Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell ; 149(4): 847-59, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22541070

RESUMEN

Alu RNA accumulation due to DICER1 deficiency in the retinal pigmented epithelium (RPE) is implicated in geographic atrophy (GA), an advanced form of age-related macular degeneration that causes blindness in millions of individuals. The mechanism of Alu RNA-induced cytotoxicity is unknown. Here we show that DICER1 deficit or Alu RNA exposure activates the NLRP3 inflammasome and triggers TLR-independent MyD88 signaling via IL18 in the RPE. Genetic or pharmacological inhibition of inflammasome components (NLRP3, Pycard, Caspase-1), MyD88, or IL18 prevents RPE degeneration induced by DICER1 loss or Alu RNA exposure. These findings, coupled with our observation that human GA RPE contains elevated amounts of NLRP3, PYCARD, and IL18 and evidence of increased Caspase-1 and MyD88 activation, provide a rationale for targeting this pathway in GA. Our findings also reveal a function of the inflammasome outside the immune system and an immunomodulatory action of mobile elements.


Asunto(s)
Elementos Alu , ARN Helicasas DEAD-box/metabolismo , Atrofia Geográfica/inmunología , Atrofia Geográfica/patología , Inflamasomas/inmunología , Factor 88 de Diferenciación Mieloide/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Ribonucleasa III/metabolismo , Animales , Proteínas Portadoras/metabolismo , Atrofia Geográfica/metabolismo , Humanos , Inflamasomas/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR , Epitelio Pigmentado de la Retina/patología , Receptores Toll-Like/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(5): 2579-2587, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31964819

RESUMEN

Degeneration of the retinal pigmented epithelium (RPE) and aberrant blood vessel growth in the eye are advanced-stage processes in blinding diseases such as age-related macular degeneration (AMD), which affect hundreds of millions of people worldwide. Loss of the RNase DICER1, an essential factor in micro-RNA biogenesis, is implicated in RPE atrophy. However, the functional implications of DICER1 loss in choroidal and retinal neovascularization are unknown. Here, we report that two independent hypomorphic mouse strains, as well as a separate model of postnatal RPE-specific DICER1 ablation, all presented with spontaneous RPE degeneration and choroidal and retinal neovascularization. DICER1 hypomorphic mice lacking critical inflammasome components or the innate immune adaptor MyD88 developed less severe RPE atrophy and pathological neovascularization. DICER1 abundance was also reduced in retinas of the JR5558 mouse model of spontaneous choroidal neovascularization. Finally, adenoassociated vector-mediated gene delivery of a truncated DICER1 variant (OptiDicer) reduced spontaneous choroidal neovascularization in JR5558 mice. Collectively, these findings significantly expand the repertoire of DICER1 in preserving retinal homeostasis by preventing both RPE degeneration and pathological neovascularization.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Degeneración Macular/metabolismo , Epitelio Pigmentado de la Retina/irrigación sanguínea , Ribonucleasa III/metabolismo , Animales , Neovascularización Coroidal/genética , Neovascularización Coroidal/metabolismo , Neovascularización Coroidal/patología , Neovascularización Coroidal/fisiopatología , ARN Helicasas DEAD-box/genética , Humanos , Degeneración Macular/genética , Degeneración Macular/patología , Degeneración Macular/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Degeneración Retiniana/fisiopatología , Neovascularización Retiniana/genética , Neovascularización Retiniana/metabolismo , Neovascularización Retiniana/parasitología , Neovascularización Retiniana/fisiopatología , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Ribonucleasa III/genética
3.
Microb Pathog ; 114: 219-224, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29180292

RESUMEN

The molecular basis of intraocular tuberculosis (TB) is not well understood. In this study, we investigated the role of two constituents of viable Mycobacterium tuberculosis - Early Secreted Antigenic Target-6 (ESAT-6), and mycobacterial RNA- in inflammasome activation in the retinal pigment epithelium (RPE), a key site of inflammation in intraocular TB. We found that ESAT-6 induced caspase-1 activation and inflammasome priming in mouse RPE cells, substantially more in wild-type than in Tlr2/3/4/7/9-/-, Myd88-/- or Nlrp3-/- RPE cells. Sub-retinal ESAT-6 injection resulted in greater RPE degeneration in wild-type than in Nlrp3-/- mice. In human ocular TB tissue sections, NLRP3 staining was noted in retina as well as RPE. Mycobacterial RNA, specifically its double stranded component, also induced caspase-1 activation, and the double stranded RNA was immunolocalized to human ocular TB sections. Our observations suggest that inflammasome activation in RPE by viable M. tuberculosis could potentially contribute to human intraocular TB.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Inflamasomas/inmunología , Mycobacterium tuberculosis/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , ARN Bacteriano/inmunología , ARN Bicatenario/inmunología , Tuberculosis Ocular/inmunología , Animales , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Caspasa 1/genética , Caspasa 1/inmunología , Interacciones Huésped-Parásitos , Humanos , Inflamasomas/genética , Ratones , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , ARN Bacteriano/genética , ARN Bicatenario/genética , Epitelio Pigmentado de la Retina/inmunología , Epitelio Pigmentado de la Retina/microbiología , Tuberculosis Ocular/genética , Tuberculosis Ocular/microbiología
4.
Proc Natl Acad Sci U S A ; 111(45): 16082-7, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25349431

RESUMEN

Geographic atrophy, an advanced form of age-related macular degeneration (AMD) characterized by death of the retinal pigmented epithelium (RPE), causes untreatable blindness in millions worldwide. The RPE of human eyes with geographic atrophy accumulates toxic Alu RNA in response to a deficit in the enzyme DICER1, which in turn leads to activation of the NLRP3 inflammasome and elaboration of IL-18. Despite these recent insights, it is still unclear how RPE cells die during the course of the disease. In this study, we implicate the involvement of Caspase-8 as a critical mediator of RPE degeneration. Here we show that DICER1 deficiency, Alu RNA accumulation, and IL-18 up-regulation lead to RPE cell death via activation of Caspase-8 through a Fas ligand-dependent mechanism. Coupled with our observation of increased Caspase-8 expression in the RPE of human eyes with geographic atrophy, our findings provide a rationale for targeting this apoptotic pathway in this disease.


Asunto(s)
Elementos Alu , Apoptosis , Caspasa 8/metabolismo , ARN Helicasas DEAD-box/metabolismo , Proteínas del Ojo/metabolismo , Degeneración Macular/metabolismo , ARN/metabolismo , Ribonucleasa III/metabolismo , Animales , Caspasa 8/genética , ARN Helicasas DEAD-box/genética , Proteínas del Ojo/genética , Humanos , Interleucina-18/genética , Interleucina-18/metabolismo , Degeneración Macular/patología , Ratones , Ratones Noqueados , ARN/genética , Ribonucleasa III/genética , Regulación hacia Arriba/genética
5.
J Virol ; 87(8): 4417-31, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23388709

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) infections of endothelial and B cells are etiologically linked with Kaposi's sarcoma (KS) and primary effusion B-cell lymphoma (PEL), respectively. KS endothelial and PEL B cells carry multiple copies of the nuclear episomal latent KSHV genome and secrete a variety of inflammatory cytokines, including interleukin-1ß (IL-1ß) and IL-18. The maturation of IL-1ß and IL-18 depends upon active caspase-1, which is regulated by a multiprotein inflammasome complex induced by sensing of danger signals. During primary KSHV infection of endothelial cells, acting as a nuclear pattern recognition receptor, gamma interferon-inducible protein 16 (IFI16) colocalized with the KSHV genome in the nuclei and interacted with ASC and procaspase-1 to form a functional inflammasome (Kerur N et al., Cell Host Microbe 9:363-375, 2011). Here, we demonstrate that endothelial telomerase-immortalized human umbilical cells (TIVE) supporting KSHV stable latency (TIVE-LTC cells) and PEL (cavity-based B-cell lymphoma 1 [BCBL-1]) cells show evidence of inflammasome activation, such as the activation of caspase-1 and cleavage of pro-IL-1ß and pro-IL-18. Interaction of ASC with IFI16 but not with AIM2 or NOD-like receptor P3 (NLRP3) was detected. The KSHV latency-associated viral FLIP (vFLIP) gene induced the expression of IL-1ß, IL-18, and caspase-1 mRNAs in an NF-κB-dependent manner. IFI16 and cleaved IL-1ß were detected in the exosomes released from BCBL-1 cells. Exosomal release could be a KSHV-mediated strategy to subvert IL-1ß functions. In fluorescent in situ hybridization analyses, IFI16 colocalized with multiple copies of the KSHV genome in BCBL-1 cells. IFI16 colocalization with ASC was also detected in lung PEL sections from patients. Taken together, these findings demonstrated the constant sensing of the latent KSHV genome by IFI16-mediated innate defense and unraveled a potential mechanism of inflammation induction associated with KS and PEL lesions.


Asunto(s)
Linfocitos B/virología , Células Endoteliales/virología , Herpesvirus Humano 8/patogenicidad , Inflamasomas/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Latencia del Virus , Western Blotting , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos
6.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167156, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582267

RESUMEN

Choroidal neovascularization (CNV) is the principal driver of blindness in neovascular age-related macular degeneration (nvAMD). Increased activity of telomerase, has been associated with endothelial cell proliferation, survival, migration, and invasion in the context of tumor angiogenesis. Expanding on this knowledge, we investigated the role of telomerase in the development of CNV in mouse model. We observed increased gene expression and activity of telomerase in mouse CNV. Genetic deficiency of the telomerase components, telomerase reverse transcriptase (Tert) and telomerase RNA component (Terc) suppressed laser-induced CNV in mice. Similarly, a small molecule inhibitor of TERT (BIBR 1532), and antisense oligonucleotides (ASOs) targeting Tert and Terc reduced CNV growth. Bone marrow chimera studies suggested that telomerase activity in non-bone marrow-derived cells is crucial for the development of CNV. Comparison of BIBR 1532 with VEGF neutralizing therapeutic strategy in mouse revealed a comparable level of angiosuppressive activity. However, when BIBR and anti-VEGF antibodies were administered as a combination at sub-therapeutic doses, a statistically significant suppression of CNV was observed. These findings underscore the potential benefits of combining sub-therapeutic doses of BIBR and anti-VEGF antibodies for developing newer therapeutic strategies for NV-AMD. Telomerase inhibition with BIBR 1532 suppressed induction of multiple cytokines and growth factors critical for neovascularization. In conclusion, our study identifies telomerase as a promising therapeutic target for treating neovascular disease of the eye and thus provides a proof of principle for further exploration of telomerase inhibition as a novel treatment strategy for nvAMD.


Asunto(s)
Neovascularización Coroidal , Modelos Animales de Enfermedad , Telomerasa , Telomerasa/antagonistas & inhibidores , Telomerasa/genética , Telomerasa/metabolismo , Animales , Neovascularización Coroidal/patología , Neovascularización Coroidal/metabolismo , Neovascularización Coroidal/tratamiento farmacológico , Ratones , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Ratones Endogámicos C57BL , Aminobenzoatos/farmacología , ARN/genética , ARN/metabolismo , Oligonucleótidos Antisentido/farmacología , Naftalenos
7.
J Virol ; 85(5): 1980-93, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21159881

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) G protein-coupled receptor (vGPCR) protein has been shown to induce several signaling pathways leading to the modulation of host gene expression. The hijacking of these pathways facilitates the viral life cycle and leads to tumorigenesis. In the present work, we show that transforming growth factor ß (TGF-ß)-activated kinase 1 (TAK1) is an important player in NF-κB activation induced by vGPCR. We observed that the expression of an inactive TAK1 kinase mutant (TAK1M) reduces vGPCR-induced NF-κB nuclear translocation and transcriptional activity. Consequently, the expression of several NF-κB target genes normally induced by vGPCR was blocked by TAK1M expression, including interleukin 8 (IL-8), Gro1, IκBα, COX-2, cIAP2, and Bcl2 genes. Similar results were obtained after downregulation of TAK1 by small interfering RNA (siRNA) technology. The expression of vGPCR recruited TAK1 to the plasma membrane, and vGPCR interacts with TAK1. vGPCR expression also induced TAK1 phosphorylation and lysine 63-linked polyubiquitination, the two markers of the kinase's activation. Finally, inhibition of TAK1 by celastrol inhibited vGPCR-induced NF-κB activation, indicating this natural compound could be used as a potential therapeutic drug against KSHV malignancies involving vGPCR.


Asunto(s)
Infecciones por Herpesviridae/enzimología , Herpesvirus Humano 8/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , FN-kappa B/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Virales/metabolismo , Células HEK293 , Infecciones por Herpesviridae/genética , Infecciones por Herpesviridae/metabolismo , Infecciones por Herpesviridae/virología , Herpesvirus Humano 8/genética , Humanos , Quinasas Quinasa Quinasa PAM/genética , FN-kappa B/genética , Fosforilación , Unión Proteica , Receptores Acoplados a Proteínas G/genética , Transducción de Señal , Ubiquitinación , Proteínas Virales/genética
8.
PLoS Pathog ; 6(12): e1001238, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-21203488

RESUMEN

KSHV is etiologically associated with Kaposi's sarcoma (KS), an angioproliferative endothelial cell malignancy. Macropinocytosis is the predominant mode of in vitro entry of KSHV into its natural target cells, human dermal microvascular endothelial (HMVEC-d) cells. Although macropinocytosis is known to be a major route of entry for many viruses, the molecule(s) involved in the recruitment and integration of signaling early during macropinosome formation is less well studied. Here we demonstrate that tyrosine phosphorylation of the adaptor protein c-Cbl is required for KSHV induced membrane blebbing and macropinocytosis. KSHV induced the tyrosine phosphorylation of c-Cbl as early as 1 min post-infection and was recruited to the sites of bleb formation. Infection also led to an increase in the interaction of c-Cbl with PI3-K p85 in a time dependent manner. c-Cbl shRNA decreased the formation of KSHV induced membrane blebs and macropinocytosis as well as virus entry. Immunoprecipitation of c-Cbl followed by mass spectrometry identified the interaction of c-Cbl with a novel molecular partner, non-muscle myosin heavy chain IIA (myosin IIA), in bleb associated macropinocytosis. Phosphorylated c-Cbl colocalized with phospho-myosin light chain II in the interior of blebs of infected cells and this interaction was abolished by c-Cbl shRNA. Studies with the myosin II inhibitor blebbistatin demonstrated that myosin IIA is a biologically significant component of the c-Cbl signaling pathway and c-Cbl plays a new role in the recruitment of myosin IIA to the blebs during KSHV infection. Myosin II associates with actin in KSHV induced blebs and the absence of actin and myosin ubiquitination in c-Cbl ShRNA cells suggested that c-Cbl is also responsible for the ubiquitination of these proteins in the infected cells. This is the first study demonstrating the role of c-Cbl in viral entry as well as macropinocytosis, and provides the evidence that a signaling complex containing c-Cbl and myosin IIA plays a crucial role in blebbing and macropinocytosis during viral infection and suggests that targeting c-Cbl could lead to a block in KSHV infection.


Asunto(s)
Estructuras de la Membrana Celular/virología , Células Endoteliales/virología , Herpesvirus Humano 8/fisiología , Miosina Tipo IIA no Muscular/metabolismo , Pinocitosis , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Células Cultivadas , Endotelio Vascular/citología , Humanos , Unión Proteica , Transducción de Señal , Internalización del Virus
9.
PLoS Pathog ; 6(2): e1000777, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-20169190

RESUMEN

Kaposi's sarcoma (KS), an enigmatic endothelial cell vascular neoplasm, is characterized by the proliferation of spindle shaped endothelial cells, inflammatory cytokines (ICs), growth factors (GFs) and angiogenic factors. KSHV is etiologically linked to KS and expresses its latent genes in KS lesion endothelial cells. Primary infection of human micro vascular endothelial cells (HMVEC-d) results in the establishment of latent infection and reprogramming of host genes, and cyclooxygenase-2 (COX-2) is one of the highly up-regulated genes. Our previous study suggested a role for COX-2 in the establishment and maintenance of KSHV latency. Here, we examined the role of COX-2 in the induction of ICs, GFs, angiogenesis and invasive events occurring during KSHV de novo infection of endothelial cells. A significant amount of COX-2 was detected in KS tissue sections. Telomerase-immortalized human umbilical vein endothelial cells supporting KSHV stable latency (TIVE-LTC) expressed elevated levels of functional COX-2 and microsomal PGE2 synthase (m-PGES), and secreted the predominant eicosanoid inflammatory metabolite PGE2. Infected HMVEC-d and TIVE-LTC cells secreted a variety of ICs, GFs, angiogenic factors and matrix metalloproteinases (MMPs), which were significantly abrogated by COX-2 inhibition either by chemical inhibitors or by siRNA. The ability of these factors to induce tube formation of uninfected endothelial cells was also inhibited. PGE2, secreted early during KSHV infection, profoundly increased the adhesion of uninfected endothelial cells to fibronectin by activating the small G protein Rac1. COX-2 inhibition considerably reduced KSHV latent ORF73 gene expression and survival of TIVE-LTC cells. Collectively, these studies underscore the pivotal role of KSHV induced COX-2/PGE2 in creating KS lesion like microenvironment during de novo infection. Since COX-2 plays multiple roles in KSHV latent gene expression, which themselves are powerful mediators of cytokine induction, anti-apoptosis, cell survival and viral genome maintainence, effective inhibition of COX-2 via well-characterized clinically approved COX-2 inhibitors could potentially be used in treatment to control latent KSHV infection and ameliorate KS.


Asunto(s)
Ciclooxigenasa 2/metabolismo , Herpesvirus Humano 8/fisiología , Inflamación/virología , Neovascularización Patológica/virología , Sarcoma de Kaposi/enzimología , Latencia del Virus/fisiología , Western Blotting , Adhesión Celular/fisiología , Separación Celular , Células Endoteliales/metabolismo , Células Endoteliales/virología , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Expresión Génica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Inmunohistoquímica , Inflamación/enzimología , Neovascularización Patológica/enzimología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sarcoma de Kaposi/virología
10.
Nat Commun ; 12(1): 6207, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34707113

RESUMEN

Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), produced by cyclic GMP-AMP synthase (cGAS), stimulates the production of type I interferons (IFN). Here we show that cGAMP activates DNA damage response (DDR) signaling independently of its canonical IFN pathways. Loss of cGAS dampens DDR signaling induced by genotoxic insults. Mechanistically, cGAS activates DDR in a STING-TBK1-dependent manner, wherein TBK1 stimulates the autophosphorylation of the DDR kinase ATM, with the consequent activation of the CHK2-p53-p21 signal transduction pathway and the induction of G1 cell cycle arrest. Despite its stimulatory activity on ATM, cGAMP suppresses homology-directed repair (HDR) through the inhibition of polyADP-ribosylation (PARylation), in which cGAMP reduces cellular levels of NAD+; meanwhile, restoring NAD+ levels abrogates cGAMP-mediated suppression of PARylation and HDR. Finally, we show that cGAMP also activates DDR signaling in invertebrate species lacking IFN (Crassostrea virginica and Nematostella vectensis), suggesting that the genome surveillance mechanism of cGAS predates metazoan interferon-based immunity.


Asunto(s)
Daño del ADN , Nucleótidos Cíclicos/metabolismo , Transducción de Señal , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Crassostrea/genética , Crassostrea/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular , Humanos , Inmunidad Innata , Interferón Tipo I/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Nucleotidiltransferasas/metabolismo , Fosforilación , Poli ADP Ribosilación , Proteínas Serina-Treonina Quinasas/metabolismo , Reparación del ADN por Recombinación , Anémonas de Mar/genética , Anémonas de Mar/metabolismo
11.
Nanomaterials (Basel) ; 11(1)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445545

RESUMEN

Ocular diseases can deteriorate vision to the point of blindness and thus can have a major impact on the daily life of an individual. Conventional therapies are unable to provide absolute therapy for all ocular diseases due to the several limitations during drug delivery across the blood-retinal barrier, making it a major clinical challenge. With recent developments, the vast number of publications undergird the need for nanotechnology-based drug delivery systems in treating ocular diseases. The tool of nanotechnology provides several essential advantages, including sustained drug release and specific tissue targeting. Additionally, comprehensive in vitro and in vivo studies have suggested a better uptake of nanoparticles across ocular barriers. Nanoparticles can overcome the blood-retinal barrier and consequently increase ocular penetration and improve the bioavailability of the drug. In this review, we aim to summarize the development of organic and inorganic nanoparticles for ophthalmic applications. We highlight the potential nanoformulations in clinical trials as well as the products that have become a commercial reality.

12.
Sci Immunol ; 6(66): eabi4493, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34860583

RESUMEN

Detection of microbial products by multiprotein complexes known as inflammasomes is pivotal to host defense against pathogens. Nucleotide-binding domain leucine-rich repeat (NLR) CARD domain containing 4 (NLRC4) forms an inflammasome in response to bacterial products; this requires their detection by NLR family apoptosis inhibitory proteins (NAIPs), with which NLRC4 physically associates. However, the mechanisms underlying sterile NLRC4 inflammasome activation, which is implicated in chronic noninfectious diseases, remain unknown. Here, we report that endogenous short interspersed nuclear element (SINE) RNAs, which promote atrophic macular degeneration (AMD) and systemic lupus erythematosus (SLE), induce NLRC4 inflammasome activation independent of NAIPs. We identify DDX17, a DExD/H box RNA helicase, as the sensor of SINE RNAs that licenses assembly of an inflammasome comprising NLRC4, NLR pyrin domain­containing protein 3, and apoptosis-associated speck-like protein­containing CARD and induces caspase-1 activation and cytokine release. Inhibiting DDX17-mediated NLRC4 inflammasome activation decreased interleukin-18 release in peripheral blood mononuclear cells of patients with SLE and prevented retinal degeneration in an animal model of AMD. Our findings uncover a previously unrecognized noncanonical NLRC4 inflammasome activated by endogenous retrotransposons and provide potential therapeutic targets for SINE RNA­driven diseases.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/inmunología , Proteínas de Unión al Calcio/inmunología , ARN Helicasas DEAD-box/inmunología , Inflamasomas/inmunología , ARN/inmunología , Retroelementos/inmunología , Animales , Proteínas Reguladoras de la Apoptosis/deficiencia , Proteínas de Unión al Calcio/deficiencia , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
13.
Sci Adv ; 7(40): eabj3658, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34586848

RESUMEN

Long interspersed nuclear element-1 (L1)­mediated reverse transcription (RT) of Alu RNA into cytoplasmic Alu complementary DNA (cDNA) has been implicated in retinal pigmented epithelium (RPE) degeneration. The mechanism of Alu cDNA­induced cytotoxicity and its relevance to human disease are unknown. Here we report that Alu cDNA is highly enriched in the RPE of human eyes with geographic atrophy, an untreatable form of age-related macular degeneration. We demonstrate that the DNA sensor cGAS engages Alu cDNA to induce cytosolic mitochondrial DNA escape, which amplifies cGAS activation, triggering RPE degeneration via the inflammasome. The L1-extinct rice rat was resistant to Alu RNA­induced Alu cDNA synthesis and RPE degeneration, which were enabled upon L1-RT overexpression. Nucleoside RT inhibitors (NRTIs), which inhibit both L1-RT and inflammasome activity, and NRTI derivatives (Kamuvudines) that inhibit inflammasome, but not RT, both block Alu cDNA toxicity, identifying inflammasome activation as the terminal effector of RPE degeneration.

14.
Invest Ophthalmol Vis Sci ; 61(5): 52, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32460310

RESUMEN

Purpose: To determine the effect of voluntary exercise on choroidal neovascularization (CNV) in mice. Methods: Age-matched wild-type C57BL/6J mice were housed in cages equipped with or without running wheels. After four weeks of voluntary running or sedentariness, mice were subjected to laser injury to induce CNV. After surgical recovery, mice were placed back in cages with or without exercise wheels for seven days. CNV lesion volumes were measured by confocal microscopy. The effect of wheel running only in the seven days after injury was also evaluated. Macrophage abundance and cytokine expression were quantified. Results: In the first study, exercise-trained mice exhibited a 45% reduction in CNV volume compared to sedentary mice. In the replication study, a 32% reduction in CNV volume in exercise-trained mice was observed (P = 0.029). Combining these two studies, voluntary exercise was found to reduce CNV by 41% (P = 0.0005). Exercise-trained male and female mice had similar CNV volumes (P = 0.99). The daily running distance did not correlate with CNV lesion size. Exercise only after the laser injury without a preconditioning period did not reduce CNV size (P = 0.41). CNV lesions of exercise-trained mice also exhibited significantly lower F4/80+ macrophage staining and Vegfa and Ccl2 mRNA expression. Conclusions: These findings provide the first experimental evidence that voluntary exercise improves CNV outcomes. These studies indicate that exercise before laser treatment is required to improve CNV outcomes.


Asunto(s)
Neovascularización Coroidal/prevención & control , Actividad Motora , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
15.
Nat Commun ; 11(1): 4737, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32968070

RESUMEN

Innate immune signaling through the NLRP3 inflammasome is activated by multiple diabetes-related stressors, but whether targeting the inflammasome is beneficial for diabetes is still unclear. Nucleoside reverse-transcriptase inhibitors (NRTI), drugs approved to treat HIV-1 and hepatitis B infections, also block inflammasome activation. Here, we show, by analyzing five health insurance databases, that the adjusted risk of incident diabetes is 33% lower in patients with NRTI exposure among 128,861 patients with HIV-1 or hepatitis B (adjusted hazard ratio for NRTI exposure, 0.673; 95% confidence interval, 0.638 to 0.710; P < 0.0001; 95% prediction interval, 0.618 to 0.734). Meanwhile, an NRTI, lamivudine, improves insulin sensitivity and reduces inflammasome activation in diabetic and insulin resistance-induced human cells, as well as in mice fed with high-fat chow; mechanistically, inflammasome-activating short interspersed nuclear element (SINE) transcripts are elevated, whereas SINE-catabolizing DICER1 is reduced, in diabetic cells and mice. These data suggest the possibility of repurposing an approved class of drugs for prevention of diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Reposicionamiento de Medicamentos , Inflamasomas/efectos de los fármacos , Resistencia a la Insulina , Inhibidores de la Transcriptasa Inversa/farmacología , Adipocitos/metabolismo , Animales , Supervivencia Celular , ARN Helicasas DEAD-box/metabolismo , Diabetes Mellitus Tipo 2/prevención & control , Dieta Alta en Grasa/efectos adversos , VIH-1/efectos de los fármacos , Hepatitis B , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Células Musculares/metabolismo , Ribonucleasa III/metabolismo
16.
Invest Ophthalmol Vis Sci ; 59(15): 5795-5802, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30508043

RESUMEN

Purpose: The misuse of inauthentic cell lines is widely recognized as a major threat to the integrity of biomedical science. Whereas the majority of efforts to address this have focused on DNA profiling, we sought to anatomically, transcriptionally, and functionally authenticate the RF/6A chorioretinal cell line, which is widely used as an endothelial cell line to model retinal and choroidal angiogenesis. Methods: Multiple vials of RF/6A cells obtained from different commercial distributors were studied to validate their genetic, transcriptomic, anatomic, and functional fidelity to bona fide endothelial cells. Results: Transcriptomic profiles of RF/6A cells obtained either de novo or from a public data repository did not correspond to endothelial gene expression signatures. Expression of established endothelial markers were very low or undetectable in RF/6A compared to primary human endothelial cells. Importantly, RF/6A cells also did not display functional characteristics of endothelial cells such as uptake of acetylated LDL, expression of E-selectin in response to TNF-α exposure, alignment in the direction of shear stress, and AKT and ERK1/2 phosphorylation following VEGFA stimulation. Conclusions: Multiple independent sources of RF/6A do not exhibit key endothelial cell phenotypes. Therefore, these cells appear unsuitable as surrogates for choroidal or retinal endothelial cells. Further, cell line authentication methods should extend beyond genomic profiling to include anatomic, transcriptional, and functional assessments.


Asunto(s)
Coroides/irrigación sanguínea , Células Endoteliales/citología , Vasos Retinianos/fisiología , Animales , Biomarcadores , Western Blotting , Línea Celular , Selectina E/genética , Células Endoteliales/metabolismo , Perfilación de la Expresión Génica , Marcadores Genéticos/genética , Humanos , Inmunohistoquímica , Macaca mulatta , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Fenotipo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcriptoma/genética
17.
Nat Med ; 24(1): 50-61, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29176737

RESUMEN

Geographic atrophy is a blinding form of age-related macular degeneration characterized by retinal pigmented epithelium (RPE) death; the RPE also exhibits DICER1 deficiency, resultant accumulation of endogenous Alu-retroelement RNA, and NLRP3-inflammasome activation. How the inflammasome is activated in this untreatable disease is largely unknown. Here we demonstrate that RPE degeneration in human-cell-culture and mouse models is driven by a noncanonical-inflammasome pathway that activates caspase-4 (caspase-11 in mice) and caspase-1, and requires cyclic GMP-AMP synthase (cGAS)-dependent interferon-ß production and gasdermin D-dependent interleukin-18 secretion. Decreased DICER1 levels or Alu-RNA accumulation triggers cytosolic escape of mitochondrial DNA, which engages cGAS. Moreover, caspase-4, gasdermin D, interferon-ß, and cGAS levels were elevated in the RPE in human eyes with geographic atrophy. Collectively, these data highlight an unexpected role of cGAS in responding to mobile-element transcripts, reveal cGAS-driven interferon signaling as a conduit for mitochondrial-damage-induced inflammasome activation, expand the immune-sensing repertoire of cGAS and caspase-4 to noninfectious human disease, and identify new potential targets for treatment of a major cause of blindness.


Asunto(s)
Atrofia Geográfica/enzimología , Inflamasomas/metabolismo , Nucleotidiltransferasas/metabolismo , Animales , ARN Helicasas DEAD-box/genética , Humanos , Interferón Tipo I/metabolismo , Ratones , Epitelio Pigmentado de la Retina/metabolismo , Ribonucleasa III/genética , Transducción de Señal
18.
Artículo en Inglés | MEDLINE | ID: mdl-26925256

RESUMEN

Human intravenous immune globulin (IVIg), a purified IgG fraction composed of ~ 60% IgG1 and obtained from the pooled plasma of thousands of donors, is clinically used for a wide range of diseases. The biological actions of IVIg are incompletely understood and have been attributed both to the polyclonal antibodies therein and also to their IgG (IgG) Fc regions. Recently, we demonstrated that multiple therapeutic human IgG1 antibodies suppress angiogenesis in a target-independent manner via FcγRI, a high-affinity receptor for IgG1. Here we show that IVIg possesses similar anti-angiogenic activity and inhibited blood vessel growth in five different mouse models of prevalent human diseases, namely, neovascular age-related macular degeneration, corneal neovascularization, colorectal cancer, fibrosarcoma and peripheral arterial ischemic disease. Angioinhibition was mediated by the Fc region of IVIg, required FcγRI and had similar potency in transgenic mice expressing human FcγRs. Finally, IVIg therapy administered to humans for the treatment of inflammatory or autoimmune diseases reduced kidney and muscle blood vessel densities. These data place IVIg, an agent approved by the US Food and Drug Administration, as a novel angioinhibitory drug in doses that are currently administered in the clinical setting. In addition, they raise the possibility of an unintended effect of IVIg on blood vessels.

19.
Artículo en Inglés | MEDLINE | ID: mdl-26918197

RESUMEN

Aberrant angiogenesis is implicated in diseases affecting nearly 10% of the world's population. The most widely used anti-angiogenic drug is bevacizumab, a humanized IgG1 monoclonal antibody that targets human VEGFA. Although bevacizumab does not recognize mouse Vegfa, it inhibits angiogenesis in mice. Here we show bevacizumab suppressed angiogenesis in three mouse models not via Vegfa blockade but rather Fc-mediated signaling through FcγRI (CD64) and c-Cbl, impairing macrophage migration. Other approved humanized or human IgG1 antibodies without mouse targets (adalimumab, alemtuzumab, ofatumumab, omalizumab, palivizumab and tocilizumab), mouse IgG2a, and overexpression of human IgG1-Fc or mouse IgG2a-Fc, also inhibited angiogenesis in wild-type and FcγR humanized mice. This anti-angiogenic effect was abolished by Fcgr1 ablation or knockdown, Fc cleavage, IgG-Fc inhibition, disruption of Fc-FcγR interaction, or elimination of FcRγ-initated signaling. Furthermore, bevacizumab's Fc region potentiated its anti-angiogenic activity in humanized VEGFA mice. Finally, mice deficient in FcγRI exhibited increased developmental and pathological angiogenesis. These findings reveal an unexpected anti-angiogenic function for FcγRI and a potentially concerning off-target effect of hIgG1 therapies.

20.
Cell Rep ; 11(11): 1686-93, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26074074

RESUMEN

Excess iron induces tissue damage and is implicated in age-related macular degeneration (AMD). Iron toxicity is widely attributed to hydroxyl radical formation through Fenton's reaction. We report that excess iron, but not other Fenton catalytic metals, induces activation of the NLRP3 inflammasome, a pathway also implicated in AMD. Additionally, iron-induced degeneration of the retinal pigmented epithelium (RPE) is suppressed in mice lacking inflammasome components caspase-1/11 or Nlrp3 or by inhibition of caspase-1. Iron overload increases abundance of RNAs transcribed from short interspersed nuclear elements (SINEs): Alu RNAs and the rodent equivalent B1 and B2 RNAs, which are inflammasome agonists. Targeting Alu or B2 RNA prevents iron-induced inflammasome activation and RPE degeneration. Iron-induced SINE RNA accumulation is due to suppression of DICER1 via sequestration of the co-factor poly(C)-binding protein 2 (PCBP2). These findings reveal an unexpected mechanism of iron toxicity, with implications for AMD and neurodegenerative diseases associated with excess iron.


Asunto(s)
Elementos Alu , Proteínas Portadoras/metabolismo , Hierro/toxicidad , Epitelio Pigmentado de la Retina/metabolismo , Animales , Proteínas Portadoras/genética , Caspasa 1/genética , Caspasa 1/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Inflamasomas/metabolismo , Hierro/farmacología , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Epitelio Pigmentado de la Retina/efectos de los fármacos , Ribonucleasa III/genética , Ribonucleasa III/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA