Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nature ; 578(7795): 425-431, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32051592

RESUMEN

Bacteriophages typically have small genomes1 and depend on their bacterial hosts for replication2. Here we sequenced DNA from diverse ecosystems and found hundreds of phage genomes with lengths of more than 200 kilobases (kb), including a genome of 735 kb, which is-to our knowledge-the largest phage genome to be described to date. Thirty-five genomes were manually curated to completion (circular and no gaps). Expanded genetic repertoires include diverse and previously undescribed CRISPR-Cas systems, transfer RNAs (tRNAs), tRNA synthetases, tRNA-modification enzymes, translation-initiation and elongation factors, and ribosomal proteins. The CRISPR-Cas systems of phages have the capacity to silence host transcription factors and translational genes, potentially as part of a larger interaction network that intercepts translation to redirect biosynthesis to phage-encoded functions. In addition, some phages may repurpose bacterial CRISPR-Cas systems to eliminate competing phages. We phylogenetically define the major clades of huge phages from human and other animal microbiomes, as well as from oceans, lakes, sediments, soils and the built environment. We conclude that the large gene inventories of huge phages reflect a conserved biological strategy, and that the phages are distributed across a broad bacterial host range and across Earth's ecosystems.


Asunto(s)
Bacterias/virología , Bacteriófagos/clasificación , Bacteriófagos/genética , Planeta Tierra , Ecosistema , Genoma Viral/genética , Filogenia , Aminoacil-ARNt Sintetasas/genética , Animales , Bacterias/genética , Bacteriófagos/aislamiento & purificación , Bacteriófagos/metabolismo , Biodiversidad , Sistemas CRISPR-Cas/genética , Evolución Molecular , Regulación Bacteriana de la Expresión Génica , Regulación Viral de la Expresión Génica , Especificidad del Huésped , Humanos , Lagos/virología , Anotación de Secuencia Molecular , Océanos y Mares , Profagos/genética , Biosíntesis de Proteínas , ARN de Transferencia/genética , Proteínas Ribosómicas/genética , Agua de Mar/virología , Microbiología del Suelo , Transcripción Genética
2.
Proc Natl Acad Sci U S A ; 115(8): 1718-1723, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29439203

RESUMEN

Marine sponges are prolific sources of unique bioactive natural products. The sponge Theonella swinhoei is represented by several distinct variants with largely nonoverlapping chemistry. For the Japanese chemotype Y harboring diverse complex polyketides and peptides, we previously provided genomic and functional evidence that a single symbiont, the filamentous, multicellular organism "Candidatus Entotheonella factor," produces almost all of these compounds. To obtain further insights into the chemistry of "Entotheonella," we investigated another phylotype, "Candidatus Entotheonella serta," present in the T. swinhoei WA sponge chemotype, a source of theonellamide- and misakinolide-type compounds. Unexpectedly, considering the lower chemical diversity, sequencing of individual bacterial filaments revealed an even larger number of biosynthetic gene regions than for Ca E. factor, with virtually no overlap. These included genes for misakinolide and theonellamide biosynthesis, the latter assigned by comparative genomic and metabolic analysis of a T. swinhoei chemotype from Israel, and by biochemical studies. The data suggest that both compound families, which were among the earliest model substances to study bacterial producers in sponges, originate from the same bacterium in T. swinhoei WA. They also add evidence that metabolic richness and variability could be a more general feature of Entotheonella symbionts.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Simbiosis , Theonella/microbiología , Animales , Bacterias/química , Bacterias/genética , Bacterias/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Genoma Bacteriano , Genómica , Policétidos/metabolismo , Theonella/química , Theonella/fisiología
3.
Environ Microbiol ; 20(2): 800-814, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29194919

RESUMEN

Sponges are benthic filter feeders that play pivotal roles in coupling benthic-pelagic processes in the oceans that involve transformation of dissolved and particulate organic carbon and nitrogen into biomass. While the contribution of sponge holobionts to the nitrogen cycle has been recognized in past years, their importance in the sulfur cycle, both oceanic and physiological, has only recently gained attention. Sponges in general, and Theonella swinhoei in particular, harbour a multitude of associated microorganisms that could affect sulfur cycling within the holobiont. We reconstructed the genome of a Chromatiales (class Gammaproteobacteria) bacterium from a metagenomic sequence dataset of a T. swinhoei-associated microbial community. This relatively abundant bacterium has the metabolic capability to oxidize sulfide yet displays reduced metabolic potential suggestive of its lifestyle as an obligatory symbiont. This bacterium was detected in multiple sponge orders, according to similarities in key genes such as 16S rRNA and polyketide synthase genes. Due to its sulfide oxidation metabolism and occurrence in many members of the Porifera phylum, we suggest naming the newly described taxon Candidatus Porisulfidus.


Asunto(s)
Gammaproteobacteria , Poríferos/microbiología , Sulfuros/metabolismo , Azufre/metabolismo , Animales , Gammaproteobacteria/clasificación , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Genoma Bacteriano/genética , Océano Índico , Microbiota/genética , Nitrógeno/metabolismo , Océanos y Mares , Oxidación-Reducción , Filogenia , Sintasas Poliquetidas/genética , ARN Ribosómico 16S/genética , Simbiosis/fisiología
4.
Microb Ecol ; 71(4): 873-86, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26809776

RESUMEN

Theonella swinhoei is an arsenic hyper-accumulator sponge, harboring a multitude of associated bacteria. These bacteria reside in the mesohyl, the dense extracellular matrix of the sponge. Previous elemental analysis of separated cell fractions from the sponge had determined that arsenic is localized to the associated bacteria. Subsequently, sponge-associated arsenic-tolerant bacteria were isolated here and grouped into 15 operational taxonomic units (OTUs, 97% similarity). Both culture-dependent and culture-independent work had revealed that T. swinhoei harbors a highly diverse bacterial community. It was thus hypothesized the acclimation of bacteria in the presence of a sponge skeleton, better mimicking its natural environment, would increase the yield of isolation of sponge-associated bacteria. Using seven modularly designed media, 380 bacteria isolates were grown and grouped into 22 OTUs. Inclusion of sponge skeleton in the growth medium promoted bacterial growth in all seven media, accounting for 20 of the 22 identified OTUs (the other two in a medium without skeleton). Diversity and richness indices were calculated for each treatment or combination of treatments with shared growth parameters. Integrating data inherent in the modularly designed media with the ecological indices led to the formation of new hypotheses regarding the aeration conditions and expected arsenic form in situ. Both aerobic and anoxic conditions are expected to occur in the sponge (temporally and/or spatially). Arsenate is expected to be the dominant (or even the only) arsenic form in the sponge.


Asunto(s)
Arseniatos/farmacología , Arsenitos/farmacología , Bacterias/efectos de los fármacos , Theonella/microbiología , Animales , Arsénico/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biodiversidad , Medios de Cultivo , Genes Bacterianos , Océano Índico , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar , Simbiosis , Theonella/química
5.
Front Microbiol ; 14: 1243410, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637134

RESUMEN

Anaerobic ammonium oxidizing (anammox) bacteria are utilized for high efficiency nitrogen removal from nitrogen-laden sidestreams in wastewater treatment plants. The anammox bacteria form a variety of competitive and mutualistic interactions with heterotrophic bacteria that often employ denitrification or dissimilatory nitrate reduction to ammonium (DNRA) for energy generation. These interactions can be heavily influenced by the influent ratio of ammonium to nitrite, NH4+:NO2-, where deviations from the widely acknowledged stoichiometric ratio (1:1.32) have been demonstrated to have deleterious effects on anammox efficiency. Thus, it is important to understand how variable NH4+:NO2- ratios impact the microbial ecology of anammox reactors. We observed the response of the microbial community in a lab scale anammox membrane bioreactor (MBR) to changes in the influent NH4+:NO2- ratio using both 16S rRNA gene and shotgun metagenomic sequencing. Ammonium removal efficiency decreased from 99.77 ± 0.04% when the ratio was 1:1.32 (prior to day 89) to 90.85 ± 0.29% when the ratio was decreased to 1:1.1 (day 89-202) and 90.14 ± 0.09% when the ratio was changed to 1:1.13 (day 169-200). Over this same timespan, the overall nitrogen removal efficiency (NRE) remained relatively unchanged (85.26 ± 0.01% from day 0-89, compared to 85.49 ± 0.01% from day 89-169, and 83.04 ± 0.01% from day 169-200). When the ratio was slightly increased to 1:1.17-1:1.2 (day 202-253), the ammonium removal efficiency increased to 97.28 ± 0.45% and the NRE increased to 88.21 ± 0.01%. Analysis of 16 S rRNA gene sequences demonstrated increased relative abundance of taxa belonging to Bacteroidetes, Chloroflexi, and Ignavibacteriae over the course of the experiment. The relative abundance of Planctomycetes, the phylum to which anammox bacteria belong, decreased from 77.19% at the beginning of the experiment to 12.24% by the end of the experiment. Analysis of metagenome assembled genomes (MAGs) indicated increased abundance of bacteria with nrfAH genes used for DNRA after the introduction of lower influent NH4+:NO2- ratios. The high relative abundance of DNRA bacteria coinciding with sustained bioreactor performance indicates a mutualistic relationship between the anammox and DNRA bacteria. Understanding these interactions could support more robust bioreactor operation at variable nitrogen loading ratios.

6.
Comput Struct Biotechnol J ; 20: 559-572, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36284711

RESUMEN

Arsenic is a ubiquitous toxic element, the global cycle of which is highly affected by microbial redox reactions and assimilation into organoarsenic compounds through sequential methylation reactions. While microbial biotransformation of arsenic has been studied for decades, the past years have seen the discovery of multiple new genes related to arsenic metabolism. Still, most studies focus on a small set of key genes or a small set of cultured microorganisms. Here, we leveraged the recently greatly expanded availability of microbial genomes of diverse organisms from lineages lacking cultivated representatives, including those reconstructed from metagenomes, to investigate genetic repertoires of taxonomic and environmental controls on arsenic metabolic capacities. Based on the collection of arsenic-related genes, we identified thirteen distinct metabolic guilds, four of which combine the aio and ars operons. We found that the best studied phyla have very different combinations of capacities than less well-studied phyla, including phyla lacking isolated representatives. We identified a distinct arsenic gene signature in the microbiomes of humans exposed or likely exposed to drinking water contaminated by arsenic and that arsenic methylation is important in soil and in human microbiomes. Thus, the microbiomes of humans exposed to arsenic have the potential to exacerbate arsenic toxicity. Finally, we show that machine learning can predict bacterial arsenic metabolism capacities based on their taxonomy and the environment from which they were sampled.

8.
mBio ; 12(1)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33531396

RESUMEN

In aquifers, acetylene (C2H2) is a product of abiotic degradation of trichloroethene (TCE) catalyzed by in situ minerals. C2H2 can, in turn, inhibit multiple microbial processes including TCE dechlorination and metabolisms that commonly support dechlorination, in addition to supporting the growth of acetylenotrophic microorganisms. Previously, C2H2 was shown to support TCE reductive dechlorination in synthetic, laboratory-constructed cocultures containing the acetylenotroph Pelobacter sp. strain SFB93 and Dehalococcoides mccartyi strain 195 or strain BAV1. In this study, we demonstrate TCE and perchloroethene (PCE) reductive dechlorination by a microbial community enriched from contaminated groundwater and amended with C2H2 as the sole electron donor and organic carbon source. The metagenome of the stable, enriched community was analyzed to elucidate putative community functions. A novel anaerobic acetylenotroph in the phylum Actinobacteria was identified using metagenomic analysis. These results demonstrate that the coupling of acetylenotrophy and reductive dechlorination can occur in the environment with native bacteria and broaden our understanding of biotransformation at contaminated sites containing both TCE and C2H2IMPORTANCE Understanding the complex metabolisms of microbial communities in contaminated groundwaters is a challenge. PCE and TCE are among the most common groundwater contaminants in the United States that, when exposed to certain minerals, exhibit a unique abiotic degradation pathway in which C2H2 is a product. C2H2 can act as both an inhibitor of TCE dechlorination and of supporting metabolisms and an energy source for acetylenotrophic bacteria. Here, we combine laboratory microcosm studies with computational approaches to enrich and characterize an environmental microbial community that couples two uncommon metabolisms, demonstrating unique metabolic interactions only yet reported in synthetic, laboratory-constructed settings. Using this comprehensive approach, we have identified the first reported anaerobic acetylenotroph in the phylum Actinobacteria, demonstrating the yet-undescribed diversity of this metabolism that is widely considered to be uncommon.


Asunto(s)
Acetileno/metabolismo , Actinobacteria/metabolismo , Agua Subterránea , Tricloroetileno/metabolismo , Biodegradación Ambiental , Etano/análogos & derivados , Etano/metabolismo , Agua Subterránea/análisis , Halogenación , Hidrocarburos Clorados/metabolismo , Metagenómica , Microbiota
9.
Nat Microbiol ; 6(3): 354-365, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33495623

RESUMEN

Candidate phyla radiation (CPR) bacteria and DPANN archaea are unisolated, small-celled symbionts that are often detected in groundwater. The effects of groundwater geochemistry on the abundance, distribution, taxonomic diversity and host association of CPR bacteria and DPANN archaea has not been studied. Here, we performed genome-resolved metagenomic analysis of one agricultural and seven pristine groundwater microbial communities and recovered 746 CPR and DPANN genomes in total. The pristine sites, which serve as local sources of drinking water, contained up to 31% CPR bacteria and 4% DPANN archaea. We observed little species-level overlap of metagenome-assembled genomes (MAGs) across the groundwater sites, indicating that CPR and DPANN communities may be differentiated according to physicochemical conditions and host populations. Cryogenic transmission electron microscopy imaging and genomic analyses enabled us to identify CPR and DPANN lineages that reproducibly attach to host cells and showed that the growth of CPR bacteria seems to be stimulated by attachment to host-cell surfaces. Our analysis reveals site-specific diversity of CPR bacteria and DPANN archaea that coexist with diverse hosts in groundwater aquifers. Given that CPR and DPANN organisms have been identified in human microbiomes and their presence is correlated with diseases such as periodontitis, our findings are relevant to considerations of drinking water quality and human health.


Asunto(s)
Archaea/fisiología , Fenómenos Fisiológicos Bacterianos , Ecosistema , Agua Subterránea/microbiología , Metagenómica/métodos , Agricultura , Archaea/clasificación , Archaea/ultraestructura , Bacterias/clasificación , Bacterias/ultraestructura , Adhesión Celular , Proliferación Celular , Agua Subterránea/química , Humanos , Metagenoma , Microbiota , Filogenia , Simbiosis
10.
mBio ; 12(4): e0052121, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34253055

RESUMEN

Candidate Phyla Radiation (CPR) bacteria are small, likely episymbiotic organisms found across Earth's ecosystems. Despite their prevalence, the distribution of CPR lineages across habitats and the genomic signatures of transitions among these habitats remain unclear. Here, we expand the genome inventory for Absconditabacteria (SR1), Gracilibacteria, and Saccharibacteria (TM7), CPR bacteria known to occur in both animal-associated and environmental microbiomes, and investigate variation in gene content with habitat of origin. By overlaying phylogeny with habitat information, we show that bacteria from these three lineages have undergone multiple transitions from environmental habitats into animal microbiomes. Based on co-occurrence analyses of hundreds of metagenomes, we extend the prior suggestion that certain Saccharibacteria have broad bacterial host ranges and constrain possible host relationships for Absconditabacteria and Gracilibacteria. Full-proteome analyses show that animal-associated Saccharibacteria have smaller gene repertoires than their environmental counterparts and are enriched in numerous protein families, including those likely functioning in amino acid metabolism, phage defense, and detoxification of peroxide. In contrast, some freshwater Saccharibacteria encode a putative rhodopsin. For protein families exhibiting the clearest patterns of differential habitat distribution, we compared protein and species phylogenies to estimate the incidence of lateral gene transfer and genomic loss occurring over the species tree. These analyses suggest that habitat transitions were likely not accompanied by large transfer or loss events but rather were associated with continuous proteome remodeling. Thus, we speculate that CPR habitat transitions were driven largely by availability of suitable host taxa and were reinforced by acquisition and loss of some capacities. IMPORTANCE Studying the genetic differences between related microorganisms from different environment types can indicate factors associated with their movement among habitats. This is particularly interesting for bacteria from the Candidate Phyla Radiation because their minimal metabolic capabilities require associations with microbial hosts. We found that shifts of Absconditabacteria, Gracilibacteria, and Saccharibacteria between environmental ecosystems and mammalian mouths/guts probably did not involve major episodes of gene gain and loss; rather, gradual genomic change likely followed habitat migration. The results inform our understanding of how little-known microorganisms establish in the human microbiota where they may ultimately impact health.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Evolución Molecular , Metagenoma , Animales , Ecosistema , Genoma Bacteriano , Genómica , Filogenia , ARN Ribosómico 16S/genética
11.
Microbiome ; 8(1): 7, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31980038

RESUMEN

BACKGROUND: Anaerobic ammonium oxidation (anammox) is a biological process employed to remove reactive nitrogen from wastewater. While a substantial body of literature describes the performance of anammox bioreactors under various operational conditions and perturbations, few studies have resolved the metabolic roles of their core microbial community members. RESULTS: Here, we used metagenomics to study the microbial community of a laboratory-scale anammox bioreactor from inoculation, through a performance destabilization event, to robust steady-state performance. Metabolic analyses revealed that nutrient acquisition from the environment is selected for in the anammox community. Dissimilatory nitrate reduction to ammonium (DNRA) was the primary nitrogen removal pathway that competed with anammox. Increased replication of bacteria capable of DNRA led to the out-competition of anammox bacteria, and the loss of the bioreactor's nitrogen removal capacity. These bacteria were highly associated with the anammox bacterium and considered part of the core microbial community. CONCLUSIONS: Our findings highlight the importance of metabolic interdependencies related to nitrogen- and carbon-cycling within anammox bioreactors and the potentially detrimental effects of bacteria that are otherwise considered core microbial community members.


Asunto(s)
Amoníaco/metabolismo , Bacterias/genética , Bacterias/metabolismo , Reactores Biológicos/microbiología , Nitratos/metabolismo , Anaerobiosis , Fenómenos Fisiológicos Bacterianos , Metagenómica , Nitrógeno/metabolismo , Oxidación-Reducción
12.
Nat Commun ; 8: 14393, 2017 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-28233852

RESUMEN

Arsenic and barium are ubiquitous environmental toxins that accumulate in higher trophic-level organisms. Whereas metazoans have detoxifying organs to cope with toxic metals, sponges lack organs but harbour a symbiotic microbiome performing various functions. Here we examine the potential roles of microorganisms in arsenic and barium cycles in the sponge Theonella swinhoei, known to accumulate high levels of these metals. We show that a single sponge symbiotic bacterium, Entotheonella sp., constitutes the arsenic- and barium-accumulating entity within the host. These bacteria mineralize both arsenic and barium on intracellular vesicles. Our results indicate that Entotheonella sp. may act as a detoxifying organ for its host.


Asunto(s)
Bacterias/metabolismo , Sustancias Peligrosas/metabolismo , Microbiota/fisiología , Simbiosis/fisiología , Theonella/microbiología , Animales , Arsénico/metabolismo , Arsénico/toxicidad , Bacterias/citología , Bacterias/ultraestructura , Fenómenos Fisiológicos Bacterianos , Bario/metabolismo , Bario/toxicidad , Calcificación Fisiológica/fisiología , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/ultraestructura , Sustancias Peligrosas/toxicidad , Microscopía Electrónica de Rastreo , Filogenia , ARN Ribosómico 16S , Theonella/fisiología
13.
Front Microbiol ; 6: 154, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25762993

RESUMEN

Sponges are potent filter feeders and as such are exposed to high fluxes of toxic trace elements, which can accumulate in their body over time. Such is the case of the Red Sea sponge Theonella swinhoei, which has been shown to accumulate up to 8500 mg/Kg of the highly toxicelement arsenic. T. swinhoei is known to harbor a multitude of sponge-associated bacteria, so it is hypothesized that the associated-bacteria will be tolerant to high arsenic concentration. This study also investigates the fate of the arsenic accumulated in the sponge to test if the associated-bacteria have an important role in the arsenic accumulation process of their host, since bacteria are key players in the natural arsenic cycle. Separation of the sponge to sponge cells and bacteria enriched fractions showed that arsenic is accumulated by the bacteria. Sponge-associated, arsenic-tolerant bacteria were cultured in the presence of 5 mM of either arsenate or arsenite (equivalent to 6150 mg/Kg arsenic, dry weight). The 54 isolated bacteria were grouped to 15 operational taxonomic units (OTUs) and isolates belonging to 12 OTUs were assessed for tolerance to arsenate at increased concentrations up to 100 mM. Eight of the 12 OTUs tolerated an order of magnitude increase in the concentration of arsenate, and some exhibited external biomineralization of arsenic-magnesium salts. The biomineralization of this unique mineral was directly observed in bacteria for the first time. These results may provide an explanation for the ability of the sponge to accumulate considerable amounts of arsenic. Furthermore arsenic-mineralizing bacteria can potentially be used for the study of bioremediation, as arsenic toxicity affects millions of people worldwide.

14.
FEMS Microbiol Ecol ; 87(2): 486-502, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24164535

RESUMEN

In recent years new approaches have emerged for culturing marine environmental bacteria. They include the use of novel culture media, sometimes with very low-nutrient content, and a variety of growth conditions such as temperature, oxygen levels, and different atmospheric pressures. These approaches have largely been neglected when it came to the cultivation of sponge-associated bacteria. Here, we used physiological and environmental conditions to reflect the environment of sponge-associated bacteria along with genomic data of the prominent sponge symbiont Candidatus Poribacteria sp. WGA-4E, to cultivate bacteria from the Red Sea sponge Theonella swinhoei. Designing culturing conditions to fit the metabolic needs of major bacterial taxa present in the sponge, through a combined use of diverse culture media compositions with aerobic and microaerophilic states, and addition of antibiotics, yielded higher diversity of the cultured bacteria and led to the isolation of novel sponge-associated and sponge-specific bacteria. In this work, 59 OTUs of six phyla were isolated. Of these, 22 have no close type strains at the species level (< 97% similarity of 16S rRNA gene sequence), representing novel bacteria species, and some are probably new genera and even families.


Asunto(s)
Bacterias/clasificación , Poríferos/microbiología , Animales , Antibacterianos/farmacología , Bacterias/genética , Bacterias/aislamiento & purificación , Técnicas Bacteriológicas , Secuencia de Bases , Técnicas de Cultivo de Célula , Medios de Cultivo , Genes Bacterianos , Genes de ARNr , Genómica , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA