Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Phys Chem Chem Phys ; 24(46): 28564-28576, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36412120

RESUMEN

If the conductivity and thermal properties of polyurethane films are improved with fillers, they can be used in wearable electronics, strain sensors, etc. In this regard, the present study aims to examine the effects of various diisocyanates as hard segments on polyurethane-graphene (PU/G) nanocomposites. To achieve this, nanocomposites are synthesized, first, and then the structural, electrical, and thermal properties of them are investigated. The results indicate that only PU/G composites based on toluene diisocyanate (TDI), methylene dicyclohexyl diisocyanate (HMDI), and hexamethylene diisocyanate (HDI) have non-zero I-V curves and are in the percolation zone. The thermal stability of the PU/G composite based on cyclo-aliphatic isophorone diisocyanate (IPDI) is higher than that of the others, while TDI-PU/G has the lowest thermal stability due to its chemical structure. The results show that HDI-PU/G, based on less dangerous diisocyanate, is a more flexible nanocomposite. It also has electrical advantages, a wider range of working temperatures, and good thermal stability. Furthermore, the maximal Seebeck coefficient and voltage belong to it, which are around 2.5 mV °C-1 at 45 °C and 0.15 V at 85 °C, respectively.

2.
J Environ Manage ; 157: 279-86, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25917559

RESUMEN

A surface modification method was carried out to enhance the light crude oil sorption capacity of polyurethane foam (PUF) through immobilization of multi-walled carbon nanotube (MWCNT) on the foam surface at various concentrations. The developed sorbent was characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and tensile elongation test. The results obtained from thermogravimetric and tensile elongation tests showed the improvement of thermal and mechanical resistance of surface-modified foam. The experimental data also revealed that the immobilization of MWCNT on PUF surface enhanced the sorption capacity of light crude oil and reduced water sorption. The highest oil removal capacity was obtained for 1 wt% MWCNT on PUF surface which was 21.44% enhancement in light crude oil sorption compared to the blank PUF. The reusability of surface modified PUF was determined through four cycles of chemical regeneration using petroleum ether. The adsorption of light crude oil with 30 g initial mass showed that 85.45% of the initial oil sorption capacity of this modified sorbent was remained after four regeneration cycles. Equilibrium isotherms for adsorption of oil were analyzed by the Freundlich, Langmuir, Temkin, and Redlich-Peterson models through linear and non-linear regression methods. Results of equilibrium revealed that Langmuir isotherm is the best fitting model and non-linear method is a more accurate way to predict the parameters involved in the isotherms. The overall findings suggested the promising potentials of the developed sorbent in order to be efficiently used in large-scale oil spill cleanup.


Asunto(s)
Petróleo , Poliuretanos , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Adsorción , Humanos , Microscopía Electrónica de Rastreo , Nanotubos de Carbono , Espectroscopía Infrarroja por Transformada de Fourier
3.
Heliyon ; 10(1): e23840, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38192763

RESUMEN

Metal-organic frameworks (MOFs) are promising materials offering exceptional performance across a myriad of applications, attributable to their remarkable physicochemical properties such as regular porosity, crystalline structure, and tailored functional groups. Despite their potential, there is a lack of dedicated reviews that focus on key physicochemical characterizations of MOFs for the beginners and new researchers in the field. This review is written based on our expertise in the synthesis and characterization of MOFs, specifically to provide a right direction for the researcher who is a beginner in this area. In this way, experimental errors can be reduced, and wastage of time and chemicals can be avoided when new researchers conduct a study. In this article, this topic is critically analyzed, and findings and conclusions are presented. We reviewed three well-known XRD techniques, including PXRD, single crystal XRD, and SAXS, which were used for XRD analysis depending on the crystal size and the quality of crystal morphology. The TGA profile was an effective factor for evaluating the quality of the activation process and for ensuring the successful investigation for other characterizations. The BET and pore size were significantly affected by the activation process and selective benzene chain cross-linkers. FTIR is a prominent method that is used to investigate the functional groups on pore surfaces, and this method is successfully used to evaluate the activation process, characterize functionalized MOFs, and estimate their applications. The most significant methods of characterization include the X-ray diffraction, which is utilized for structural identification, and thermogravimetric analysis (TGA), which is used for exploring thermal decomposition. It is important to note that the thermal stability of MOFs is influenced by two main factors: the metal-ligand interaction and the type of functional groups attached to the organic ligand. The textural properties of the MOFs, on the other hand, can be scrutinized through nitrogen adsorption-desorption isotherms experiments at 77 K. However, for smaller pore size, the Argon adsorption-desorption isotherm at 87.3 K is preferred. Furthermore, the CO2 adsorption isotherm at 273 K can be used to measure ultra-micropore sizes and sizes lower than these, which cannot be measured by using the N2 adsorption-desorption isotherm at 77 K. The highest BET was observed in high-valence MOFs that are constructed based on the metal-oxo cluster, which has an excellent ability to control their textural properties. It was found that the synthesis procedure (including the choice of solvent, cross-linker, secondary metal, surface functional groups, and temperature), activation method, and pressure significantly impact the surface area of the MOF and, by extension, its structural integrity. Additionally, Fourier-transform infrared spectroscopy plays a crucial role in identifying active MOF functional groups. Understanding these physicochemical properties and utilizing relevant characterization techniques will enable more precise MOF selection for specific applications.

4.
ACS Omega ; 8(28): 25525-25537, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37483249

RESUMEN

During production from oil wells, the deposition of asphaltene and wax at surface facilities and porous media is one of the major operational challenges. The crude oil production rate is significantly reduced due to asphaltene deposition inside the reservoir. In addition, the deposition of these solids inside the surface facilities is costly to oil companies. In this study, the efficiency of different solvents in dissolving asphaltene and wax was investigated through static and dynamic tests. The analysis of solid deposits from the surface choke of one of the Iranian carbonate oil fields showed that they consisted of 41.3 wt % asphaltene, and the balance was predominantly wax. In addition, the asphaltenes obtained from the surface choke solid deposits had a more complex structure than that of asphaltenes extracted from the crude oil itself. The static tests showed that xylene, toluene, gasoline, kerosene, and gas condensate had the highest efficiencies in dissolving solid deposits; conversely, diesel had a negative impact on dissolving solid deposits. Static tests on pure asphaltene showed that, among the tested solvents, gas condensate and diesel had a negative effect on the solubility of asphaltene. The dynamic core flooding results showed that asphaltene deposition inside the cores reduced the permeability by 79-91%. Among the tested solvents, xylene, gasoline, and kerosene resulted in the highest efficacy in restoring the damaged permeability, and higher efficiency was obtained with an equivalent solvent injection rate of 1 bbl/min versus 3 bbl/min.

5.
Chemosphere ; 335: 139135, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37285975

RESUMEN

Mineralization reactions in basaltic formations have gained recent interest as an effective method for CO2 geo-storage in order to mitigate anthropogenic greenhouse gas emissions. The CO2/rock interactions, including interfacial tension and wettability, are crucial factors in determining the CO2 trapping capacity and the feasibility of CO2 geological storage in these formations. The Red Sea geological coast in Saudi Arabia has many basaltic formations, and their wetting characteristics are rarely reported in the literature. Moreover, organic acid contamination is inherent in geo-storage formations and significantly impacts their CO2 geo-storage capacities. Hence, to reverse the organic effect, the influence of various SiO2 nanofluid concentrations (0.05-0.75 wt%) on the CO2-wettability of organic-acid aged Saudi Arabian (SA) basalt is evaluated herein at 323 K and various pressures (0.1-20 MPa) via contact angle measurements. The SA basalt substrates are characterized via various techniques, including atomic force microscopy, energy dispersive spectroscopy, scanning electron microscopy, and others. In addition, the CO2 column heights that correspond to the capillary entry pressure before and after nanofluid treatment are calculated. The results show that the organic acid-aged SA basalt substrates become intermediate-wet to CO2-wet under reservoir pressure and temperature conditions. When treated with SiO2 nanofluids, however, the SA basalt substrates become weakly water-wet, and the optimum performance is observed at an SiO2 nanofluid concentration of 0.1 wt%. At 323 K and 20 MPa, the CO2 column height corresponding to the capillary entry pressure increases from -957 m for the organic-aged SA basalt to 6253 m for the 0.1 wt% nano-treated SA basalt. The results suggest that the CO2 containment security of organic-acid-contaminated SA basalt can be enhanced by SiO2 nanofluid treatment. Thus, the results of this study may play a significant role in assessing the trapping of CO2 in SA basaltic formations.


Asunto(s)
Dióxido de Carbono , Dióxido de Silicio , Arabia Saudita , Dióxido de Carbono/química , Silicatos
6.
Heliyon ; 9(8): e18652, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37560630

RESUMEN

In conventional rock mechanics testing, radial strain measuring devices are usually attached to the sample's surface at its mid-height. Although this procedure provides a realistic picture of the lateral deformation undergone by homogeneous samples, however, this assumption may not be accurate if the tested rock has significant heterogeneity. Fibre Bragg Grating (FBG) sensors have recently been introduced to various rock testing applications due to their versatility over conventional strain gauges and radial cantilevers. FBG sensors have small size, multiplexing capability, and immunity to magnetic interference. The main objective of this study is to explore and understand the capabilities of FBG sensing for strain measurement during rock mechanics testing, including under confining. To do so, two limestone plugs (Savonnières limestone) and one acrylic Poly Methyl Methacrylate (PMMA) plug, all of 38 mm diameter, were prepared. The acrylic plug and one of the Savonnières samples plugs were subjected to Unconfined Compressive Strength (UCS) tests. The second Savonnières plug was subjected to a hydrostatic test up to 20 MPa confining at room temperature. FBG sensors of 125 µm cladding diameter with ceramics (Ormocer) coating were glued on the surface of each sample, spreading across the entire sample's height. Strain gauges and cantilever-type radial gauges were used on the samples submitted to UCS for comparison. Results show that radial strain measurements and calculated elastic properties derived from the FBG readings for samples are comparable to readings from the conventional strain gauges and cantilever-type devices. Apparent bulk moduli based on volumetric strain computed from FBG radial strain readings during the hydrostatic test on the Savonnières sample was consistent with benchtop measurements conducted on the Savonnières sample and another plug extracted from the same parental block, as well as published literature data. Moreover, variations in the calculated elastic properties are interpreted as evidence that the FBG sensors detected heterogeneities in the samples' inner structure, which can be seen in the density profiles computed from x-ray CT images. Such observation confirms the potential of the presented FBG sensors configuration for 3D strain mapping in rock mechanics tests.

7.
ACS Omega ; 8(46): 43930-43954, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38027330

RESUMEN

In this research, a novel natural-based polymer, the Aloe Vera biopolymer, is used to improve the mobility of the injected water. Unlike most synthetic chemical polymers used for chemical-enhanced oil recovery, the Aloe Vera biopolymer is environmentally friendly, thermally stable in reservoir conditions, and compatible with reservoir rock and fluids. In addition, the efficiency of the Aloe Vera biopolymer was investigated in the presence of a new synthetic nanocomposite composed of KCl-SiO2-xanthan. This chemically enhanced oil recovery method was applied on a sandstone reservoir in Southwest Iran with crude oil with an API gravity of 22°. The Aloe Vera biopolymer's physicochemical characteristics were initially examined using different analytical instruments. The results showed that the Aloe Vera biopolymer is thermally stable under reservoir conditions. In addition, no precipitation occurred with the formation brine at the salinity of 80,000 ppm. The experimental results showed that adding ethanol with a 10% volume percentage reduced interfacial tension to 15.3 mN/m and contact angle to 108°, which was 52.33 and 55.56% of these values, respectively. On the other hand, adding nanocomposite lowered interfacial tension and contact angle values to 4 mN/m and 48°, corresponding to reducing these values by 87.53 and 71.42%, respectively. The rheology results showed that the solutions prepared by Aloe Vera biopolymer, ethanol, and nanocomposite were Newtonian and fitted to the Herschel-Bulkley model. Finally, core flooding results showed that the application of a solution prepared by Aloe Vera biopolymer, ethanol, and nanocomposite was effective in increasing the oil recovery factor, where the maximum oil recovery factor of 73.35% was achieved, which could be attributed to the IFT reduction, wettability alteration, and mobility improvement mechanisms.

8.
Plasmonics ; 17(4): 1831-1841, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35730043

RESUMEN

As developed countries' ability to control infectious diseases increases, it has become clear that genetic diseases are a major cause of disability, death, and human tragedy. Coronavirus has recently spread throughout the world, and the capacity to detect low concentrations and virus changes can help to prevent the sickness from spreading further. In this paper, a surface plasmon resonance sensor based on nanostructured thin films and graphene as a 2D material has been designed with high sensitivity and accuracy to identify DNA-based infectious diseases such as SARS-CoV-2. The transfer matrix method assesses the effects of different structural factors, including nanolayer thickness on the sensor's performance. The results demonstrated that the sensor with the Kretschmann configuration has ultra-high sensitivity (192.19 deg/RIU) and a high figure of merit (634.68 RIU-1).

9.
J Colloid Interface Sci ; 608(Pt 2): 1457-1462, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34749137

RESUMEN

HYPOTHESIS: Hydrogen geo-storage is considered as an option for large scale hydrogen storage in a full-scale hydrogen economy. Among different types of subsurface formations, coal seams look to be one of the best suitable options as coal's micro/nano pore structure can adsorb a huge amount of gas (e.g. hydrogen) which can be withdrawn again once needed. However, literature lacks fundamental data regarding H2 diffusion in coal. EXPERIMENTS: In this study, we measured H2 adsorption rate in an Australian anthracite coal sample at isothermal conditions for four different temperatures (20 °C, 30 °C, 45 °C and 60 °C), at equilibrium pressure âˆ¼ 13 bar, and calculated H2 diffusion coefficient ( [Formula: see text] ) at each temperature. CO2 adsorption rates were measured for the same sample at similar temperatures and equilibrium pressure for comparison. FINDINGS: Results show that H2 adsorption rate, and consequently [Formula: see text] , increases by temperature. [Formula: see text] values are one order of magnitude larger than the equivalent [Formula: see text] values for the whole studied temperature range 20-60 °C. [Formula: see text] / [Formula: see text] also shows an increasing trend versus temperature. CO2 adsorption capacity at equilibrium pressure is about 5 times higher than that of H2 in all studied temperatures. Both H2 and CO2 adsorption capacities, at equilibrium pressure, slightly decrease as temperature rises.

10.
J Colloid Interface Sci ; 614: 256-266, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35101673

RESUMEN

HYPOTHESIS: The mitigation of anthropogenic greenhouse gas emissions and increasing global energy demand are two driving forces toward the hydrogen economy. The large-scale hydrogen storage at the surface is not feasible as hydrogen is very volatile and highly compressible. An effective way for solving this problem is to store it in underground geological formations (i.e. carbonate reservoirs). The wettability of the rock/H2/brine system is a critical parameter in the assessment of residual and structural storage capacities and containment safety. However, the presence of organic matters in geo-storage formations poses a direct threat to the successful hydrogen geo-storage operation and containment safety. EXPERIMENTS: As there is an intensive lack of literature on hydrogen wettability of calcite-rich formations, advancing (θa) and receding (θr) contact angles of water/H2/calcite systems were measured as a function of different parameters, including pressure (0.1-20 MPa), temperature (298-353 K), salinity (0-4.95 mol.kg-1), stearic acid (as a representative of organic acid) concentration (10-9 - 10-2 mol/L), tilting plate angle (0° - 45°) and surface roughness (RMS = 341 nm, 466 nm, and 588 nm). FINDINGS: The results of the study show that at ambient conditions, the system was strongly water-wet, but became intermediate wet at high pressure. The water contact angle strongly increased with stearic acid concentration making the calcite surface H2-wet. Moreover, the contact angle increased with salinity and tilting plate angle but decreased with temperature and surface roughness. We conclude that the optimum conditions for de-risking H2 storage projects in carbonates are low pressures, high temperatures, low salinity, and low organic surface concentration. Therefore, it is essential to measure these effects to avoid overestimation of hydrogen geo-storage capacities and containment security.

11.
Adv Colloid Interface Sci ; 301: 102595, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35033921

RESUMEN

Coal fines can substantially influence coal seam gas reservoir permeability, thus impeding the flow of gas in coal microstructure. The coal fines generation and migration are influenced by several factors, wherein coal fines are generally hydrophobic and aggregate in natural coal seam gas (CSG) under prevailing conditions of pH, salinity, temperature and pressure. This aggregation behaviour can damage the coal matrix and cleat system permeabilities, leading to a considerable reduction of proppant pack conductivity (i.e. fracture conductivity). Several datasets have been reported within the literature on this subject in the last decade. However, a more up-to-date discussion of this area is key to understanding coal fines migration and associated knowledge. Thus, in this review, we conduct a systematic investigation of coal fines and their influencing factors. Here, coal fines are introduced, followed by an initial holistic investigation of their generation, plugging, movement, redistribution and production. Then, in order to enhance current understandings of the subject matter, a parametric evaluation of the factors noted earlier is conducted, based on recently published literature. Subsequently, the published mathematical and analytical models for fines generation are reviewed. Finally, the implications and challenges associated with coal fines mitigation are discussed.


Asunto(s)
Carbón Mineral , Gas Natural , Permeabilidad , Temperatura
12.
J Colloid Interface Sci ; 620: 86-93, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35413608

RESUMEN

We conducted measurements of hydrogen adsorption on three coal samples of varying ranks at high pressure (0 to 102 bar) and elevated temperatures (303 K to 333 K) to assess their hydrogen storage potential. The excess adsorption capacity increased with increasing pressure but decreased with increasing temperature irrespective of coal rank. The highest hydrogen adsorption recorded was 0.721 mol/kg for the anthracite coal at 303 K and 102 bar. Furthermore, the hydrogen adsorption capacity correlated positively with coal vitrinite and fixed carbon contents (i.e. the high-rank coal exhibited greater adsorption), while all samples depicted predominantly type-I adsorption behavior for the entire pressure range. Micropore analysis and Fourier-transform infrared spectroscopy measurements were conducted to explore the microstructural and surface chemistry associated with these adsorption trends. The micropore content of the three samples followed the order: anthracite > sub-bituminous > bituminous, while H2 adsorption followed the trend: anthracite > bituminous > sub-bituminous - i.e., no direct correlation between coal micropore content and its H2 adsorption capacity - attributable to high clay content of bituminous coal which lowered its micropore content. Moreover, bituminous, and sub-bituminous samples exhibited an abundance of oxygen-containing functional groups, while anthracite coal depicted notable aromatic content - suggesting that the H2 adsorption capacity is a complex function of coal surface chemistry and micropore content. Overall, high-rank coal seams at high pressure and temperature showed the largest hydrogen adsorption i.e., analogous to CO2 adsorption potential albeitat lower absolute values. These results, therefore, provide preliminary data on the hydrogen storage potential of coal seams and the associated scientific understanding of the mechanisms causing hydrogen adsorption.


Asunto(s)
Carbón Mineral , Hidrógeno , Adsorción , Carbono/química , Carbón Mineral/análisis , Temperatura
13.
J Colloid Interface Sci ; 607(Pt 1): 401-411, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34509114

RESUMEN

HYPOTHESIS: Zeta-potential in the presence of brine has been studied for its application within hydrocarbon reservoirs. These studies have shown that sandstone's zeta-potential remains negatively charged, non-zero, and levels-off at salinities > 0.4 mol.dm-3, thus becoming independent of salinity when ionic strength is increased further. However, research conducted to date has not yet considered clay-rich (i.e. clay ≥ 5 wt%) sandstones. EXPERIMENTS: Firstly, streaming potential measurements were conducted on Bandera Gray sandstones (clay-rich and clay-poor) with 0.6 and 2 mol.dm-3 NaCl brine-saturated in pressurised environments (6.895 MPa overburden and 3.447 MPa back-pressure). Secondly, the streaming potential was determined at identical conditions for the effect of two surfactants, SDBS and CTAB, at concentrations of 0.01 and 0.1 wt% on the clay-poor sample in 0.6 mol.dm-3 NaCl. Thirdly, a comparison of zeta potentials determined via electrophoretic and streaming potential was conducted. Accordingly, this work analyses the effects of mineralogy and surfactants within this process. FINDINGS: Clay-rich sandstone possessed lower zeta-potentials than clay-poor sandstone at the two tested salinities. SDBS reduced zeta-potential and yielded higher repulsive forces rendering the rock more hydrophilic. Additionally, electrophoretic zeta-potentials were higher when compared to streaming zeta-potentials. Mechanisms for the observed phenomena are also provided.


Asunto(s)
Surfactantes Pulmonares , Tensoactivos , Arcilla , Hidrocarburos , Interacciones Hidrofóbicas e Hidrofílicas
14.
J Colloid Interface Sci ; 608(Pt 2): 1739-1749, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34742087

RESUMEN

HYPOTHESIS: Actualization of the hydrogen (H2) economy and decarbonization goals can be achieved with feasible large-scale H2 geo-storage. Geological formations are heterogeneous, and their wetting characteristics play a crucial role in the presence of H2, which controls the pore-scale distribution of the fluids and sealing capacities of caprocks. Organic acids are readily available in geo-storage formations in minute quantities, but they highly tend to increase the hydrophobicity of storage formations. However, there is a paucity of data on the effects of organic acid concentrations and types on the H2-wettability of caprock-representative minerals and their attendant structural trapping capacities. EXPERIMENT: Geological formations contain organic acids in minute concentrations, with the alkyl chain length ranging from C4 to C26. To fully understand the wetting characteristics of H2 in a natural geological picture, we aged mica mineral surfaces as a representative of the caprock in varying concentrations of organic molecules (with varying numbers of carbon atoms, lignoceric acid C24, lauric acid C12, and hexanoic acid C6) for 7 days. To comprehend the wettability of the mica/H2/brine system, we employed a contact-angle procedure similar to that in natural geo-storage environments (25, 15, and 0.1 MPa and 323 K). FINDINGS: At the highest investigated pressure (25 MPa) and the highest concentration of lignoceric acid (10-2 mol/L), the mica surface became completely H2 wet with advancing (θa= 106.2°) and receding (θr=97.3°) contact angles. The order of increasing θa and θr with increasing organic acid contaminations is as follows: lignoceric acid > lauric acid > hexanoic acid. The results suggest that H2 gas leakage through the caprock is possible in the presence of organic acids at higher physio-thermal conditions. The influence of organic contamination inherent at realistic geo-storage conditions should be considered to avoid the overprediction of structural trapping capacities and H2 containment security.


Asunto(s)
Hidrógeno , Silicatos de Aluminio , Sales (Química) , Humectabilidad
15.
ACS Omega ; 7(29): 24951-24972, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35910115

RESUMEN

Oil production faces challenges such as limited oil production from carbonate reservoirs, high oil production costs, and environmental issues. Chemical flooding as an enhanced oil recovery (EOR) method (CEOR) can increase oil production by the use of chemical additives such as surfactants into the reservoirs. Surfactants can increase oil recovery by interfacial tension (IFT) reduction and alteration of the rock wettability from oil-wet to water-wet. The synthesis of chemicals such as synthetic surfactants is usually costly and harmful to the environment. To solve these problems, many researchers have oriented on the use of natural surfactants instead of synthetic ones within the CEOR process. A new approach to increase the efficiency of CEOR is the synergizing of the chemical additives with nanoparticles as a hybrid fluid, which is known as the nanotechnology-assisted EOR method. In this research, a natural surfactant derived from Cyclamen persicum (CP) plant was extracted, and its performance was optimized with the zinc oxide/montmorillonite (ZnO/MMT) nanocomposite in a synergistic usage. At the optimum concentration of the surfactant, the measurements of the IFT and the contact angle show 57.78 and 61.58% optimizations, respectively. Also, in the presence of NaCl, the performance of CP is improved. IFT and contact angle measurements were also conducted for ZnO/MMT nanofluids and CP-ZnO/MMT as hybrid nanofluids. Results indicate that ZnO/MMT nanocomposites can alter the wettability of the carbonate rock to the water-wet state. Also, the CP-ZnO/MMT hybrid nanofluid shows a good potential in both IFT reduction and altering wettability from oil-wet to water-wet. Finally, to investigate the effects of solutions on increasing oil recovery factor (RF), the optimum concentrations of the surfactant, nanocomposite, and hybrid solutions were selected for dynamic core flooding experiments, and improvements showed oil RF increases of 8.2, 6, and 13%, respectively.

16.
ACS Omega ; 7(41): 36165-36174, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36278110

RESUMEN

The use of nanoparticles (NPs) in enhanced oil recovery (EOR) processes is very effective in reducing the interfacial tension (IFT) and surface tension (ST) and altering the wettability of reservoir rocks. The main purpose of this study was to use the newly synthesized nanocomposites (KCl/SiO2/Xanthan NCs) in EOR applications. Several analytical techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM) were applied to confirm the validity of the synthesized NCs. From the synthesized NCs, nanofluids were prepared at different concentrations of 100-2000 ppm and characterized using electrical conductivity, IFT, and ST measurements. From the obtained results, it can be observed that 1000 ppm is the optimal concentration of the synthesized NCs that had the best performance in EOR applications. The nanofluid with 1000 ppm KCl/SiO2/Xanthan NCs enabled reducing the IFT and ST from 33 and 70 to 29 and 40 mN/m, respectively. However, the contact angle was highly decreased under the influence of the same nanofluid to 41° and the oil recovery improved by an extra 17.05% OOIP. To sum up, KCl/SiO2/Xanthan NCs proved highly effective in altering the wettability of rocks from oil-wet to water-wet and increasing the cumulative oil production.

17.
ACS Omega ; 7(35): 31327-31337, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36092592

RESUMEN

One of the inevitable problems encountered during the petroleum well drilling process is "lost circulation" in which part of the drilling fluid is lost into the formation. A combination of nanoparticles with their unique properties and cost-effective biodegradable materials can play an effective role in treating fluid loss. In this study, our aim was to formulate drilling fluids modified with nanoparticles, pomegranate peel powder, and Prosopis farcta plant powder. The drilling fluids were identified and recognized using scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy techniques. Furthermore, experimental tests were conducted in order to investigate the performance of the newly formulated drilling fluid in improving fluid loss characteristics. The obtaining results have shown that adding 0.3 wt % of pomegranate peel powder to the reference (base) drilling fluid reduces the filter loss volume to 7.9 mL compared to the reference fluid (11.6 mL). As the optimal concentration of TiO2 was mixed with 0.3 wt % of pomegranate peel powder then added to the reference fluid, the filter loss volume was reduced to 8.6 mL.

18.
J Colloid Interface Sci ; 588: 315-325, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33412352

RESUMEN

HYPOTHESIS: Millions of tons of CO2 are stored in CO2 geological storage (CGS) formations (depleted oil reservoirs and deep saline aquifers) every year. These CGS formations naturally contain small concentrations of water-soluble organic components in particular humic acid (HA), which may drastically affect the rock wettability - a significant factor determining storage capacities and containment security. Hence, it is essential to characterise the effect of humic acid concentration on CO2-wettability and its associated impact on storage capacity. EXPERIMENTAL: To achieve this, we measured advancing and receding contact angles at reservoir conditions using the pendant drop tilted plate method for various humic acid concentrations (1, 10, and 100 mg/L) as a function of pressure (0.1-25 MPa), temperature (303-333 K), and brine salinity (0-0.3 M NaCl). Further, the influence of humic acid adsorption on the mineral's surface was examined by several independent techniques. RESULTS: Our results demonstrate that humic acid significantly changes rock wettability from water-wet (0-50°) towards CO2-wet (90-110°). An increase in pressure, temperature, and salinity had a similar effect. Humic acid adsorption also increased the surface roughness of the substrates. We conclude that even trace amounts of humic acid (i.e. 1 mg/L), which exist in storage aquifers, significantly increase CO2-wettability and thus reduce structural and residual trapping capacities. Therefore, it is pertinent to account for these humic acid concentrations to de-risk CGS projects.

19.
RSC Adv ; 10(25): 14761-14767, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35497156

RESUMEN

Polysulfone (PSF) was prepared under high shear in a vortex fluidic device (VFD) operating in confined mode, and its properties compared with that prepared using batch processing. This involved reacting the pre-prepared disodium salt of bisphenol A (BPA) with a 4,4'-dihalodiphenylsulfone under anhydrous conditions. Scanning electron microscopy (SEM) established that in the thin film microfluidic platform, the PSF particles are sheet-like, for short reaction times, and fibrous for long reaction times, in contrast to spherical like particles for the polymer prepared using the conventional batch synthesis. The operating parameters of the VFD (rotational speed of the glass tube, its tilt angle and temperature) were systematically varied for establishing their effect on the molecular weight (M w), glass transition temperature (T g) and decomposition temperature, featuring gel permeation chromatography (GPC), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) respectively. The optimal VFD prepared PSF was obtained at 6000 rpm rotational speed, 45° tilt angle and 160 °C, for 1 h of processing with M w ∼10 000 g mol-1, T g ∼158 °C and decomposition temperature ∼530 °C, which is comparable to the conventionally prepared PSF.

20.
Nanomaterials (Basel) ; 10(11)2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33213039

RESUMEN

In this paper, synthesis and characterization of a novel CeO2/nanoclay nanocomposite (NC) and its effects on IFT reduction and wettability alteration is reported in the literature for the first time. The NC was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), energy-dispersive X-ray spectroscopy (EDS), and EDS MAP. The surface morphology, crystalline phases, and functional groups of the novel NC were investigated. Nanofluids with different concentrations of 100, 250, 500, 1000, 1500, and 2000 ppm were prepared and used as dispersants in porous media. The stability, pH, conductivity, IFT, and wettability alternation characteristics of the prepared nanofluids were examined to find out the optimum concentration for the selected carbonate and sandstone reservoir rocks. Conductivity and zeta potential measurements showed that a nanofluid with concentration of 500 ppm can reduce the IFT from 35 mN/m to 17 mN/m (48.5% reduction) and alter the contact angle of the tested carbonate and sandstone reservoir rock samples from 139° to 53° (38% improvement in wettability alteration) and 123° to 90° (27% improvement in wettability alteration), respectively. A cubic fluorite structure was identified for CeO2 using the standard XRD data. FESEM revealed that the surface morphology of the NC has a layer sheet morphology of CeO2/SiO2 nanocomposite and the particle sizes are approximately 20 to 26 nm. TGA analysis results shows that the novel NC has a high stability at 90 °C which is a typical upper bound temperature in petroleum reservoirs. Zeta potential peaks at concentration of 500 ppm which is a sign of stabilty of the nanofluid. The results of this study can be used in design of optimum yet effective EOR schemes for both carbobate and sandstone petroleum reservoirs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA