Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nature ; 458(7235): 201-5, 2009 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-19279637

RESUMEN

Behavioural responses to wind are thought to have a critical role in controlling the dispersal and population genetics of wild Drosophila species, as well as their navigation in flight, but their underlying neurobiological basis is unknown. We show that Drosophila melanogaster, like wild-caught Drosophila strains, exhibits robust wind-induced suppression of locomotion in response to air currents delivered at speeds normally encountered in nature. Here we identify wind-sensitive neurons in Johnston's organ, an antennal mechanosensory structure previously implicated in near-field sound detection (reviewed in refs 5 and 6). Using enhancer trap lines targeted to different subsets of Johnston's organ neurons, and a genetically encoded calcium indicator, we show that wind and near-field sound (courtship song) activate distinct populations of Johnston's organ neurons, which project to different regions of the antennal and mechanosensory motor centre in the central brain. Selective genetic ablation of wind-sensitive Johnston's organ neurons in the antenna abolishes wind-induced suppression of locomotion behaviour, without impairing hearing. Moreover, different neuronal subsets within the wind-sensitive population respond to different directions of arista deflection caused by air flow and project to different regions of the antennal and mechanosensory motor centre, providing a rudimentary map of wind direction in the brain. Importantly, sound- and wind-sensitive Johnston's organ neurons exhibit different intrinsic response properties: the former are phasically activated by small, bi-directional, displacements of the aristae, whereas the latter are tonically activated by unidirectional, static deflections of larger magnitude. These different intrinsic properties are well suited to the detection of oscillatory pulses of near-field sound and laminar air flow, respectively. These data identify wind-sensitive neurons in Johnston's organ, a structure that has been primarily associated with hearing, and reveal how the brain can distinguish different types of air particle movements using a common sensory organ.


Asunto(s)
Movimientos del Aire , Percepción Auditiva/fisiología , Drosophila melanogaster/fisiología , Células Receptoras Sensoriales/fisiología , Animales , Conducta Animal/fisiología , Fenómenos Electrofisiológicos/fisiología , Mecanorreceptores/fisiología
2.
Front Mol Neurosci ; 16: 1263411, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808471

RESUMEN

Introduction: Cilia biogenesis relies on intraflagellar transport (IFT), a conserved transport mechanism which functions bi-directionally to bring protein complexes to the growing ciliary tip and recycle signaling and transport proteins between the cilium and cell body. In Drosophila, anterograde IFT is critical for assembly of sensory cilia in the neurons of both chordotonal (ch) organs, which have relatively long ciliary axonemes, and external sensory (es) organs, which have short axonemal segments with microtubules in distal sensory segments forming non-axonemal bundles. We previously isolated the beethoven (btv) mutant in a mutagenesis screen for auditory mutants. Although many btv mutant flies are deaf, some retain a small residual auditory function as determined both by behavior and by auditory electrophysiology. Results: Here we molecularly characterize the btv gene and demonstrate that it encodes the IFT-associated dynein-2 heavy chain Dync2h1. We also describe morphological changes in Johnston's organ as flies age to 30 days, and we find that morphological and electrophysiological phenotypes in this ch organ of btv mutants become more severe with age. We show that NompB protein, encoding the conserved IFT88 protein, an IFT complex B component, fails to be cleared from chordotonal cilia in btv mutants, instead accumulating in the distorted cilia. In macrochaete bristles, a class of es organ, btv mutants show a 50% reduction in mechanoreceptor potentials. Discussion: Thus, the btv-encoded Dync2h1 functions as the retrograde IFT motor in the assembly of long ciliary axonemes in ch organs and is also important for normal function of the short ciliary axonemes in es organs.

3.
Nature ; 424(6944): 81-4, 2003 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-12819662

RESUMEN

The many types of insect ear share a common sensory element, the chordotonal organ, in which sound-induced antennal or tympanal vibrations are transmitted to ciliated sensory neurons and transduced to receptor potentials. However, the molecular identity of the transducing ion channels in chordotonal neurons, or in any auditory system, is still unknown. Drosophila that are mutant for NOMPC, a transient receptor potential (TRP) superfamily ion channel, lack receptor potentials and currents in tactile bristles but retain most of the antennal sound-evoked response, suggesting that a different channel is the primary transducer in chordotonal organs. Here we describe the Drosophila Nanchung (Nan) protein, an ion channel subunit similar to vanilloid-receptor-related (TRPV) channels of the TRP superfamily. Nan mediates hypo-osmotically activated calcium influx and cation currents in cultured cells. It is expressed in vivo exclusively in chordotonal neurons and is localized to their sensory cilia. Antennal sound-evoked potentials are completely absent in mutants lacking Nan, showing that it is an essential component of the chordotonal mechanotransducer.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Audición/fisiología , Secuencia de Aminoácidos , Animales , Células CHO , Calcio/metabolismo , Canales de Calcio/química , Canales de Calcio/genética , Señalización del Calcio , Cricetinae , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/genética , Evolución Molecular , Eliminación de Gen , Perfilación de la Expresión Génica , Datos de Secuencia Molecular , Neuronas/metabolismo , Presión Osmótica , Técnicas de Placa-Clamp , Canales de Potencial de Receptor Transitorio
4.
Mol Biol Cell ; 16(2): 891-901, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15591130

RESUMEN

EB1 is a conserved microtubule plus end tracking protein considered to play crucial roles in microtubule organization and the interaction of microtubules with the cell cortex. Despite intense studies carried out in yeast and cultured cells, the role of EB1 in multicellular systems remains to be elucidated. Here, we describe the first genetic study of EB1 in developing animals. We show that one of the multiple Drosophila EB1 homologues, DmEB1, is ubiquitously expressed and has essential functions during development. Hypomorphic DmEB1 mutants show neuromuscular defects, including flightlessness and uncoordinated movement, without any general cell division defects. These defects can be partly explained by the malfunction of the chordotonal mechanosensory organs. In fact, electrophysiological measurements indicated that the auditory chordotonal organs show a reduced response to sound stimuli. The internal organization of the chordotonal organs also is affected in the mutant. Consistently, DmEB1 is enriched in those regions important for the structure and function of the organs. Therefore, DmEB1 plays a crucial role in the functional and structural integrity of the chordotonal mechanosensory organs in Drosophila.


Asunto(s)
Drosophila/crecimiento & desarrollo , Mecanorreceptores/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Células Receptoras Sensoriales/fisiología , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Electrofisiología , Mecanorreceptores/ultraestructura , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Datos de Secuencia Molecular , Mutación Puntual , Células Receptoras Sensoriales/ultraestructura , Homología de Secuencia de Aminoácido
5.
Curr Biol ; 13(19): 1679-86, 2003 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-14521833

RESUMEN

BACKGROUND: Intraflagellar transport (IFT) uses kinesin II to carry a multiprotein particle to the tips of eukaryotic cilia and flagella and a nonaxonemal dynein to return it to the cell body. IFT particle proteins and motors are conserved in ciliated eukaryotes, and IFT-deficient mutants in algae, nematodes, and mammals fail to extend or maintain cilia and flagella, including sensory cilia. In Drosophila, the only ciliated cells are sensory neurons and sperm. no mechanoreceptor potential (nomp) mutations have been isolated that affect the differentiation and function of ciliated sense organs. The nompB gene is here shown to encode an IFT protein. Its mutant phenotypes reveal the consequences of an IFT defect in an insect. RESULTS: Mechanosensory and olfactory neurons in nompB mutants have missing or defective cilia. nompB encodes the Drosophila homolog of the IFT complex B protein IFT88/Polaris/OSM-5. nompB is expressed in the ciliated sensory neurons, and a functional, tagged NOMPB protein is located in sensory cilia and around basal bodies. Surprisingly, nompB mutant males produce normally elongated, motile sperm. Neuronally restricted expression and male germline mosaic experiments show that nompB-deficient sperm are fully functional in transfer, competition, and fertilization. CONCLUSIONS: NOMPB, the Drosophila homolog of IFT88, is required for the assembly of sensory cilia but not for the extension or function of the sperm flagellum. Assembly of this extremely long axoneme is therefore independent of IFT.


Asunto(s)
Proteínas Portadoras/genética , Cilios/metabolismo , Flagelos/metabolismo , Regulación de la Expresión Génica , Neuronas Aferentes/metabolismo , Espermatozoides/metabolismo , Animales , Transporte Biológico , Proteínas Portadoras/metabolismo , Mapeo Cromosómico , ADN Complementario/genética , Drosophila , Electrofisiología , Componentes del Gen , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes , Masculino , Microscopía Fluorescente , Análisis de Secuencia de ADN , Espermatozoides/fisiología , Transgenes
6.
Curr Biol ; 13(24): 2179-84, 2003 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-14680634

RESUMEN

A common inherited cause of renal failure, autosomal dominant polycystic kidney disease results from mutations in either of two genes, PKD1 and PKD2, which encode polycystin-1 and polycystin-2, respectively. Polycystin-2 has distant homology to TRP cation channels and associates directly with polycystin-1. The normal functions of polycystins are poorly understood, although recent studies indicate that they are concentrated in the primary cilia of a variety of cell types. In this report we identified a polycystin-2 homolog in Drosophila melanogaster; this homolog localized to the distal tip of the sperm flagella. A targeted mutation in this gene, almost there (amo), caused nearly complete male sterility. The amo males produced and transferred normal amounts of motile sperm to females, but mutant sperm failed to enter the female sperm storage organs, a prerequisite for fertilization. The finding that Amo functions in sperm flagella supports a common and evolutionarily conserved role for polycystin-2 proteins in both motile and nonmotile axonemal-containing structures.


Asunto(s)
Movimiento Celular/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Infertilidad Masculina/veterinaria , Proteínas de la Membrana/genética , Espermatozoides/fisiología , Secuencia de Aminoácidos , Animales , Western Blotting , Proteínas de Drosophila/fisiología , Flagelos/fisiología , Masculino , Proteínas de la Membrana/fisiología , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Canales Catiónicos TRPP
7.
J Neurosci ; 24(41): 9059-66, 2004 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-15483124

RESUMEN

Hearing in Drosophila depends on the transduction of antennal vibration into receptor potentials by ciliated sensory neurons in Johnston's organ, the antennal chordotonal organ. We previously found that a Drosophila protein in the vanilloid receptor subfamily (TRPV) channel subunit, Nanchung (NAN), is localized to the chordotonal cilia and required to generate sound-evoked potentials (Kim et al., 2003). Here, we show that the only other Drosophila TRPV protein is mutated in the behavioral mutant inactive (iav). The IAV protein forms a hypotonically activated channel when expressed in cultured cells; in flies, it is specifically expressed in the chordotonal neurons, localized to their cilia and required for hearing. IAV and NAN are each undetectable in cilia of mutants lacking the other protein, indicating that they both contribute to a heteromultimeric transduction channel in vivo. A functional green fluorescence protein-IAV fusion protein shows that the channel is restricted to the proximal cilium, constraining models for channel activation.


Asunto(s)
Canales de Calcio/fisiología , Proteínas de Drosophila/fisiología , Drosophila/fisiología , Audición/fisiología , Canales Iónicos/fisiología , Receptores de Droga/fisiología , Animales , Canales de Calcio/biosíntesis , Canales de Calcio/genética , Línea Celular , Mapeo Cromosómico , Cilios/metabolismo , Cricetinae , Cruzamientos Genéticos , Drosophila/genética , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/genética , Femenino , Audición/genética , Trastornos de la Audición/genética , Canales Iónicos/biosíntesis , Canales Iónicos/genética , Masculino , Mutagénesis , Mutación , Neuronas Aferentes/metabolismo , Neuronas Aferentes/ultraestructura , Técnicas de Placa-Clamp , Subunidades de Proteína/biosíntesis , Subunidades de Proteína/genética , Subunidades de Proteína/fisiología , Receptores de Droga/biosíntesis , Receptores de Droga/genética , Canales de Potencial de Receptor Transitorio
8.
Sci Rep ; 5: 17085, 2015 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-26608786

RESUMEN

Much like vertebrate hair cells, the chordotonal sensory neurons that mediate hearing in Drosophila are motile and amplify the mechanical input of the ear. Because the neurons bear mechanosensory primary cilia whose microtubule axonemes display dynein arms, we hypothesized that their motility is powered by dyneins. Here, we describe two axonemal dynein proteins that are required for Drosophila auditory neuron function, localize to their primary cilia, and differently contribute to mechanical amplification in hearing. Promoter fusions revealed that the two axonemal dynein genes Dmdnah3 (=CG17150) and Dmdnai2 (=CG6053) are expressed in chordotonal neurons, including the auditory ones in the fly's ear. Null alleles of both dyneins equally abolished electrical auditory neuron responses, yet whereas mutations in Dmdnah3 facilitated mechanical amplification, amplification was abolished by mutations in Dmdnai2. Epistasis analysis revealed that Dmdnah3 acts downstream of Nan-Iav channels in controlling the amplificatory gain. Dmdnai2, in addition to being required for amplification, was essential for outer dynein arms in auditory neuron cilia. This establishes diverse roles of axonemal dyneins in Drosophila auditory neuron function and links auditory neuron motility to primary cilia and axonemal dyneins. Mutant defects in sperm competition suggest that both dyneins also function in sperm motility.


Asunto(s)
Vías Auditivas/metabolismo , Dineínas Axonemales/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Audición/fisiología , Neuronas/metabolismo , Animales , Oído/fisiología , Epistasis Genética , Masculino , Mutación/genética , Espermatozoides/metabolismo , Canales Catiónicos TRPV/metabolismo
9.
J Cell Biol ; 197(2): 313-25, 2012 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-22508513

RESUMEN

Centriole-to-basal body conversion, a complex process essential for ciliogenesis, involves the progressive addition of specific proteins to centrioles. CHIBBY (CBY) is a coiled-coil domain protein first described as interacting with ß-catenin and involved in Wg-Int (WNT) signaling. We found that, in Drosophila melanogaster, CBY was exclusively expressed in cells that require functional basal bodies, i.e., sensory neurons and male germ cells. CBY was associated with the basal body transition zone (TZ) in these two cell types. Inactivation of cby led to defects in sensory transduction and in spermatogenesis. Loss of CBY resulted in altered ciliary trafficking into neuronal cilia, irregular deposition of proteins on spermatocyte basal bodies, and, consequently, distorted axonemal assembly. Importantly, cby(1/1) flies did not show Wingless signaling defects. Hence, CBY is essential for normal basal body structure and function in Drosophila, potentially through effects on the TZ. The function of CBY in WNT signaling in vertebrates has either been acquired during vertebrate evolution or lost in Drosophila.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Nucleares/metabolismo , Células Receptoras Sensoriales/metabolismo , Espermatozoides/metabolismo , Proteína Wnt1/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/química , Proteínas Portadoras/genética , Células Cultivadas , Centriolos/metabolismo , Cilios/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Infertilidad Masculina , Masculino , Ratones , Datos de Secuencia Molecular , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/química , Proteínas Nucleares/genética , Transporte de Proteínas , Factores de Transcripción del Factor Regulador X , Factores de Transcripción/metabolismo , Vía de Señalización Wnt
10.
Genetics ; 185(1): 177-88, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20215474

RESUMEN

Cilia were present in the earliest eukaryotic ancestor and underlie many biological processes ranging from cell motility and propulsion of extracellular fluids to sensory physiology. We investigated the contribution of the touch insensitive larva B (tilB) gene to cilia function in Drosophila melanogaster. Mutants of tilB exhibit dysfunction in sperm flagella and ciliated dendrites of chordotonal organs that mediate hearing and larval touch sensitivity. Mutant sperm axonemes as well as sensory neuron dendrites of Johnston's organ, the fly's auditory organ, lack dynein arms. Through deficiency mapping and sequencing candidate genes, we identified tilB mutations in the annotated gene CG14620. A genomic CG14620 transgene rescued deafness and male sterility of tilB mutants. TilB is a 395-amino-acid protein with a conserved N-terminal leucine-rich repeat region at residues 16-164 and a coiled-coil domain at residues 171-191. A tilB-Gal4 transgene driving fluorescently tagged TilB proteins elicits cytoplasmic expression in embryonic chordotonal organs, in Johnston's organ, and in sperm flagella. TilB does not appear to affect tubulin polyglutamylation or polyglycylation. The phenotypes and expression of tilB indicate function in cilia construction or maintenance, but not in intraflagellar transport. This is also consistent with phylogenetic association of tilB homologs with presence of genes encoding axonemal dynein arm components. Further elucidation of tilB functional mechanisms will provide greater understanding of cilia function and will facilitate understanding ciliary diseases.


Asunto(s)
Cilios/metabolismo , Secuencia Conservada , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Audición/fisiología , Movimiento/fisiología , Estructuras Animales/ultraestructura , Animales , Axonema/metabolismo , Axonema/ultraestructura , Cilios/ultraestructura , Drosophila melanogaster/citología , Drosophila melanogaster/ultraestructura , Dineínas/metabolismo , Dineínas/ultraestructura , Vectores Genéticos/genética , Glicosilación , Proteínas Repetidas Ricas en Leucina , Mutación/genética , Péptidos/metabolismo , Proteínas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Tubulina (Proteína)/metabolismo
11.
Curr Biol ; 18(24): 1899-906, 2008 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-19097904

RESUMEN

BACKGROUND: Conserved intraflagellar transport (IFT) particle proteins and IFT-associated motors are needed to assemble most eukaryotic cilia and flagella. Proteins in an IFT-A subcomplex are generally required for dynein-driven retrograde IFT, from the ciliary tip to the base. We describe novel structural and functional roles for IFT-A proteins in chordotonal organs, insect mechanosensory organs with cilia that are both sensory and motile. RESULTS: The reduced mechanoreceptor potential A (rempA) locus of Drosophila encodes the IFT-A component IFT140. Chordotonal cilia are shortened in rempA mutants and an IFT-B protein accumulates in the mutant cilia, consistent with a defect in retrograde IFT. A functional REMPA-YFP fusion protein concentrates at the site of the ciliary dilation (CD), a highly structured axonemal inclusion of hitherto unknown composition and function. The CD is absent in rempA mutants, and REMPA-YFP is undetectable in the absence of another IFT-A protein, IFT122. In a mutant lacking the IFT dynein motor, the CD is disorganized and REMPA-YFP is mislocalized. A TRPV ion channel, required to generate sensory potentials and regulate ciliary motility, is normally localized in the cilia, proximal to the CD. This channel spreads into the distal part of the cilia in dynein mutants and is undetectable in rempA mutants. CONCLUSIONS: IFT-A proteins are located at and required by the ciliary dilation, which separates chordotonal cilia into functionally distinct zones. A requirement for IFT140 in stable TRPV channel expression also suggests that IFT-A proteins may mediate preciliary transport of some membrane proteins.


Asunto(s)
Cilios/fisiología , Proteínas de Drosophila/fisiología , Mecanotransducción Celular/fisiología , Animales , Animales Modificados Genéticamente , Cilios/ultraestructura , Drosophila/genética , Drosophila/fisiología , Drosophila/ultraestructura , Proteínas de Drosophila/genética , Dineínas/genética , Dineínas/fisiología , Flagelos/fisiología , Genes de Insecto , Mecanotransducción Celular/genética , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/fisiología , Mutación , Órganos de los Sentidos/fisiología , Órganos de los Sentidos/ultraestructura , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/fisiología
12.
PLoS One ; 3(8): e2873, 2008 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-18682732

RESUMEN

In nature, yeasts are subject to predation by flies of the genus Drosophila. In response to nutritional starvation Saccharomyces cerevisiae differentiates into a dormant cell type, termed a spore, which is resistant to many types of environmental stress. The stress resistance of the spore is due primarily to a spore wall that is more elaborate than the vegetative cell wall. We report here that S. cerevisiae spores survive passage through the gut of Drosophila melanogaster. Constituents of the spore wall that distinguish it from the vegetative cell wall are necessary for this resistance. Ascospores of the distantly related yeast Schizosaccharomyces pombe also display resistance to digestion by D. melanogaster. These results suggest that the primary function of the yeast ascospore is as a cell type specialized for dispersion by insect vectors.


Asunto(s)
Pared Celular/fisiología , Sistema Digestivo/microbiología , Drosophila/microbiología , Saccharomyces cerevisiae/fisiología , Esporas Fúngicas/fisiología , Animales , Drosophila/fisiología , Esporas Fúngicas/citología , Sobrevida
13.
Pflugers Arch ; 454(5): 703-20, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17436012

RESUMEN

Insects are utterly reliant on sensory mechanotransduction, the process of converting physical stimuli into neuronal receptor potentials. The senses of proprioception, touch, and hearing are involved in almost every aspect of an adult insect's complex behavioral repertoire and are mediated by a diverse array of specialized sensilla and sensory neurons. The physiology and morphology of several of these have been described in detail; genetic approaches in Drosophila, combining behavioral screens and sensory electrophysiology with forward and reverse genetic techniques, have now revealed specific proteins involved in their differentiation and operation. These include three different TRP superfamily ion channels that are required for transduction in tactile bristles, chordotonal stretch receptors, and polymodal nociceptors. Transduction also depends on the normal differentiation and mechanical integrity of the modified cilia that form the neuronal sensory endings, the accessory structures that transmit stimuli to them and, in bristles, a specialized receptor lymph and transepithelial potential. Flies hear near-field sounds with a vibration-sensitive, antennal chordotonal organ. Biomechanical analyses of wild-type antennae reveal non-linear, active mechanical properties that increase their sensitivity to weak stimuli. The effects of mechanosensory and ciliary mutations on antennal mechanics show that the sensory cilia are the active motor elements and indicate distinct roles for TRPN and TRPV channels in auditory transduction and amplification.


Asunto(s)
Cilios/fisiología , Drosophila , Audición/fisiología , Mecanotransducción Celular/fisiología , Órganos de los Sentidos/embriología , Órganos de los Sentidos/fisiología , Canales Catiónicos TRPC/fisiología , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Animales , Tipificación del Cuerpo , Diferenciación Celular/genética , Cilios/genética , Drosophila/embriología , Drosophila/genética , Drosophila/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Femenino , Audición/genética , Transporte Iónico/fisiología , Masculino , Mecanotransducción Celular/genética , Modelos Biológicos , Mutagénesis , Neuronas Aferentes/fisiología , Dolor/genética , Dolor/metabolismo , Reflejo/fisiología , Órganos de los Sentidos/citología , Órganos de los Sentidos/inervación , Tacto/fisiología
15.
Development ; 131(14): 3411-22, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15226257

RESUMEN

uncoordinated (unc) mutants of Drosophila, which lack transduction in ciliated mechanosensory neurons, do not produce motile sperm. Both sensory and spermatogenesis defects are associated with disrupted ciliary structures: mutant sensory neurons have truncated cilia, and sensory neurons and spermatids show defects in axoneme ultrastructure. unc encodes a novel protein with coiled-coil segments and a LisH motif, which is expressed in type I sensory neurons and in the male germline - the only ciliogenic cells in the fly. A functional UNC-GFP fusion protein specifically localizes to both basal bodies in differentiating sensory neurons. In premeiotic spermatocytes it localizes to all four centrioles in early G2, remaining associated with them through meiosis and as they become the basal bodies for the elongating spermatid flagella. UNC is thus specifically required for normal ciliogenesis. Its localization is an early marker for the centriole-basal body transition, a central but enigmatic event in eukaryotic cell differentiation.


Asunto(s)
Cilios/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Infertilidad Masculina , Mutación , Espermátides/metabolismo , Alelos , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Centriolos/metabolismo , Centriolos/ultraestructura , Cilios/fisiología , Clonación Molecular , Drosophila melanogaster , Electrofisiología , Recuperación de Fluorescencia tras Fotoblanqueo , Proteínas Fluorescentes Verdes , Inmunohistoquímica , Proteínas Luminiscentes/metabolismo , Masculino , Mecanorreceptores/metabolismo , Microscopía Confocal , Microscopía Electrónica , Datos de Secuencia Molecular , Neuronas/metabolismo , Mapeo Físico de Cromosoma , Unión Proteica , Espermatocitos/citología , Testículo/embriología , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA