Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Proteome Res ; 15(2): 374-88, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26632656

RESUMEN

Articular cartilage consists of chondrocytes and two major components, a collagen-rich framework and highly abundant proteoglycans. Most prior studies defining the zonal distribution of cartilage have extracted proteins with guanidine-HCl. However, an unextracted collagen-rich residual is left after extraction. In addition, the high abundance of anionic polysaccharide molecules extracted from cartilage adversely affects the chromatographic separation. In this study, we established a method for removing chondrocytes from cartilage sections with minimal extracellular matrix protein loss. The addition of surfactant to guanidine-HCl extraction buffer improved protein solubility. Ultrafiltration removed interference from polysaccharides and salts. Almost four-times more collagen peptides were extracted by the in situ trypsin digestion method. However, as expected, proteoglycans were more abundant within the guanidine-HCl extraction. These different methods were used to extract cartilage sections from different cartilage layers (superficial, intermediate, and deep), joint types (knee and hip), and disease states (healthy and osteoarthritic), and the extractions were evaluated by quantitative and qualitative proteomic analyses. The results of this study led to the identifications of the potential biomarkers of osteoarthritis (OA), OA progression, and the joint specific biomarkers.


Asunto(s)
Cartílago Articular/metabolismo , Osteoartritis/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Biomarcadores/metabolismo , Condrocitos/metabolismo , Cromatografía/métodos , Proteínas de la Matriz Extracelular/química , Proteínas de la Matriz Extracelular/aislamiento & purificación , Proteínas de la Matriz Extracelular/metabolismo , Guanidinas/química , Articulación de la Cadera/metabolismo , Humanos , Articulación de la Rodilla/metabolismo , Espectrometría de Masas/métodos , Proteoglicanos/metabolismo , Proteoma/química , Proteoma/aislamiento & purificación , Reproducibilidad de los Resultados , Tensoactivos/química
2.
J Biol Chem ; 289(8): 4919-27, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24398684

RESUMEN

During inflammatory processes the extracellular matrix (ECM) is extensively remodeled, and many of the constituent components are released as proteolytically cleaved fragments. These degradative processes are better documented for inflammatory joint diseases than tendinopathy even though the pathogenesis has many similarities. The aims of this study were to investigate the proteomic composition of injured tendons during early and late disease stages to identify disease-specific cleavage patterns of the ECM protein cartilage oligomeric matrix protein (COMP). In addition to characterizing fragments released in naturally occurring disease, we hypothesized that stimulation of tendon explants with proinflammatory mediators in vitro would induce fragments of COMP analogous to natural disease. Therefore, normal tendon explants were stimulated with IL-1ß and prostaglandin E2, and their effects on the release of COMP and its cleavage patterns were characterized. Analyses of injured tendons identified an altered proteomic composition of the ECM at all stages post injury, showing protein fragments that were specific to disease stage. IL-1ß enhanced the proteolytic cleavage and release of COMP from tendon explants, whereas PGE2 had no catabolic effect. Of the cleavage fragments identified in early stage tendon disease, two fragments were generated by an IL-1-mediated mechanism. These fragments provide a platform for the development of neo-epitope assays specific to injury stage for tendon disease.


Asunto(s)
Proteína de la Matriz Oligomérica del Cartílago/metabolismo , Matriz Extracelular/metabolismo , Proteómica/métodos , Tendinopatía/metabolismo , Tendinopatía/patología , Tendones/metabolismo , Tendones/patología , Secuencia de Aminoácidos , Animales , Western Blotting , Proteína de la Matriz Oligomérica del Cartílago/química , Cromatografía Liquida , Medios de Cultivo , Dinoprostona/farmacología , Caballos , Humanos , Interleucina-1beta/farmacología , Espectrometría de Masas , Datos de Secuencia Molecular , Tendones/efectos de los fármacos , Supervivencia Tisular/efectos de los fármacos
3.
J Med Chem ; 67(11): 9374-9388, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38804039

RESUMEN

We have previously described a new series of selective and orally available galectin-1 inhibitors resulting in the thiazole-containing glycomimetic GB1490. Here, we show that the introduction of polar substituents to the thiazole ring results in galectin-1-specific compounds with low nM affinities. X-ray structural analysis of a new ligand-galectin-1 complex shows changes in the binding mode and ligand-protein hydrogen bond interactions compared to the GB1490-galectin-1 complex. These new high affinity ligands were further optimized with respect to affinity and ADME properties resulting in the galectin-1-selective GB1908 (Kd galectin-1/3 0.057/6.0 µM). In vitro GB1908 inhibited galectin-1-induced apoptosis in Jurkat cells (IC50 = 850 nM). Pharmacokinetic experiments in mice revealed that a dose of 30 mg/kg b.i.d. results in free levels of GB1908 in plasma over galectin-1 Kd for 24 h. GB1908 dosed with this regimen reduced the growth of primary lung tumor LL/2 in a syngeneic mouse model.


Asunto(s)
Antineoplásicos , Galectina 1 , Neoplasias Pulmonares , Galectina 1/antagonistas & inhibidores , Galectina 1/metabolismo , Humanos , Animales , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Ratones , Antineoplásicos/farmacología , Antineoplásicos/farmacocinética , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Administración Oral , Apoptosis/efectos de los fármacos , Relación Estructura-Actividad , Células Jurkat , Descubrimiento de Drogas , Cristalografía por Rayos X , Tiazoles/farmacocinética , Tiazoles/farmacología , Tiazoles/química
4.
J Biol Chem ; 287(23): 18913-24, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22493511

RESUMEN

Human synovial joints display a characteristic anatomic distribution of arthritis, e.g. rheumatoid arthritis primarily affects the metacarpophalangeal and proximal finger joints, but rarely the distal finger joints, whereas osteoarthritis occurs in the distal and proximal finger joints. Pelvospondylitis has a selective localization to the spine and sacroiliac joints. Is this tropism due to differences between the cartilages at the molecular level? To substantiate this concept the present study provides a background detailed compositional analysis by relative quantification of extracellular matrix proteins in articular cartilages, meniscus, intervertebral disc, rib, and tracheal cartilages on samples from 5-6 different individuals using an optimized approach for proteomics. Tissue extraction followed by trypsin digestion and two-dimensional LC separations coupled to tandem mass spectrometry, relative quantification with isobaric labeling, iTRAQ(TM), was used to compare the relative abundance of about 150 proteins. There were clear differences in protein patterns between different kinds of cartilages. Matrilin-1 and epiphycan were specific for rib and trachea, whereas asporin was particularly abundant in the meniscus. Interestingly, lubricin was prominent in the intervertebral disc, especially in the nucleus pulposus. Fibromodulin and lumican showed distributions that were mirror images of one other. Analyses of the insoluble residues from guanidine extraction revealed that a fraction of several proteins remained unextracted, e.g. asporin, CILP, and COMP, indicating cross-linking. Distinct differences in protein patterns may relate to different tissue mechanical properties, and to the intriguing tropism in different patterns of joint pathology.


Asunto(s)
Artritis Reumatoide/metabolismo , Cartílago Articular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Proteómica , Adulto , Artritis Reumatoide/patología , Cartílago Articular/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Especificidad de Órganos
5.
Biochemistry ; 49(44): 9518-32, 2010 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-20873803

RESUMEN

Galectin-1, a ß-galactoside binding lectin involved in immunoregulation and cancer, binds natural and many synthetic multivalent glycoconjugates with an apparent glycoside cluster effect, that is, affinity above and beyond what would be expected from the concentration of the determinant sugar. Here we have analyzed the mechanism of such cluster effects in solution at physiological concentration using a fluorescence anisotropy assay with a novel fluorescent high-affinity galectin-1 binding probe. The interaction of native dimeric and monomeric mutants of rat and human galectin-1 with mono- and divalent small molecules, fetuin, asialofetuin, and human serum glycoproteins was analyzed. Surprisingly, high-affinity binding did not depend much on the dimeric state of galectin-1 and thus is due mainly to monomeric interactions of a single carbohydrate recognition domain. The mechanism for this is unknown, but one possibility includes additional interactions that high-affinity ligands make with an extended binding site on the carbohydrate recognition domain. It follows that such weak additional interactions must be important for the biological function of galectin-1 and also for the design of galectin-1 inhibitors.


Asunto(s)
Galectina 1/metabolismo , Glicoproteínas/metabolismo , Animales , Asialoglicoproteínas/metabolismo , Sitios de Unión , Proteínas Sanguíneas/metabolismo , Cristalografía por Rayos X , Fetuínas , Polarización de Fluorescencia , Galectina 1/química , Humanos , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , Ratas , alfa-Fetoproteínas/metabolismo
6.
Matrix Biol ; 63: 11-22, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-27988350

RESUMEN

Mechanical damage at the time of joint injury and the ensuing inflammatory response associated with elevated levels of pro-inflammatory cytokines in the synovial fluid, are reported to contribute to the progression to osteoarthritis after injury. In this exploratory study, we used a targeted proteomics approach to follow the progression of matrix degradation in response to mechanical damage and cytokine treatment of human knee cartilage explants, and thereby to study potential molecular biomarkers. This proteomics approach allowed us to unambiguously identify and quantify multiple peptides and proteins in the cartilage medium and explants upon treatment with ±injurious compression ±cytokines, treatments that mimic the earliest events in post-traumatic OA. We followed degradation of different protein domains, e.g., G1/G2/G3 of aggrecan, by measuring representative peptides of matrix proteins released into the medium at 7 time points throughout the 21-day culture period. COMP neo-epitopes, which were previously identified in the synovial fluid of knee injury/OA patients, were also released by these human cartilage explants treated with cyt and cyt+inj. The absence of collagen pro-peptides and elevated levels of specific COMP and COL3A1 neo-epitopes after human knee trauma may be relevant as potential biomarkers for post-traumatic OA. This model system thereby enables study of the kinetics of cartilage degradation and the identification of biomarkers within cartilage explants and those released to culture medium. Discovery proteomics revealed that candidate proteases were identified after specific treatment conditions, including MMP1, MMP-3, MMP-10 and MMP-13.


Asunto(s)
Cartílago Articular/metabolismo , Citocinas/fisiología , Proteoma/metabolismo , Secuencia de Aminoácidos , Cartílago Articular/lesiones , Colágenos Fibrilares/química , Colágenos Fibrilares/metabolismo , Humanos , Cinética , Masculino , Metaloproteinasas de la Matriz Secretadas/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Proteolisis , Proteómica , Técnicas de Cultivo de Tejidos , Adulto Joven
7.
Stem Cells Transl Med ; 5(9): 1171-81, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27388238

RESUMEN

UNLABELLED: : Familial osteochondritis dissecans (FOCD) is an inherited skeletal defect characterized by the development of large cartilage lesions in multiple joints, short stature, and early onset of severe osteoarthritis. It is associated with a heterozygous mutation in the ACAN gene, resulting in a Val-Met replacement in the C-type lectin domain of aggrecan. To understand the cellular pathogenesis of this condition, we studied the chondrogenic differentiation of patient bone marrow mesenchymal stromal cells (BM-MSCs). We also looked at cartilage derived from induced pluripotent stem cells (iPSCs) generated from patient fibroblasts. Our results revealed several characteristics of the differentiated chondrocytes that help to explain the disease phenotype and susceptibility to cartilage injury. First, patient chondrogenic pellets had poor structural integrity but were rich in glycosaminoglycan. Second, it was evident that large amounts of aggrecan accumulated within the endoplasmic reticulum of chondrocytes differentiated from both BM-MSCs and iPSCs. In turn, there was a marked absence of aggrecan in the extracellular matrix. Third, it was evident that matrix synthesis and assembly were globally dysregulated. These results highlight some of the abnormal aspects of chondrogenesis in these patient cells and help to explain the underlying cellular pathology. The results suggest that FOCD is a chondrocyte aggrecanosis with associated matrix dysregulation. The work provides a new in vitro model of osteoarthritis and cartilage degeneration based on the use of iPSCs and highlights how insights into disease phenotype and pathogenesis can be uncovered by studying differentiation of patient stem cells. SIGNIFICANCE: The isolation and study of patient stem cells and the development of methods for the generation of iPSCs have opened up exciting opportunities in understanding causes and exploring new treatments for major diseases. This technology was used to unravel the cellular phenotype in a severe form of inherited osteoarthritis, termed familial osteochondritis dissecans. The phenotypic abnormalities that give rise to cartilage lesions in these patients were able to be described via the generation of chondrocytes from bone marrow-derived mesenchymal stromal cells and iPSCs, illustrating the extraordinary value of these approaches in disease modeling.


Asunto(s)
Condrocitos/patología , Estrés del Retículo Endoplásmico/fisiología , Matriz Extracelular/patología , Osteocondritis Disecante/congénito , Adulto , Agrecanos/genética , Animales , Cartílago/metabolismo , Técnicas de Cultivo de Célula/métodos , Condrocitos/metabolismo , Condrogénesis/fisiología , Humanos , Inmunohistoquímica , Células Madre Pluripotentes Inducidas/citología , Masculino , Espectrometría de Masas , Células Madre Mesenquimatosas/citología , Ratones , Microscopía Electrónica de Transmisión , Persona de Mediana Edad , Osteocondritis Disecante/genética , Osteocondritis Disecante/metabolismo , Osteocondritis Disecante/patología , Fenotipo
8.
Matrix Biol ; 40: 34-45, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25193283

RESUMEN

The articular cartilage of synovial joints ensures friction-free mobility and attenuates mechanical impact on the joint during movement. These functions are mediated by the complex network of extracellular molecules characteristic for articular cartilage. Zonal differences in the extracellular matrix (ECM) are well recognized. However, knowledge about the precise molecular composition in the different zones remains limited. In the present study, we investigated the distribution of ECM molecules along the surface-to-bone axis, using quantitative non-targeted as well as targeted proteomics.\ In a discovery approach, iTRAQ mass spectrometry was used to identify all extractable ECM proteins in the different layers of a human lateral tibial plateau full thickness cartilage sample. A targeted MRM mass spectrometry approach was then applied to verify these findings and to extend the analysis to four medial tibial plateau samples. In the lateral tibial plateau sample, the unique distribution patterns of 70 ECM proteins were identified, revealing groups of proteins with a preferential distribution to the superficial, intermediate or deep regions of articular cartilage. The detailed analysis of selected 29 proteins confirmed these findings and revealed similar distribution patterns in the four medial tibial plateau samples. The results of this study allow, for the first time, an overview of the zonal distribution of a broad range of cartilage ECM proteins and open up further investigations of the functional roles of matrix proteins in the different zones of articular cartilage in health and disease.


Asunto(s)
Cartílago Articular/metabolismo , Matriz Extracelular/química , Proteínas Matrilinas/aislamiento & purificación , Proteómica/métodos , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Espectrometría de Masas , Tenascina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA