions between HARs and neurodevelopmental genes. Thus, comparative genomics together with models of 3D genome folding revealed enhancer hijacking as an explanation for the rapid evolution of HARs.
Asunto(s)
Sitios Genéticos , Neurogénesis , Animales , Humanos , Cromatina/genética , Genoma Humano , Genómica , Pan troglodytes/genética , Neurogénesis/genética , Aprendizaje ProfundoRESUMEN
BACKGROUND: Association of chromatin with lamin proteins at the nuclear periphery has emerged as a potential mechanism to coordinate cell type-specific gene expression and maintain cellular identity via gene silencing. Unlike many histone modifications and chromatin-associated proteins, lamina-associated domains (LADs) are mapped genome-wide in relatively few genetically normal human cell types, which limits our understanding of the role peripheral chromatin plays in development and disease. RESULTS: To address this gap, we map LAMIN B1 occupancy across twelve human cell types encompassing pluripotent stem cells, intermediate progenitors, and differentiated cells from all three germ layers. Integrative analyses of this atlas with gene expression and repressive histone modification maps reveal that lamina-associated chromatin in all twelve cell types is organized into at least two subtypes defined by differences in LAMIN B1 occupancy, gene expression, chromatin accessibility, transposable elements, replication timing, and radial positioning. Imaging of fluorescently labeled DNA in single cells validates these subtypes and shows radial positioning of LADs with higher LAMIN B1 occupancy and heterochromatic histone modifications primarily embedded within the lamina. In contrast, the second subtype of lamina-associated chromatin is relatively gene dense, accessible, dynamic across development, and positioned adjacent to the lamina. Most genes gain or lose LAMIN B1 occupancy consistent with cell types along developmental trajectories; however, we also identify examples where the enhancer, but not the gene body and promoter, changes LAD state. CONCLUSIONS: Altogether, this atlas represents the largest resource to date for peripheral chromatin organization studies and reveals an intermediate chromatin subtype.
Asunto(s)
Cromatina , Lámina Nuclear , Humanos , Cromatina/metabolismo , Lámina Nuclear/genética , Núcleo Celular/genética , Ensamble y Desensamble de Cromatina , Diferenciación CelularRESUMEN
Using machine learning (ML), we interrogated the function of all human-chimpanzee variants in 2,645 human accelerated regions (HARs), finding 43% of HARs have variants with large opposing effects on chromatin state and 14% on neurodevelopmental enhancer activity. This pattern, consistent with compensatory evolution, was confirmed using massively parallel reporter assays in chimpanzee and human neural progenitor cells. The species-specific enhancer activity of HARs was accurately predicted from the presence and absence of transcription factor footprints in each species. Despite these striking cis effects, activity of a given HAR sequence was nearly identical in human and chimpanzee cells. This suggests that HARs did not evolve to compensate for changes in the trans environment but instead altered their ability to bind factors present in both species. Thus, ML prioritized variants with functional effects on human neurodevelopment and revealed an unexpected reason why HARs may have evolved so rapidly.
Asunto(s)
Encéfalo , Elementos de Facilitación Genéticos , Pan troglodytes , Animales , Humanos , Cromatina , Aprendizaje Automático , Pan troglodytes/metabolismo , Factores de Transcripción/genética , Encéfalo/crecimiento & desarrolloRESUMEN
Although thousands of genomic regions have been associated with heritable human diseases, attempts to elucidate biological mechanisms are impeded by a general inability to discern which genomic positions are functionally important. Evolutionary constraint is a powerful predictor of function that is agnostic to cell type or disease mechanism. Here, single base phyloP scores from the whole genome alignment of 240 placental mammals identified 3.5% of the human genome as significantly constrained, and likely functional. We compared these scores to large-scale genome annotation, genome-wide association studies (GWAS), copy number variation, clinical genetics findings, and cancer data sets. Evolutionarily constrained positions are enriched for variants explaining common disease heritability (more than any other functional annotation). Our results improve variant annotation but also highlight that the regulatory landscape of the human genome still needs to be further explored and linked to disease.
RESUMEN
Thousands of genomic regions have been associated with heritable human diseases, but attempts to elucidate biological mechanisms are impeded by an inability to discern which genomic positions are functionally important. Evolutionary constraint is a powerful predictor of function, agnostic to cell type or disease mechanism. Single-base phyloP scores from 240 mammals identified 3.3% of the human genome as significantly constrained and likely functional. We compared phyloP scores to genome annotation, association studies, copy-number variation, clinical genetics findings, and cancer data. Constrained positions are enriched for variants that explain common disease heritability more than other functional annotations. Our results improve variant annotation but also highlight that the regulatory landscape of the human genome still needs to be further explored and linked to disease.
Asunto(s)
Enfermedad , Variación Genética , Animales , Humanos , Evolución Biológica , Genoma Humano , Estudio de Asociación del Genoma Completo , Genómica , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Enfermedad/genéticaRESUMEN
Zoonomia is the largest comparative genomics resource for mammals produced to date. By aligning genomes for 240 species, we identify bases that, when mutated, are likely to affect fitness and alter disease risk. At least 332 million bases (~10.7%) in the human genome are unusually conserved across species (evolutionarily constrained) relative to neutrally evolving repeats, and 4552 ultraconserved elements are nearly perfectly conserved. Of 101 million significantly constrained single bases, 80% are outside protein-coding exons and half have no functional annotations in the Encyclopedia of DNA Elements (ENCODE) resource. Changes in genes and regulatory elements are associated with exceptional mammalian traits, such as hibernation, that could inform therapeutic development. Earth's vast and imperiled biodiversity offers distinctive power for identifying genetic variants that affect genome function and organismal phenotypes.
Asunto(s)
Euterios , Evolución Molecular , Animales , Femenino , Humanos , Secuencia Conservada/genética , Euterios/genética , Genoma HumanoRESUMEN
The novel coronavirus SARS-CoV-2 is the cause of Coronavirus Disease-2019 (COVID-19). The main receptor of SARS-CoV-2, angiotensin I converting enzyme 2 (ACE2), is now undergoing extensive scrutiny to understand the routes of transmission and sensitivity in different species. Here, we utilized a unique dataset of 410 vertebrates, including 252 mammals, to study cross-species conservation of ACE2 and its likelihood to function as a SARS-CoV-2 receptor. We designed a five-category ranking score based on the conservation properties of 25 amino acids important for the binding between receptor and virus, classifying all species from very high to very low. Only mammals fell into the medium to very high categories, and only catarrhine primates in the very high category, suggesting that they are at high risk for SARS-CoV-2 infection. We employed a protein structural analysis to qualitatively assess whether amino acid changes at variable residues would be likely to disrupt ACE2/SARS-CoV-2 binding, and found the number of predicted unfavorable changes significantly correlated with the binding score. Extending this analysis to human population data, we found only rare (<0.1%) variants in 10/25 binding sites. In addition, we observed evidence of positive selection in ACE2 in multiple species, including bats. Utilized appropriately, our results may lead to the identification of intermediate host species for SARS-CoV-2, justify the selection of animal models of COVID-19, and assist the conservation of animals both in native habitats and in human care.
RESUMEN
The CRISPR/Cas system is a highly specific genome editing tool capable of distinguishing alleles differing by even a single base pair. Target sites might carry genetic variations that are not distinguishable by sgRNA designing tools based on one reference genome. AlleleAnalyzer is an open-source software that incorporates single-nucleotide variants and short insertions and deletions to design sgRNAs for precisely editing 1 or multiple haplotypes of a sequenced genome, currently supporting 11 Cas proteins. It also leverages patterns of shared genetic variation to optimize sgRNA design for different human populations. AlleleAnalyzer is available at https://github.com/keoughkath/AlleleAnalyzer .