Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Dev Biol ; 442(1): 101-114, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29944871

RESUMEN

During amniote peripheral nervous system development, segmentation ensures the correct patterning of the spinal nerves relative to the vertebral column. Along the antero-posterior (rostro-caudal) axis, each somite-derived posterior half-sclerotome expresses repellent molecules to restrict axon growth and neural crest migration to the permissive anterior half-segment. To identify novel regulators of spinal nerve patterning, we investigated the differential gene expression of anterior and posterior half-sclerotomes in the chick embryo by RNA-sequencing. Several genes encoding extracellular matrix proteins were found to be enriched in either anterior (e.g. Tenascin-C, Laminin alpha 4) or posterior (e.g. Fibulin-2, Fibromodulin, Collagen VI alpha 2) half-sclerotomes. Among them, the extracellular matrix protein Fibulin-2 was found specifically restricted to the posterior half-sclerotome. By using in ovo ectopic expression in chick somites, we found that Fibulin-2 modulates spinal axon growth trajectories in vivo. While no intrinsic axon repellent activity of Fibulin-2 was found, we showed that it enhances the growth cone repulsive activity of Semaphorin 3A in vitro. Some molecules regulating axon growth during development are found to be upregulated in the adult central nervous system (CNS) following traumatic injury. Here, we found increased Fibulin-2 protein levels in reactive astrocytes at the lesion site of a mouse model of CNS injury. Together, these results suggest that the developing vertebral column and the adult CNS share molecular features that control axon growth and plasticity, which may open up the possibility for the identification of novel therapeutic targets for brain and spinal cord injury.


Asunto(s)
Proteínas de Unión al Calcio/fisiología , Proteínas de la Matriz Extracelular/fisiología , Nervios Espinales/embriología , Animales , Astrocitos/metabolismo , Astrocitos/fisiología , Axones/fisiología , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Diferenciación Celular/fisiología , Embrión de Pollo , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Ratones , Cresta Neural/metabolismo , Cresta Neural/fisiología , Semaforina-3A/metabolismo , Somitos/fisiología , Médula Espinal/metabolismo , Médula Espinal/fisiología
2.
Development ; 142(10): 1733-44, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25968309

RESUMEN

The segmented vertebral column comprises a repeat series of vertebrae, each consisting of two key components: the vertebral body (or centrum) and the vertebral arches. Despite being a defining feature of the vertebrates, much remains to be understood about vertebral development and evolution. Particular controversy surrounds whether vertebral component structures are homologous across vertebrates, how somite and vertebral patterning are connected, and the developmental origin of vertebral bone-mineralizing cells. Here, we assemble evidence from ichthyologists, palaeontologists and developmental biologists to consider these issues. Vertebral arch elements were present in early stem vertebrates, whereas centra arose later. We argue that centra are homologous among jawed vertebrates, and review evidence in teleosts that the notochord plays an instructive role in segmental patterning, alongside the somites, and contributes to mineralization. By clarifying the evolutionary relationship between centra and arches, and their varying modes of skeletal mineralization, we can better appreciate the detailed mechanisms that regulate and diversify vertebral patterning.


Asunto(s)
Notocorda/anatomía & histología , Columna Vertebral/anatomía & histología , Vertebrados/anatomía & histología , Animales , Evolución Biológica , Tipificación del Cuerpo/fisiología , Huesos/anatomía & histología
3.
J Anat ; 232(4): 534-539, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29063597

RESUMEN

A prominent anatomical feature of the peripheral nervous system is the segmentation of mixed (motor, sensory and autonomic) spinal nerves alongside the spinal cord. During early development their axon growth cones avoid the developing vertebral elements by traversing the anterior/cranial half of each somite-derived sclerotome, so ensuring the separation of spinal nerves from vertebral bones as axons extend towards their peripheral targets. A glycoprotein expressed on the surface of posterior half-sclerotome cells confines growth cones to the anterior half-sclerotomes by contact repulsion. A closely similar glycoprotein is expressed in avian and mammalian grey matter, where we hypothesize it may have evolved to regulate neural plasticity in birds and mammals.


Asunto(s)
Tipificación del Cuerpo , Nervios Espinales/fisiología , Columna Vertebral/embriología , Animales , Tipificación del Cuerpo/genética , Embrión de Pollo , Conos de Crecimiento/fisiología , Humanos , Ratones , Factor de Crecimiento Nervioso/metabolismo , Somitos/embriología , Médula Espinal/fisiología , Columna Vertebral/anatomía & histología
4.
J Neurosci ; 32(25): 8554-9, 2012 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-22723695

RESUMEN

Semaphorin-3A (Sema3A) is a major guidance cue in the developing nervous system. Previous studies have revealed a dependence of responses to Sema3A on local protein synthesis (PS) in axonal growth cones, but a recent study has called this dependence into question. To understand the basis of this discrepancy we used the growth cone collapse assay on chick dorsal root ganglion neurons. We show that the dependence of growth cone collapse on protein synthesis varies according to Sema3A concentration, from near-total at low concentration (<100 ng/ml) to minimal at high concentration (>625 ng/ml). Further, we show that neuropilin-1 (NP-1) mediates both PS-dependent and PS-independent collapse. Our findings are consistent with the operation of at least two distinct Sema3A signaling pathways: one that is PS-dependent, involving mammalian target of rapamycin, and one that is PS-independent, involving GSK-3ß activation and operative at all concentrations of Sema3A examined. The results provide a plausible explanation for the discrepancy in PS-dependence reported in the literature, and indicate that different signaling pathways activated within growth cones can be modulated by changing the concentration of the same guidance cue.


Asunto(s)
Conos de Crecimiento/efectos de los fármacos , Semaforina-3A/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Axones/fisiología , Movimiento Celular/fisiología , Células Cultivadas , Embrión de Pollo , Cicloheximida/farmacología , Relación Dosis-Respuesta a Droga , Ganglios Espinales/citología , Glucógeno Sintasa Quinasa 3/fisiología , Glucógeno Sintasa Quinasa 3 beta , Factor de Crecimiento Nervioso/metabolismo , Neuropilina-1/metabolismo , Biosíntesis de Proteínas/fisiología , Inhibidores de la Síntesis de la Proteína/farmacología , Serina-Treonina Quinasas TOR/fisiología
5.
J Anat ; 220(6): 591-602, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22458512

RESUMEN

We have carried out a series of experimental manipulations in the chick embryo to assess whether the notochord, neural tube and spinal nerves influence segmental patterning of the vertebral column. Using Pax1 expression in the somite-derived sclerotomes as a marker for segmentation of the developing intervertebral disc, our results exclude such an influence. In contrast to certain teleost species, where the notochord has been shown to generate segmentation of the vertebral bodies (chordacentra), these experiments indicate that segmental patterning of the avian vertebral column arises autonomously in the somite mesoderm. We suggest that in amniotes, the subdivision of each sclerotome into non-miscible anterior and posterior halves plays a critical role in establishing vertebral segmentation, and in maintaining left/right alignment of the developing vertebral elements at the body midline.


Asunto(s)
Tipificación del Cuerpo/fisiología , Columna Vertebral/embriología , Animales , Embrión de Pollo , Tubo Neural/embriología , Tubo Neural/fisiología , Notocorda/embriología , Notocorda/fisiología , Factores de Transcripción Paired Box/metabolismo , Nervios Espinales/embriología , Nervios Espinales/fisiología , Columna Vertebral/fisiología
6.
Front Cell Dev Biol ; 10: 917589, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874821

RESUMEN

During patterning of the peripheral nervous system, motor axons grow sequentially out of the neural tube in a segmented fashion to ensure functional integration of the motor roots between the surrounding cartilage and bones of the developing vertebrae. This segmented outgrowth is regulated by the intrinsic properties of each segment (somite) adjacent to the neural tube, and in particular by chemical repulsive guidance cues expressed in the posterior half. Yet, knockout models for such repulsive cues still display initial segmentation of outgrowing motor axons, suggesting the existence of additional, yet unknown regulatory mechanisms of axon growth segmentation. As neuronal growth is not only regulated by chemical but also by mechanical signals, we here characterized the mechanical environment of outgrowing motor axons. Using atomic force microscopy-based indentation measurements on chick embryo somite strips, we identified stiffness gradients in each segment, which precedes motor axon growth. Axon growth was restricted to the anterior, softer tissue, which showed lower cell body densities than the repulsive stiffer posterior parts at later stages. As tissue stiffness is known to regulate axon growth during development, our results suggest that motor axons also respond to periodic stiffness gradients imposed by the intrinsic mechanical properties of somites.

7.
PLoS One ; 15(1): e0221851, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31961897

RESUMEN

BACKGROUND: There is currently no effective treatment for promoting regeneration of injured nerves in patients who have sustained injury to the central nervous system such as spinal cord injury. Chondroitinase ABC is an enzyme, which promotes neurite outgrowth and regeneration. It has shown considerable promise as a therapy for these conditions. The aim of the study is to determine if targeting chondroitinase ABC expression to the neuronal axon can further enhance its ability to promote axon outgrowth. Long-distance axon regeneration has not yet been achieved, and would be a significant step in attaining functional recovery following spinal cord injury. METHODOLOGY/PRINCIPAL FINDINGS: To investigate this, neuronal cultures were transfected with constructs encoding axon-targeted chondroitinase, non-targeted chondroitinase or GFP, and the effects on neuron outgrowth and sprouting determined on substrates either permissive or inhibitory to neuron regeneration. The mechanisms underlying the observed effects were also explored. Targeting chondroitinase to the neuronal axon markedly enhances its ability to promote neurite outgrowth. The increase in neurite length is associated with an upregulation of ß-integrin staining at the axonal cell surface. Staining for phosphofocal adhesion kinase, is also increased, indicating that the ß-integrins are in an activated state. Expression of chondroitinase within the neurons also resulted in a decrease in expression of PTEN and RhoA, molecules which present a block to neurite outgrowth, thus identifying two of the pathways by which ChABC promotes neurite outgrowth. CONCLUSIONS / SIGNIFICANCE: The novel finding that targeting ChABC to the axon significantly enhances its ability to promote neurite extension, suggests that this may be an effective way of promoting long-distance axon regeneration following spinal cord injury. It could also potentially improve its efficacy in the treatment of other pathologies, where it has been shown to promote recovery, such as myocardial infarction, stroke and Parkinson's disease.


Asunto(s)
Condroitina ABC Liasa/genética , Regeneración Nerviosa/genética , Proyección Neuronal/genética , Traumatismos de la Médula Espinal/genética , Animales , Axones/metabolismo , Condroitina ABC Liasa/antagonistas & inhibidores , Regulación de la Expresión Génica/genética , Humanos , Neuritas/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Fosfohidrolasa PTEN/genética , Recuperación de la Función/genética , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/terapia , Proteína de Unión al GTP rhoA/genética
8.
Elife ; 92020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32452761

RESUMEN

Contact repulsion of growing axons is an essential mechanism for spinal nerve patterning. In birds and mammals the embryonic somites generate a linear series of impenetrable barriers, forcing axon growth cones to traverse one half of each somite as they extend towards their body targets. This study shows that protein disulphide isomerase provides a key component of these barriers, mediating contact repulsion at the cell surface in chick half-somites. Repulsion is reduced both in vivo and in vitro by a range of methods that inhibit enzyme activity. The activity is critical in initiating a nitric oxide/S-nitrosylation-dependent signal transduction pathway that regulates the growth cone cytoskeleton. Rat forebrain grey matter extracts contain a similar activity, and the enzyme is expressed at the surface of cultured human astrocytic cells and rat cortical astrocytes. We suggest this system is co-opted in the brain to counteract and regulate aberrant nerve terminal growth.


Asunto(s)
Orientación del Axón/fisiología , Proteínas de la Membrana/metabolismo , Óxido Nítrico/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Transducción de Señal , Animales , Astrocitos/fisiología , Línea Celular , Embrión de Pollo , Pollos , Biología Evolutiva , Técnicas de Silenciamiento del Gen , Conos de Crecimiento/fisiología , Humanos , Proteínas de la Membrana/genética , Neurociencias , Procolágeno-Prolina Dioxigenasa/genética , Procolágeno-Prolina Dioxigenasa/metabolismo , Proteína Disulfuro Isomerasas/genética , Ratas , Somitos/embriología , Somitos/fisiología , Nervios Espinales/embriología , Nervios Espinales/fisiología
9.
BMC Dev Biol ; 9: 30, 2009 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-19463158

RESUMEN

BACKGROUND: The polarization of somite-derived sclerotomes into anterior and posterior halves underlies vertebral morphogenesis and spinal nerve segmentation. To characterize the full extent of molecular differences that underlie this polarity, we have undertaken a systematic comparison of gene expression between the two sclerotome halves in the mouse embryo. RESULTS: Several hundred genes are differentially-expressed between the two sclerotome halves, showing that a marked degree of molecular heterogeneity underpins the development of somite polarity. CONCLUSION: We have identified a set of genes that warrant further investigation as regulators of somite polarity and vertebral morphogenesis, as well as repellents of spinal axon growth. Moreover the results indicate that, unlike the posterior half-sclerotome, the central region of the anterior-half-sclerotome does not contribute bone and cartilage to the vertebral column, being associated instead with the development of the segmented spinal nerves.


Asunto(s)
Somitos/citología , Nervios Espinales/citología , Nervios Espinales/embriología , Animales , Tipificación del Cuerpo/fisiología , Diferenciación Celular , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Ratones , Neurogénesis , ARN/metabolismo , Somitos/embriología , Somitos/metabolismo , Nervios Espinales/metabolismo
10.
Dev Cell ; 7(3): 347-358, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15363410

RESUMEN

During chick gastrulation, inhibition of BMP signaling is required for primitive streak formation and induction of Hensen's node. We have identified a unique secreted protein, Tsukushi (TSK), which belongs to the Small Leucine-Rich Proteoglycan (SLRP) family and is expressed in the primitive streak and Hensen's node. Grafts of cells expressing TSK in combination with the middle primitive streak induce an ectopic Hensen's node, while electroporation of TSK siRNA inhibits induction of the node. In Xenopus embryos, TSK can block BMP function and induce a secondary dorsal axis, while it can dorsalize ventral mesoderm and induce neural tissue in embryonic explants. Biochemical analysis shows that TSK binds directly to both BMP and chordin and forms a ternary complex with them. These observations indicate that TSK is an essential dorsalizing factor involved in the induction of Hensen's node.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Glicoproteínas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteoglicanos/fisiología , Secuencia de Aminoácidos , Animales , Western Blotting , Proteína Morfogenética Ósea 4 , Embrión de Pollo , Clonación Molecular , Gástrula/citología , Biblioteca de Genes , Hibridación in Situ , Cristalino/embriología , Datos de Secuencia Molecular , Neuronas/metabolismo , Unión Proteica , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Homología de Secuencia de Aminoácido , Xenopus , Proteínas de Xenopus
11.
Nat Neurosci ; 5(2): 103-10, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11788837

RESUMEN

The mechanisms that coordinate the three-dimensional shape of the vertebrate brain during development are largely unknown. We have found that sonic hedgehog (Shh) is crucial in driving the rapid, extensive expansion of the early vesicles of the developing midbrain and forebrain. Transient displacement of the notochord from the midbrain floor plate resulted in abnormal folding and overall collapse of the vesicles, accompanied by reduced cell proliferation and increased cell death in the midbrain. Simultaneously, expression of Shh decreased locally in the notochord and floor plate, whereas overt patterning and differentiation proceeded normally. Normal midbrain expansion was restored by implantation of Shh-secreting cells in a dose-dependent manner; conversely, expansion was retarded following antagonism of the Shh signaling pathway by cyclopamine. Our results indicate that Shh signaling from the ventral midline is essential for regulating brain morphogenesis during early development.


Asunto(s)
Embrión no Mamífero/fisiología , Transducción de Señal/fisiología , Transactivadores/fisiología , Animales , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/embriología , Células COS/metabolismo , Células COS/trasplante , Muerte Celular/fisiología , División Celular/fisiología , Embrión de Pollo , Proteínas Hedgehog , Notocorda/fisiología , Fenotipo , Valores de Referencia , Transactivadores/metabolismo , Transactivadores/farmacología
12.
Int J Dev Biol ; 62(1-2-3): 177-182, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29616726

RESUMEN

The chick embryo has provided a prominent model system for the study of segmental patterning in the nervous system. During early development, motor and sensory axon growth cones traverse the anterior/rostral half of each somite, so avoiding the developing vertebral components and ensuring separation of spinal nerves from vertebral bones. A glycoprotein expressed on the surface of posterior half-somite cells confines growth cones to the anterior half-somites by a contact repulsive mechanism. Hindbrain segmentation is also a conspicuous feature of chick brain development. We review how its contemporary analysis was initiated in the chick embryo, and the advantages the chick system continues to provide in its detailed elucidation at both molecular and neural circuit levels.


Asunto(s)
Axones/fisiología , Embrión de Pollo , Embriología/historia , Sistema Nervioso Periférico/embriología , Somitos/embriología , Animales , Pollos , Glicoproteínas/metabolismo , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Lectinas/metabolismo , Rombencéfalo/embriología
13.
PLoS One ; 12(11): e0186759, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29121057

RESUMEN

BACKGROUND: There is very little reported in the literature about the relationship between modifications of bacterial proteins and their secretion by mammalian cells that synthesize them. We previously reported that the secretion of the bacterial enzyme Chondroitinase ABC by mammalian cells requires the strategic removal of at least three N-glycosylation sites. The aim of this study was to determine if it is possible to enhance the efficacy of the enzyme as a treatment for spinal cord injury by increasing the quantity of enzyme secreted or by altering its cellular location. METHODOLOGY/PRINCIPAL FINDINGS: To determine if the efficiency of enzyme secretion could be further increased, cells were transfected with constructs encoding the gene for chondroitinase ABC modified for expression by mammalian cells; these contained additional modifications of strategic N-glycosylation sites or alternative signal sequences to direct secretion of the enzyme from the cells. We show that while removal of certain specific N-glycosylation sites enhances enzyme secretion, N-glycosylation of at least two other sites, N-856 and N-773, is essential for both production and secretion of active enzyme. Furthermore, we find that the signal sequence directing secretion also influences the quantity of enzyme secreted, and that this varies widely amongst the cell types tested. Last, we find that replacing the 3'UTR on the cDNA encoding Chondroitinase ABC with that of ß-actin is sufficient to target the enzyme to the neuronal growth cone when transfected into neurons. This also enhances neurite outgrowth on an inhibitory substrate. CONCLUSION/SIGNIFICANCE: Some intracellular trafficking pathways are adversely affected by cryptic signals present in the bacterial gene sequence, whilst unexpectedly others are required for efficient secretion of the enzyme. Furthermore, targeting chondroitinase to the neuronal growth cone promotes its ability to increase neurite outgrowth on an inhibitory substrate. These findings are timely in view of the renewed prospects for gene therapy, and of direct relevance to strategies aimed at expressing foreign proteins in mammalian cells, in particular bacterial proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Condroitina ABC Liasa/metabolismo , Procesamiento Proteico-Postraduccional , Regiones no Traducidas 3'/genética , Actinas/genética , Animales , Línea Celular , Perros , Femenino , Fluorescencia , Glicosilación , Conos de Crecimiento/metabolismo , Humanos , Mamíferos , Neuritas/metabolismo , Señales de Clasificación de Proteína , Transporte de Proteínas , Ratas , Especificidad por Sustrato , Transfección
14.
Mech Dev ; 121(9): 1055-68, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15296971

RESUMEN

The analysis of the outgrowth pattern of spinal axons in the chick embryo has shown that somites are polarized into anterior and posterior halves. This polarity dictates the segmental development of the peripheral nervous system: migrating neural crest cells and outgrowing spinal axons traverse exclusively the anterior halves of the somite-derived sclerotomes, ensuring a proper register between spinal axons, their ganglia and the segmented vertebral column. Much progress has been made recently in understanding the molecular basis for somite polarization, and its linkage with Notch/Delta, Wnt and Fgf signalling. Contact-repulsive molecules expressed by posterior half-sclerotome cells provide critical guidance cues for axons and neural crest cells along the anterior-posterior axis. Diffusible repellents from surrounding tissues, particularly the dermomyotome and notochord, orient outgrowing spinal axons in the dorso-ventral axis ('surround repulsion'). Repulsive forces therefore guide axons in three dimensions. Although several molecular systems have been identified that may guide neural crest cells and axons in the sclerotome, it remains unclear whether these operate together with considerable overall redundancy, or whether any one system predominates in vivo.


Asunto(s)
Tipificación del Cuerpo/fisiología , Sistema Nervioso Periférico/embriología , Somitos/fisiología , Animales , Embrión de Pollo , Expresión Génica/fisiología , Perfilación de la Expresión Génica , Transducción de Señal/fisiología , Médula Espinal/anatomía & histología , Médula Espinal/embriología
15.
Methods Mol Biol ; 1162: 73-83, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24838959

RESUMEN

The growth cone collapse assay has proved invaluable in detecting and purifying axonal repellents. Glycoproteins/proteins present in detergent extracts of biological tissues are incorporated into liposomes, added to growth cones in culture and changes in morphology are then assessed. Alternatively purified or recombinant molecules in aqueous solution may be added directly to the cultures. In both cases after a defined period of time (up to 1 h), the cultures are fixed and then assessed by inverted phase contrast microscopy for the percentage of growth cones showing a collapsed profile with loss of flattened morphology, filopodia, and lamellipodia.


Asunto(s)
Ganglios Espinales/citología , Conos de Crecimiento/ultraestructura , Microscopía de Contraste de Fase/métodos , Animales , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Pollos , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/metabolismo , Proteínas/administración & dosificación , Proteínas/metabolismo , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/metabolismo , Fijación del Tejido/métodos
16.
PLoS One ; 9(1): e86820, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24489789

RESUMEN

BACKGROUND: The protein Nogo-A regulates axon growth in the developing and mature nervous system, and this is carried out by two distinct domains in the protein, Nogo-A-Δ20 and Nogo-66. The differences in the signalling pathways engaged in axon growth cones by these domains are not well characterized, and have been investigated in this study. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed growth cone collapse induced by the Nogo-A domains Nogo-A-Δ20 and Nogo-66 using explanted chick dorsal root ganglion neurons growing on laminin/poly-lysine substratum. Collapse induced by purified Nogo-A-Δ20 peptide is dependent on protein synthesis whereas that induced by Nogo-66 peptide is not. Nogo-A-Δ20-induced collapse is accompanied by a protein synthesis-dependent rise in RhoA expression in the growth cone, but is unaffected by proteasomal catalytic site inhibition. Conversely Nogo-66-induced collapse is inhibited ∼ 50% by proteasomal catalytic site inhibition. CONCLUSION/SIGNIFICANCE: Growth cone collapse induced by the Nogo-A domains Nogo-A-Δ20 and Nogo-66 is mediated by signalling pathways with distinguishable characteristics concerning their dependence on protein synthesis and proteasomal function.


Asunto(s)
Ganglios Espinales/metabolismo , Conos de Crecimiento/metabolismo , Proteínas de la Mielina/genética , Proteínas de la Mielina/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Animales , Anisomicina/farmacología , Embrión de Pollo , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/patología , Regulación del Desarrollo de la Expresión Génica , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/patología , Laminina , Leupeptinas/farmacología , Proteínas de la Mielina/metabolismo , Proteínas Nogo , Polilisina , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Estructura Terciaria de Proteína , Inhibidores de la Síntesis de la Proteína/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Transducción de Señal , Técnicas de Cultivo de Tejidos , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
17.
J Neurosci Methods ; 227: 107-20, 2014 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-24583077

RESUMEN

As part of a project to express chondroitinase ABC (ChABC) in neurons of the central nervous system, we have inserted a modified ChABC gene into an adeno-associated viral (AAV) vector and injected it into the vibrissal motor cortex in adult rats to determine the extent and distribution of expression of the enzyme. A similar vector for expression of green fluorescent protein (GFP) was injected into the same location. For each vector, two versions with minor differences were used, giving similar results. After 4 weeks, the brains were stained to show GFP and products of chondroitinase digestion. Chondroitinase was widely expressed, and the AAV-ChABC and AAV-GFP vectors gave similar expression patterns in many respects, consistent with the known projections from the directly transduced neurons in vibrissal motor cortex and adjacent cingulate cortex. In addition, diffusion of vector to deeper neuronal populations led to labelling of remote projection fields which was much more extensive with AAV-ChABC than with AAV-GFP. The most notable of these populations are inferred to be neurons of cortical layer 6, projecting widely in the thalamus, and neurons of the anterior pole of the hippocampus, projecting through most of the hippocampus. We conclude that, whereas GFP does not label the thinnest axonal branches of some neuronal types, chondroitinase is efficiently secreted from these arborisations and enables their extent to be sensitively visualised. After 12 weeks, chondroitinase expression was undiminished.


Asunto(s)
Axones/fisiología , Condroitina ABC Liasa/metabolismo , Vectores Genéticos/fisiología , Neuronas/citología , Animales , Antígenos/metabolismo , Antígenos CD/metabolismo , Axones/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Proteínas de Unión al Calcio/metabolismo , Condroitina ABC Liasa/genética , Dependovirus/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Proteínas de Microfilamentos/metabolismo , Lectinas de Plantas/metabolismo , Proteoglicanos/metabolismo , Ratas , Receptores N-Acetilglucosamina/metabolismo , Transducción Genética/métodos
18.
J Neurosci Methods ; 201(1): 228-38, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21855577

RESUMEN

Several diseases and injuries of the central nervous system could potentially be treated by delivery of an enzyme, which might most effectively be achieved by gene therapy. In particular, the bacterial enzyme chondroitinase ABC is beneficial in animal models of spinal cord injury. We have adapted the chondroitinase gene so that it can direct secretion of active chondroitinase from mammalian cells, and inserted it into lentiviral vectors. When injected into adult rat brain, these vectors lead to extensive secretion of chondroitinase, both locally and from long-distance axon projections, with activity persisting for more than 4 weeks. In animals which received a simultaneous lesion of the corticospinal tract, the vector reduced axonal die-back and promoted sprouting and short-range regeneration of corticospinal axons. The same beneficial effects on damaged corticospinal axons were observed in animals which received the chondroitinase lentiviral vector directly into the vicinity of a spinal cord lesion.


Asunto(s)
Corteza Cerebral/enzimología , Condroitina ABC Liasa/genética , Regulación Enzimológica de la Expresión Génica , Vectores Genéticos/genética , Lentivirus/genética , Regeneración Nerviosa/genética , Traumatismos de la Médula Espinal/enzimología , Animales , Células Cultivadas , Condroitina ABC Liasa/administración & dosificación , Condroitina ABC Liasa/biosíntesis , Vectores Genéticos/administración & dosificación , Vectores Genéticos/biosíntesis , Células HEK293 , Humanos , Masculino , Ratones , Tractos Piramidales/enzimología , Ratas , Ovinos , Traumatismos de la Médula Espinal/genética
19.
J Biotechnol ; 145(2): 103-10, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19900493

RESUMEN

Although many eukaryotic proteins have been secreted by transfected bacterial cells, little is known about how a bacterial protein is treated as it passes through the secretory pathway when expressed in a eukaryotic cell. The eukaryotic N-glycosylation system could interfere with folding and secretion of prokaryotic proteins whose sequence has not been adapted for glycosylation in structurally appropriate locations. Here we show that such interference does indeed occur for chondroitinase ABC from the bacterium Proteus vulgaris, and can be overcome by eliminating potential N-glycosylation sites. Chondroitinase ABC was heavily glycosylated when expressed in mammalian cells or in a mammalian translation system, and this process prevented secretion of functional enzyme. Directed mutagenesis of selected N-glycosylation sites allowed efficient secretion of active chondroitinase. As these proteoglycans are known to inhibit regeneration of axons in the mammalian central nervous system, the modified chondroitinase gene is a potential tool for gene therapy to promote neural regeneration, ultimately in human spinal cord injury.


Asunto(s)
Condroitina ABC Liasa/química , Condroitina ABC Liasa/metabolismo , Clonación Molecular/métodos , Mutagénesis Sitio-Dirigida/métodos , Ingeniería de Proteínas/métodos , Proteus vulgaris/enzimología , Reticulocitos/fisiología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células Cultivadas , Condroitina ABC Liasa/genética , Activación Enzimática , Estabilidad de Enzimas , Glicosilación , Datos de Secuencia Molecular , Unión Proteica , Proteus vulgaris/genética , Conejos , Proteínas Recombinantes/metabolismo
20.
J Anat ; 209(3): 339-57, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16928203

RESUMEN

The notochord constitutes the main axial support during the embryonic and larval stages, and the arrangement of collagen fibrils within the notochord sheath is assumed to play a decisive role in determining its functional properties as a fibre-wound hydrostatic skeleton. We have found that during early ontogeny in Atlantic salmon stepwise changes occur in the configuration of the collagen fibre-winding of the notochord sheath. The sheath consists of a basal lamina, a layer of type II collagen, and an elastica externa that delimits the notochord; and these constituents are secreted in a specific order. Initially, the collagen fibrils are circumferentially arranged perpendicular to the longitudinal axis, and this specific spatial fibril configuration is maintained until hatching when the collagen becomes reorganized into distinct layers or lamellae. Within each lamella, fibrils are parallel to each other, forming helices around the longitudinal axis of the notochord, with a tangent angle of 75-80 degrees to the cranio-caudal axis. The helical geometry shifts between adjacent lamellae, forming enantiomorphous left- and right-handed coils, respectively, thus enforcing the sheath. The observed changes in the fibre-winding configuration may reflect adaptation of the notochord to functional demands related to stage in ontogeny. When the vertebral bodies initially form as chordacentra, the collagen lamellae of the sheath in the vertebral region are fixed by the deposition of minerals; in the intervertebral region, however, they represent a pre-adaptation providing torsional stability to the intervertebral joint. Hence, these modifications of the sheath transform the notochord per se into a functional vertebral column. The elastica externa, encasing the notochord, has serrated surfaces, connected inward to the type II collagen of the sheath, and outward to type I collagen of the mesenchymal connective tissue surrounding the notochord. In a similar manner, the collagen matrix of the neural and haemal arch cartilages is tightly anchored to the outward surface of the elastic membrane. Hence, the elastic membrane may serve as an interface between the notochord and the adjacent structures, with an essential function related to transmission of tensile forces from the musculature. The interconnection between the notochord and the myosepta is discussed in relation to function and to evolution of the arches and the vertebra. Contrary to current understanding, this study also shows that notochord vacuolization does not result in an increased elongation of the embryo, which agrees with the circular arrangement of type II collagen that probably only enables a restricted increase in girth upon vacuolization, not aiding elongation. As the vacuolization occurs during the egg stage, this type of collagen disposition, in combination with an elastica externa, also probably facilitates flexibility and curling of the embryo.


Asunto(s)
Embrión no Mamífero/fisiología , Notocorda/crecimiento & desarrollo , Salmo salar/embriología , Animales , Colágeno/metabolismo , Embrión no Mamífero/metabolismo , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Morfogénesis/fisiología , Movimiento , Notocorda/metabolismo , Salmo salar/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA