Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Pediatr Allergy Immunol ; 35(6): e14173, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38873916

RESUMEN

BACKGROUND: Little is known about the immune responses during acute asthma exacerbation. In this study, we examined immune responses in children following an acute asthma exacerbation. METHODS: We evaluated pro-inflammatory cytokine levels and gene expression profiles in blood samples from pediatric patients admitted for acute asthma exacerbation. Viral PCR was performed to differentiate between viral or non-viral-associated exacerbations. RESULTS: Following informed consent, clinical data were obtained from 20 children with asthma (median [interquartile range, IQR]: age 11.5 [8.0, 14.2]) years and 14 healthy age-matched controls (10.5 [7.0, 13.0]). Twelve had positive nasopharyngeal Polymerase chain reaction (PCR) for viral infection (11 rhinoviruses and 1 respiratory syncytial virus (RSV)). Nine were in the pediatric intensive care unit (PICU) and among them five required continuous positive airway pressure (CPAP). Mean (±SD) days on systemic steroids before drawing blood sample were 2.5 ± 1.6. Twelve had history of environmental allergies with 917 (274, 1396) IU/mL total IgE (median (IQR)). Compared with controls, IL-1RA and IL-10 levels were significantly increased and TNF-α significantly decreased in asthma subjects (p < .05 for all). RNA-seq analysis revealed 852 differentially expressed genes in subjects with asthma. Pathway analysis found upregulated genes and pathways involved in innate immune responses in subjects with asthma. Significantly reduced genes included pathways associated with T helper cell differentiation and activation. CONCLUSIONS: In acute asthma exacerbation, innate immune pathways remained increased while adaptive immune responses related to T helper cells are blunted and are independent of trigger or asthma severity. Our novel findings highlight the need to identify new therapies to target persistent innate immune responses to improve outcomes in acute asthma.


Asunto(s)
Asma , Citocinas , Inmunidad Innata , Humanos , Asma/inmunología , Niño , Femenino , Masculino , Adolescente , Citocinas/sangre , Enfermedad Aguda , Progresión de la Enfermedad , Estudios de Casos y Controles , Preescolar
2.
J Immunol ; 208(7): 1525-1533, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35288471

RESUMEN

Severe asthma is characterized by steroid insensitivity and poor symptom control and is responsible for most asthma-related hospital costs. Therapeutic options remain limited, in part due to limited understanding of mechanisms driving severe asthma. Increased arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), is increased in human asthmatic lungs. In this study, we show that PRMT5 drives allergic airway inflammation in a mouse model reproducing multiple aspects of human severe asthma. We find that PRMT5 is required in CD4+ T cells for chronic steroid-insensitive severe lung inflammation, with selective T cell deletion of PRMT5 robustly suppressing eosinophilic and neutrophilic lung inflammation, pathology, airway remodeling, and hyperresponsiveness. Mechanistically, we observed high pulmonary sterol metabolic activity, retinoic acid-related orphan receptor γt (RORγt), and Th17 responses, with PRMT5-dependent increases in RORγt's agonist desmosterol. Our work demonstrates that T cell PRMT5 drives severe allergic lung inflammation and has potential implications for the pathogenesis and therapeutic targeting of severe asthma.


Asunto(s)
Asma , Hipersensibilidad , Animales , Asma/metabolismo , Granulocitos/metabolismo , Hipersensibilidad/metabolismo , Inflamación/metabolismo , Ratones , Células Th17/metabolismo
3.
Respir Physiol Neurobiol ; 313: 104060, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37031925

RESUMEN

DNA methylation is necessary for developmental gene regulation, but adverse environments result in aberrant methylation and gene silencing. The current pilot study tested the hypothesis that treatment with DNA methylation inhibitors (decitabine; RG108) would improve alveolarization in a newborn murine model of severe bronchopulmonary dysplasia. Newborn mice exposed to maternal inflammation (LPS) and neonatal hyperoxia (85% O2) were treated with decitabine (p3, 0.1 mg/kg; p2, 4, 6, 0.1 mg/kg; or p2, 4, 6, 0.15 mg/kg) or RG108 (p3, 0.0013 mg/kg) delivered intranasally. Modest improvements in alveolarization were observed with decitabine, but no differences were observed with RG108. Attenuated phospho-SMAD2/3 levels and greater surfactant protein C protein levels compared to vehicle were observed with some tested doses. No detrimental side effects were observed with the doses used in this study. In summary, our pilot investigations identified a safe dose for intranasal administration of both methylation inhibitors and provides a foundation for further studies into methylation inhibitors in the context of neonatal lung injury.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Animales , Ratones , Animales Recién Nacidos , Decitabina/farmacología , Decitabina/uso terapéutico , Decitabina/metabolismo , Modelos Animales de Enfermedad , ADN/metabolismo , ADN/farmacología , ADN/uso terapéutico , Hiperoxia/metabolismo , Pulmón/metabolismo , Proyectos Piloto
4.
Pediatr Pulmonol ; 58(3): 825-833, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36444736

RESUMEN

BACKGROUND: Cystic fibrosis (CF) is a multisystem disease with progressive deterioration. Recently, CF transmembrane conductance regulator (CFTR) modulator therapies were introduced that repair underlying protein defects. Objective of this study was to determine the impact of elexacaftor-tezacaftor-ivacaftor (ETI) on clinical parameters and inflammatory responses in people with CF (pwCF). METHODS: Lung function (FEV1 ), body mass index (BMI) and microbiologic data were collected at initiation and 3-month intervals for 1 year. Blood was analyzed at baseline and 6 months for cytokines and immune cell populations via flow cytometry and compared to non-CF controls. RESULTS: Sample size was 48 pwCF, 28 (58.3%) males with a mean age of 28.8 ± 10.7 years. Significant increases in %predicted FEV1 and BMI were observed through 6 months of ETI therapy with no change thereafter. Changes in FEV1 and BMI at 3 months were significantly correlated (r = 57.2, p < 0.01). There were significant reductions in Pseudomonas and Staphylococcus positivity (percent of total samples) in pwCF through 12 months of ETI treatment. Healthy controls (n = 20) had significantly lower levels of circulating neutrophils, interleukin (IL)-6, IL-8, and IL-17A and higher levels of IL-13 compared to pwCF at baseline (n = 48). After 6 months of ETI, pwCF had significant decreases in IL-8, IL-6, and IL-17A levels and normalization of peripheral blood immune cell composition. CONCLUSIONS: In pwCF, ETI significantly improved clinical outcomes, reduced systemic pro-inflammatory cytokines, and restored circulating immune cell composition after 6 months of therapy.


Asunto(s)
Fibrosis Quística , Masculino , Humanos , Adolescente , Adulto Joven , Adulto , Femenino , Fibrosis Quística/complicaciones , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/metabolismo , Interleucina-17/metabolismo , Interleucina-17/uso terapéutico , Interleucina-8/metabolismo , Interleucina-8/uso terapéutico , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Aminofenoles/uso terapéutico , Benzodioxoles/uso terapéutico , Citocinas/metabolismo , Mutación
5.
Front Pharmacol ; 13: 855247, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35479312

RESUMEN

Type 2-high severe asthma is described as a distinct endotype with Th2 inflammation, high eosinophil lung infiltration, impaired lung function, and reduced corticosteroid sensitivity. While the inflammatory milieu is similar to mild asthma, patients with type 2-high severe asthma likely have underlying mechanisms that sustain asthma pathophysiology despite corticosteroid treatments. Acute and chronic allergen models induce robust type 2 inflammatory responses, however differences in corticosteroid sensitivity remains poorly understood. In the present study, we sensitized and challenged mice with ovalbumin (OVA; acute model) or mixed allergens (MA; chronic model). Corticosteroid sensitivity was assessed by administering vehicle, 1, or 3 mg/kg fluticasone propionate (FP) and examining key asthmatic features such as airway inflammation, remodeling, hyperresponsiveness, and antioxidant capacity. Both acute and chronic allergen exposure exhibited enhanced AHR, immune cell infiltration, airway inflammation, and remodeling, but corticosteroids were unable to fully alleviate inflammation, AHR, and airway smooth muscle mass in MA-challenged mice. While there were no differences in antioxidant capacity, persistent IL-4+ Th2 cell population suggests the MA model induces type 2 inflammation that is insensitive to corticosteroids. Our data indicate that chronic allergen exposure is associated with more persistent type 2 immune responses and corticosteroid insensitivity. Understanding differences between acute and chronic allergen models could unlock underlying mechanisms related to type 2-high severe asthma.

6.
Vascul Pharmacol ; 145: 107087, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35792302

RESUMEN

BACKGROUND: Notch signaling is an evolutionarily conserved pathway that functions via direct cell-cell contact. The Notch ligand Jagged1 (Jag1) has been extensively studied in vascular development, particularly for its role in smooth muscle cell maturation. Endothelial cell-expressed Jag1 is essential for blood vessel formation by signaling to nascent vascular smooth muscle cells and promoting their differentiation. Given the established importance of Jag1 in endothelial cell/smooth muscle crosstalk during development, we sought to determine the extent of this communication in the adult vasculature for blood vessel function and homeostasis. METHODS: We conditionally deleted Jag1 in endothelial cells of adult mice and examined the phenotypic consequences on smooth muscle cells of the vasculature. RESULTS: Our results show that genetic loss of Jag1 in endothelial cells has a significant impact on Notch signaling and vascular smooth muscle function in mature blood vessels. Endothelial cell-specific deletion of Jag1 causes a concomitant loss of JAG1 and NOTCH3 expression in vascular smooth muscle cells, resulting in a transition to a less differentiated state. Aortic vascular smooth muscle cells isolated from the endothelial cell-specific Jag1 deficient mice retain an altered phenotype in culture with fixed changes in gene expression and reduced Notch signaling. Utilizing comparative RNA-sequence analysis, we found that Jag1 deficiency preferentially affects extracellular matrix and adhesion protein gene expression. Vasoreactivity studies revealed a reduced contractile response and impaired agonist-induced relaxation in endothelial cell Jag1-deficient aortas compared to controls. CONCLUSIONS: These data are the first to demonstrate that Jag1 in adult endothelial cells is required for the regulation and homeostasis of smooth muscle cell function in arterial vessels partially through the autoregulation of Notch signaling and cell matrix/adhesion components in smooth muscle cells.


Asunto(s)
Células Endoteliales , Receptores Notch , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Células Endoteliales/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ligandos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Músculo Liso Vascular/metabolismo , Fenotipo , ARN/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Serrate-Jagged/genética , Proteínas Serrate-Jagged/metabolismo
7.
J Autism Dev Disord ; 52(12): 5342-5355, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35013866

RESUMEN

This double-blind, randomized controlled trial, tested fatty acid (FA) supplementation in children (ages 2- < 6 years) recently diagnosed with Autism Spectrum Disorder (ASD). Participants received daily oral FA supplement containing omega-3 and omega-6 FA, or a placebo for 90 days based on participant weight. Erythrocyte FAs and the cytokines, IL-1ß, IL-2, IFNγ, were measured in plasma obtained from serial blood collections. Treatment increased omega-3 and omega-6 FA levels (1.40 mol% for EPA and 1.62 mol% for DHA) and reduced IL-2 levels compared to placebo (- 0.17 pg/mL, 95% CI - 0.31, - 0.02, d = - 0.62). Omega 3-6 treatment was tolerable and adherence was greater than 70%. Future research will assess the effects of Omega 3-6 treatment on ASD symptoms. Registered on 06/08/2018 with ClinicalTrials.gov: NCT03550209.


Asunto(s)
Trastorno del Espectro Autista , Ácidos Grasos Omega-3 , Ácidos Grasos Omega-6 , Niño , Preescolar , Humanos , Trastorno del Espectro Autista/tratamiento farmacológico , Biomarcadores , Suplementos Dietéticos , Método Doble Ciego , Ácidos Grasos Omega-3/uso terapéutico , Ácidos Grasos Omega-6/uso terapéutico , Interleucina-2/metabolismo
8.
Nutrients ; 13(12)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34959801

RESUMEN

Pregnancy and parturition involve extensive changes in the maternal immune system. In our randomized, multi-site, double-blind superiority trial using a Bayesian adaptive design, we demonstrated that 1000 mg/day of docosahexaenoic acid (DHA) was superior to 200 mg/day in preventing both early preterm birth (less than 34 weeks' gestation) and preterm birth (less than 37 weeks' gestation). The goal of this secondary study is to compare the effects of 1000 mg/day versus 200 mg/day on maternal inflammation, a possible mechanism by which DHA may prevent preterm birth. Maternal blood samples were collected at enrollment (12-20 weeks' gestation) and at delivery. Red blood cell DHA levels were measured by gas chromatography, and plasma concentrations of sRAGE, IL-6, IL-1ß, TNFα, and INFγ were measured by ELISA. Data were analyzed for associations with the DHA dose, gestational age at birth, and preterm birth (<37 weeks). Higher baseline and lower delivery levels of maternal sRAGE were associated with a greater probability of longer gestation and delivery at term gestation. Higher-dose DHA supplementation increased the probability of a smaller decrease in delivery sRAGE levels. Higher IL-6 concentrations at delivery were associated with the probability of delivering after 37 weeks, and higher-dose DHA supplementation increased the probability of greater increases in IL-6 concentrations between enrollment and delivery. These data provide a proposed mechanistic explanation of how a higher dose of DHA during pregnancy provides immunomodulatory regulation in the initiation of parturition by influencing sRAGE and IL-6 levels, which may explain its ability to reduce the risk of preterm birth.


Asunto(s)
Suplementos Dietéticos , Ácidos Docosahexaenoicos/administración & dosificación , Inmunidad/efectos de los fármacos , Fenómenos Fisiologicos Nutricionales Maternos/inmunología , Nacimiento Prematuro/prevención & control , Adulto , Antígenos de Neoplasias/sangre , Teorema de Bayes , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Eritrocitos/química , Femenino , Edad Gestacional , Humanos , Interferón gamma/sangre , Interleucina-1beta/sangre , Interleucina-6/sangre , Proteínas Quinasas Activadas por Mitógenos/sangre , Embarazo , Atención Prenatal/métodos , Factor de Necrosis Tumoral alfa/sangre
9.
Environ Mol Mutagen ; 59(5): 438-460, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29466611

RESUMEN

The growing incidence of melanoma is a serious public health issue that merits a thorough understanding of potential causative risk factors, which includes exposure to ultraviolet radiation (UVR). Though UVR has been classified as a complete carcinogen and has long been recognized for its ability to damage genomic DNA through both direct and indirect means, the precise mechanisms by which the UVA and UVB components of UVR contribute to the pathogenesis of melanoma have not been clearly defined. In this review, we therefore highlight recent studies that have addressed roles for UVA radiation in the generation of DNA damage and in modulating the subsequent cellular responses to DNA damage in melanocytes, which are the cell type that gives rise to melanoma. Recent research suggests that UVA not only contributes to the direct formation of DNA lesions but also impairs the removal of UV photoproducts from genomic DNA through oxidation and damage to DNA repair proteins. Moreover, the melanocyte microenvironment within the epidermis of the skin is also expected to impact melanomagenesis, and we therefore discuss several paracrine signaling pathways that have been shown to impact the DNA damage response in UV-irradiated melanocytes. Lastly, we examine how alterations to the immune microenvironment by UVA-associated DNA damage responses may contribute to melanoma development. Thus, there appear to be multiple avenues by which UVA may elevate the risk of melanoma. Protective strategies against excess exposure to UVA wavelengths of light therefore have the potential to decrease the incidence of melanoma. Environ. Mol. Mutagen. 59:438-460, 2018. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Daño del ADN/efectos de la radiación , Melanoma/genética , Neoplasias Inducidas por Radiación/genética , Rayos Ultravioleta/efectos adversos , Reparación del ADN/efectos de la radiación , Humanos , Melanocitos/efectos de la radiación , Melanoma/etiología , Melanoma/patología , Neoplasias Inducidas por Radiación/patología , Transducción de Señal/efectos de la radiación , Piel/patología , Piel/efectos de la radiación , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA