Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Physiol Plant ; 176(2): e14246, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38467573

RESUMEN

The accumulation of misfolded proteins in the endoplasmic reticulum (ER) within plant cells due to unfavourable conditions leads to ER stress. This activates interconnected pathways involving reactive oxygen species (ROS) and unfolded protein response (UPR), which play vital roles in regulating ER stress. The aim of this study is to investigate the underlying mechanisms of tunicamycin (TM) induced ER stress and explore the potential therapeutic applications of tauroursodeoxycholic acid (TUDCA) in mitigating cellular responses to ER stress in Pak choi (Brassica campestris subsp. chinensis). The study revealed that ER stress in Pak choi leads to detrimental effects on plant morphology, ROS levels, cellular membrane integrity, and the antioxidant defence system. However, treatment with TUDCA in TM-induced ER stressed Pak choi improved morphological indices, pigment contents, ROS accumulation, cellular membrane integrity, and antioxidant defence system restoration. Additionally, TUDCA also modulates the transcription levels of ER stress sensors genes, ER chaperone genes, and ER-associated degradation (ERAD) genes during ER stress in Pak choi. Furthermore, TUDCA has demonstrated its ability to alleviate ER stress, stabilize the UPR, reduce oxidative stress, prevent apoptosis, and positively influence plant growth and development. These results collectively comprehend TUDCA as a promising agent for mitigating ER stress-induced damage in Pak choi plants and provide valuable insights for further research and potential applications in crop protection and stress management.


Asunto(s)
Antioxidantes , Ácido Tauroquenodesoxicólico , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Ácido Tauroquenodesoxicólico/farmacología , Estrés del Retículo Endoplásmico , Tunicamicina/farmacología
2.
Physiol Plant ; 176(3): e14307, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38705723

RESUMEN

Phytohormones, pivotal regulators of plant growth and development, are increasingly recognized for their multifaceted roles in enhancing crop resilience against environmental stresses. In this review, we provide a comprehensive synthesis of current research on utilizing phytohormones to enhance crop productivity and fortify their defence mechanisms. Initially, we introduce the significance of phytohormones in orchestrating plant growth, followed by their potential utilization in bolstering crop defences against diverse environmental stressors. Our focus then shifts to an in-depth exploration of phytohormones and their pivotal roles in mediating plant defence responses against biotic stressors, particularly insect pests. Furthermore, we highlight the potential impact of phytohormones on agricultural production while underscoring the existing research gaps and limitations hindering their widespread implementation in agricultural practices. Despite the accumulating body of research in this field, the integration of phytohormones into agriculture remains limited. To address this discrepancy, we propose a comprehensive framework for investigating the intricate interplay between phytohormones and sustainable agriculture. This framework advocates for the adoption of novel technologies and methodologies to facilitate the effective deployment of phytohormones in agricultural settings and also emphasizes the need to address existing research limitations through rigorous field studies. By outlining a roadmap for advancing the utilization of phytohormones in agriculture, this review aims to catalyse transformative changes in agricultural practices, fostering sustainability and resilience in agricultural settings.


Asunto(s)
Agricultura , Productos Agrícolas , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Agricultura/métodos , Productos Agrícolas/crecimiento & desarrollo , Estrés Fisiológico
3.
Environ Res ; 242: 117795, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38043894

RESUMEN

The increasing burden of cardiovascular disease (CVD) remains responsible for morbidity and mortality worldwide; their effective diagnostic or treatment methods are of great interest to researchers. The use of NPs and nanocarriers in cardiology has drawn much interest. The present comprehensive review provides deep insights into the use of current and innovative approaches in CVD diagnostics to offer practical ways to utilize nanotechnological interventions and the critical elements in the CVD diagnosis, associated risk factors, and management strategies of patients with chronic CVDs. We proposed a decision tree-based solution by discussing the emerging applications of NPs for the higher number of rules to increase efficiency in treating CVDs. This review-based study explores the screening methods, tests, and toxicity to provide a unique way of creating a multi-parametric feature that includes cutting-edge techniques for identifying cardiovascular problems and their treatments. We discussed the benefits and drawbacks of various NPs in the context of cost, space, time and complexity that have been previously suggested in the literature for the diagnosis of CVDs risk factors. Also, we highlighted the advances in using NPs for targeted and improved drug delivery and discussed the evolution toward the nano-cardiovascular potential for medical science. Finally, we also examined the mixed-based diagnostic approaches crucial for treating cardiovascular disorders, broad applications and the potential future applications of nanotechnology in medical sciences.


Asunto(s)
Enfermedades Cardiovasculares , Nanopartículas , Humanos , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/terapia , Nanomedicina/métodos , Sistemas de Liberación de Medicamentos , Nanotecnología
4.
Appl Microbiol Biotechnol ; 108(1): 25, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38157005

RESUMEN

Hexabromocyclododecane (HBCD) is a widely used brominated flame retardant; however, it is a persistent organic pollutant as well as affects the human thyroid hormones and causes cancer. However, the degradation of HBCD has received little attention from researchers. Due to its bioaccumulative and hazardous properties, an appropriate strategy for its remediation is required. In this study, we investigated the biodegradation of HBCD using Shewanella oneidensis MR-1 under optimized conditions. The Box-Behnken design (BBD) was implemented for the optimization of the physical degradation parameters of HBCD. S. oneidensis MR-1 showed the best degradation performance at a temperature of 30 °C, pH 7, and agitation speed of 115 rpm, with an HBCD concentration of 1125 µg/L in mineral salt medium (MSM). The strain tolerated up to 2000 µg/L HBCD. Gas chromatography-mass spectrometry analysis identified three intermediates, including 2-bromo dodecane, 2,7,10-trimethyldodecane, and 4-methyl-1-decene. The results provide an insightful understanding of the biodegradation of HBCD by S. oneidensis MR-1 under optimized conditions and could pave the way for further eco-friendly applications. KEY POINTS: • HBCD biodegradation by Shewanella oneidensis • Optimization of HBCD biodegradation by the Box-Behnken analysis • Identification of useful metabolites from HBCD degradation.


Asunto(s)
Retardadores de Llama , Hidrocarburos Bromados , Shewanella , Humanos , Biodegradación Ambiental , Hidrocarburos Bromados/química , Hidrocarburos Bromados/metabolismo , Shewanella/metabolismo , Retardadores de Llama/metabolismo
5.
Plant Cell Rep ; 43(4): 111, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568247

RESUMEN

Heavy metal pollution threatens plant growth and development as well as ecological stability. Here, we synthesize current research on the interplay between plants and their microbial symbionts under heavy metal stress, highlighting the mechanisms employed by microbes to enhance plant tolerance and resilience. Several key strategies such as bioavailability alteration, chelation, detoxification, induced systemic tolerance, horizontal gene transfer, and methylation and demethylation, are examined, alongside the genetic and molecular basis governing these plant-microbe interactions. However, the complexity of plant-microbe interactions, coupled with our limited understanding of the associated mechanisms, presents challenges in their practical application. Thus, this review underscores the necessity of a more detailed understanding of how plants and microbes interact and the importance of using a combined approach from different scientific fields to maximize the benefits of these microbial processes. By advancing our knowledge of plant-microbe synergies in the metabolism of heavy metals, we can develop more effective bioremediation strategies to combat the contamination of soil by heavy metals.


Asunto(s)
Interacciones de Hierba-Droga , Metales Pesados , Metales Pesados/toxicidad , Procesamiento Proteico-Postraduccional , Suelo
6.
Ecotoxicol Environ Saf ; 280: 116532, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38850696

RESUMEN

Air pollution, a pervasive environmental threat that spans urban and rural landscapes alike, poses significant risks to human health, exacerbating respiratory conditions, triggering cardiovascular problems, and contributing to a myriad of other health complications across diverse populations worldwide. This article delves into the multifarious impacts of air pollution, utilizing cutting-edge research methodologies and big data analytics to offer a comprehensive overview. It highlights the emergence of new pollutants, their sources, and characteristics, thereby broadening our understanding of contemporary air quality challenges. The detrimental health effects of air pollution are examined thoroughly, emphasizing both short-term and long-term impacts. Particularly vulnerable populations are identified, underscoring the need for targeted health risk assessments and interventions. The article presents an in-depth analysis of the global disease burden attributable to air pollution, offering a comparative perspective that illuminates the varying impacts across different regions. Furthermore, it addresses the economic ramifications of air pollution, quantifying health and economic losses, and discusses the implications for public policy and health care systems. Innovative air pollution intervention measures are explored, including case studies demonstrating their effectiveness. The paper also brings to light recent discoveries and insights in the field, setting the stage for future research directions. It calls for international cooperation in tackling air pollution and underscores the crucial role of public awareness and education in mitigating its impacts. This comprehensive exploration serves not only as a scientific discourse but also as a clarion call for action against the invisible but insidious threat of air pollution, making it a vital read for researchers, policymakers, and the general public.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminación del Aire/efectos adversos , Humanos , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/efectos adversos , Medición de Riesgo , Exposición a Riesgos Ambientales/efectos adversos , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Material Particulado/análisis , Monitoreo del Ambiente
7.
Ecotoxicol Environ Saf ; 269: 115791, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38070417

RESUMEN

Aluminum (Al), a non-essential metal for plant growth, exerts significant phytotoxic effects, particularly on root growth. Anthropogenic activities would intensify Al's toxic effects by releasing Al3+ into the soil solution, especially in acidic soils with a pH lower than 5.5 and rich mineral content. The severity of Al-induced phytotoxicity varies based on factors such as Al concentration, ionic form, plant species, and growth stages. Al toxicity leads to inhibited root and shoot growth, reduced plant biomass, disrupted water uptake causing nutritional imbalance, and adverse alterations in physiological, biochemical, and molecular processes. These effects collectively lead to diminished plant yield and quality, along with reduced soil fertility. Plants employ various mechanisms to counter Al toxicity under stress conditions, including sequestering Al in vacuoles, exuding organic acids (OAs) like citrate, oxalate, and malate from root tip cells to form Al-complexes, activating antioxidative enzymes, and overexpressing Al-stress regulatory genes. Recent advancements focus on enhancing the exudation of OAs to prevent Al from entering the plant, and developing Al-tolerant varieties. Gene transporter families, such as ATP-Binding Cassette (ABC), Aluminum-activated Malate Transporter (ALMT), Natural resistance-associated macrophage protein (Nramp), Multidrug and Toxic compounds Extrusion (MATE), and aquaporin, play a crucial role in regulating Al toxicity. This comprehensive review examined recent progress in understanding the cytotoxic impact of Al on plants at the cellular and molecular levels. Diverse strategies developed by both plants and scientists to mitigate Al-induced phytotoxicity were discussed. Furthermore, the review explored recent genomic developments, identifying candidate genes responsible for OAs exudation, and delved into genome-mediated breeding initiatives, isolating transgenic and advanced breeding lines to cultivate Al-tolerant plants.


Asunto(s)
Alcaloides , Aluminio , Aluminio/toxicidad , Aluminio/metabolismo , Malatos/metabolismo , Fitomejoramiento , Plantas/metabolismo , Alcaloides/farmacología , Compuestos Orgánicos/metabolismo , Suelo/química , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
J Environ Manage ; 351: 119715, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38064981

RESUMEN

Exogenous carbon (C) inputs stimulate soil organic carbon (SOC) decomposition, strongly influencing atmospheric concentrations and climate dynamics. The direction and magnitude of C decomposition depend on the C and nitrogen (N) addition, types and pattern. Despite the importance of decomposition, it remains unclear whether organic C input affects the SOC decomposition under different N-types (Ammonium Nitrate; AN, Urea; U and Ammonium Sulfate; AS). Therefore, we conducted an incubation experiment to assess glucose impact on N-treated soils at various levels (High N; HN: 50 mg/m2, Low N; LN: 05 mg/m2). The glucose input increased SOC mineralization by 38% and 35% under HN and LN, respectively. Moreover, it suppressed the concentration of NO3--N by 35% and NH4+-N by 15% in response to HN and LN soils, respectively. Results indicated higher respiration in Urea-treated soils and elevated net total nitrogen content (TN) in AS-treated soils. AN-amended soil exhibited no notable rise in C mineralization and TN content compared to other N-type soils. Microbial biomass carbon (MBC) was higher in glucose treated soils under LN conditions than control. This could result that high N suppressed microbial N mining and enhancing SOM stability by directing microbes towards accessible C sources. Our results suggest that glucose accelerated SOC mineralization in urea-added soils and TN contents in AS-amended soils, while HN levels suppressed C release and increased TN contents in all soil types except glucose-treated soils. Thus, different N-types and levels play a key role in modulating the stability of SOC over C input.


Asunto(s)
Carbono , Nitrógeno , Nitrógeno/análisis , Suelo , Glucosa , Microbiología del Suelo , Urea
9.
Physiol Plant ; 175(5): e14011, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37882261

RESUMEN

Sugar and nitrogen metabolisms help plants maintain cellular homeostasis, stress tolerance, and sustainable growth in drought conditions. Melatonin, a potent antioxidant and signaling molecule, appears to mitigate the negative impacts of drought on plants. This study aimed to investigate the potential role of foliar-applied melatonin in ameliorating drought-induced alterations in leaf sugar and nitrogen metabolisms' enzyme activities during cotton flowering and boll formation. To date, no study has examined drought-induced sugar and nitrogen metabolisms' enzyme activity changes in cotton treated with foliar melatonin. Drought levels (FC1 = 75 ± 5%, FC2 = 60 ± 5%, and FC3 = 45 ± 5%) were maintained between 3 and 35 days after flowering (DAF), and melatonin (M) concentrations (0, 25, 50, and 100 µmol L-1 ) were applied at 3 and 21 DAF in a completely randomized design. M100 concentrations at low FC levels significantly enhanced leaf sugar and N-metabolic enzyme activities, such as sucrose synthase (65.56%) and glutamine synthetase (55.24%), compared to plants not treated with melatonin; peaking between 7 and 21 DAF and declining gradually with crop growth. Moreover, the M100 concentrations at all FC levels, particularly FC3, significantly increased the relative expression of GhSusB, GhSusC, SPS1, and SPS3 genes, indicating that melatonin improves leaf sugar and N-metabolism enzymatic activities under drought stress. Therefore, applying M100 concentrations to cotton foliage under FC3 conditions during reproductive stages improves leaf water status, sugar, and N-metabolism enzyme activities, demonstrating melatonin's potent anti-stress, osmoregulatory, and growth-promoting properties in overcoming drought stress in cotton crops. Future research into the molecular mechanisms of melatonin-mediated sugar and nitrogen metabolism enzyme activities in cotton leaves may lead to biotechnological methods to improve drought resilience in cotton and other crops.


Asunto(s)
Melatonina , Melatonina/farmacología , Azúcares , Sequías , Carbohidratos , Hojas de la Planta , Nitrógeno
10.
Environ Res ; 232: 116290, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37295589

RESUMEN

With recent advancements in nanomedicines and their associated research with biological fields, their translation into clinically-applicable products is still below promises. Quantum dots (QDs) have received immense research attention and investment in the four decades since their discovery. We explored the extensive biomedical applications of QDs, viz. Bio-imaging, drug research, drug delivery, immune assays, biosensors, gene therapy, diagnostics, their toxic effects, and bio-compatibility. We unravelled the possibility of using emerging data-driven methodologies (bigdata, artificial intelligence, machine learning, high-throughput experimentation, computational automation) as excellent sources for time, space, and complexity optimization. We also discussed ongoing clinical trials, related challenges, and the technical aspects that should be considered to improve the clinical fate of QDs and promising future research directions.


Asunto(s)
Puntos Cuánticos , Puntos Cuánticos/toxicidad , Puntos Cuánticos/uso terapéutico , Inteligencia Artificial , Sistemas de Liberación de Medicamentos/métodos , Preparaciones Farmacéuticas , Biología
11.
Mol Biol Rep ; 49(6): 5251-5264, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34480688

RESUMEN

The ATP-binding cassette (ABC) transporter gene family plays a vital role in substance transportation, including secondary metabolites, and phytohormones across membranous structures. It is still uncovered in potato (Solanum tuberosum), grown worldwide as a 3rd important food crop. The current study identified a total of 54 Stabc genes in potato genome. The accumulative phylogenetic tree of Stabc with arabidopsis, divided into eight groups (ABCA to ABCH). ABCG was the most prominent group covering 90% of Stabc genes, followed by ABCB group. The number and architecture of exon-intron varied from gene to gene. In addition, the presence of stress-responsive elements in the regulatory regions depicted their role in environmental stress. Furthermore, the tissue-specific and stress-specific expression profiling of Stabc genes and their validation through real-time-qPCR analysis revealed their role in development and stress. The presented results provided useful information for further functional analysis of Stabc genes and can also use as a reference study for other important crops.


Asunto(s)
Solanum tuberosum , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Genoma , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Estrés Fisiológico/genética
12.
Molecules ; 27(15)2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35897895

RESUMEN

Honey is known for its content of biomolecules, such as enzymes. The enzymes of honey originate from bees, plant nectars, secretions or excretions of plant-sucking insects, or from microorganisms such as yeasts. Honey can be characterized by enzyme-catalyzed and non-enzymatic reactions. Notable examples of enzyme-catalyzed reactions are the production of hydrogen peroxide through glucose oxidase activity and the conversion of hydrogen peroxide to water and oxygen by catalase enzymes. Production of hydroxymethylfurfural (HMF) from glucose or fructose is an example of non-enzymatic reactions in honey.


Asunto(s)
Miel , Animales , Abejas , Fructosa , Furaldehído , Glucosa , Peróxido de Hidrógeno/metabolismo
13.
Microb Pathog ; 161(Pt B): 105290, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34808276

RESUMEN

Pathogen-related (PR) proteins are an integral part of plants' defense mechanisms against various types of biotic and abiotic stresses. A little is known about the importance of these PR proteins in potato defense mechanisms. In the current study, a total of 22 pathogenesis-related 1 genes were identified in the potato genome. All identified proteins possessed the CAP superfamily domain with some other motifs. The cis-acting elements analysis identified several stress-responsive elements, including MYB, ABRE, and MeJRE. The gene duplication events demonstrated purifying and positive selection pressure. Expression profiling showed high transcripts level in root compared to other tissues; however, some genes have tissue-specific expression. Furthermore, the PR-1-5 gene is transcriptionally induced under Phytophthora infestans stress and hormonal (ABA and IAA) treatments. The Real-Time qPCR analysis also validated the RNA-seq data results of genes with maximum expression in roots compared to leaves and stems. The current study results provided basic data for functional characterization and can also use as a reference study for other important crops.


Asunto(s)
Phytophthora infestans , Solanum tuberosum , Enfermedades de las Plantas , Proteínas de Plantas/genética , Estrés Fisiológico
14.
Microb Pathog ; 159: 105122, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34352375

RESUMEN

Global food security is threatened by insect pests of economically important crops. Chemical pesticides have been used frequently for the last few decades to manage insect pests throughout the world. However, these chemicals are hazardous for human health as well as the ecosystem. In addition, several pests have evolved resistance to many chemicals. Finding environment friendly alternatives lead the researchers to introduce biocontrol agents such as entomopathogenic fungi (EPF). These fungi include various genera that can infect and kill insects efficiently. Moreover, EPFs have considerable host specificity with a mild effect on non-target organisms and can be produced in bulk quantity quickly. However, insights into the biology of EPF and mechanism of action are of prime significance for their efficient utilization as a biocontrol agent. This review focuses on EPF-mediated insect management by explaining particular EPF strains and their general mode of action. We have comprehensively discussed which criteria should be used for the selection of pertinent EPF, and which aspects can impact the EPF efficiency. Finally, we have outlined various advantages of EPF and their limitations. The article summarizes the prospects related to EPF utilization as biocontrol agents. We hope that future strategies for the management of insects will be safer for our planet.


Asunto(s)
Ecosistema , Hongos , Animales , Productos Agrícolas , Humanos , Insectos , Control Biológico de Vectores , Virulencia
15.
Microb Pathog ; 156: 104909, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33964418

RESUMEN

Pepper's (Capsicum annum) response to bacterial pathogen Ralstonia solanacearm inoculation (RSI) and abiotic stresses is known to be synchronized by transcriptional network; however, related molecular mechanisms need extensive experimentation. We identified and characterized functions of CabHLH113 -a basic helix-loop-helix transcription factor-in pepper immunity to R. solanacearum infection. The RSI and foliar spray of phytohormones, including salicylic acid (SA), methyl jasmonate (MeJA), ethylene (ETH), and absicic acid (ABA) induced transcription of CabHLH113 in pepper. Loss of function of CabHLH113 by virus-induced-gene-silencing (VIGS) compromised defense of pepper plants against RSI and suppressed relative expression levels of immunity-associated marker genes, i.e., CaPR1, CaNPR1, CaDEF1, CaHIR1 and CaABR1. Pathogen growth was significantly increased after loss of function of CabHLH113 compared with un-silenced plants with remarkable increase in pepper susceptibility. Besides, transiently over-expression of CabHLH113 induced HR-like cell death, H2O2 accumulation and up-regulation of defense-associated marker genes, e.g. CaPR1, CaNPR1, CaDEF1, CaHIR1 and CaABR1. Additionally, transient over-expression of CabHLH113 enhanced the transcriptional levels of CaWRKY6, CaWRKY27 and CaWRKY40. Conversely, transient over-expression of CaWRKY6, CaWRKY27 and CaWRKY40 enhanced the transcriptional levels of CabHLH113. Collectively, our results indicate that newly characterized CabHLH113 has novel defense functions in pepper immunity against RSI via triggering HR-like cell death and cellular levels of defense linked genes.


Asunto(s)
Ralstonia solanacearum , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Humanos , Peróxido de Hidrógeno , Enfermedades de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Microb Pathog ; 138: 103793, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31626917

RESUMEN

Microbial consortia accompanied to all eukaryotes can be inherited from ancestors, environment, and/or from various food source. Gut microbiota study is an emerging discipline of biological sciences that expands our understanding of the ecological and functional dynamics of gut environments. Microorganisms associated with honey bees play an important role in food digestion, colony performance, immunity, pollination, antagonistic effect against different pathogens, amelioration of food and many more. Although, many repots about honey bee gut microbiota are well documented, microbiome with other key components of honey bees such as larvae, adults, their food (pollen, beebread, and honey), honey combs, and floral nectar are poorly understood. Mutual interactions and extent of the roles of microbial communities associated with honey bees are still unclear and demand for more research on the nutritional physiology and health benefits of this ecologically and economically important group. Here in this study, we highlighted all the honey bee microbiome that harbored from different life stages and other relevant components. The anatomical parts of honey bee (larvae, adults), food source (pollen, beebread, and honey), honey combs, and floral nectar were highly flourished by numerous microorganisms like bacteria (Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria, Actinomycetes, Bacilli, Bacteroidetes, Cocci, Clostridia, Coliforms, Firmicutes, Flavobacteriia, Mollicutes) and fungi (Dothideomycetes, Eurotiomycetes, Mucormycotina, Saccharomycetes, Zygomycetes, Yeasts, Molds). Some distinctive microbial communities of a taxonomically constrained species have coevolved with social bees. This contribution is to enhance the understanding of honey bee gut microbiota, to accelerate bee microbiota and microbiome research in general and to aid design of future experiments in this growing field.


Asunto(s)
Abejas/fisiología , Biodiversidad , Microbioma Gastrointestinal , Animales , Miel/microbiología , Metagenómica/métodos , Microbiota , Polen/microbiología , Polinización , ARN Ribosómico 16S/genética , Simbiosis
17.
Microb Pathog ; 137: 103728, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31499183

RESUMEN

Plants under natural environment facing various pathogens, tend to produce defense to maintain their fitness and minimize pathogenic damage. Plant-pathogens interaction is gaining more importance by researches as, their means of the fight are primary metabolites. The ultimate result of either means of defense is pathogenesis or resistance. Plant defense mechanisms can be grouped either into inducible and constitutive defense or chemical, structural and morphological defense. Majority of defense mechanisms have a passive role, i.e. only defensive against pathogens, but a few are very active. Plant primary metabolites are catching interest in their immunity role. Deep information of molecular mechanisms involved during the plant-pathogen system is need of the day for future disease control. This review will highlight the role of primary metabolites and their mechanism of action in plant defense.


Asunto(s)
Resistencia a la Enfermedad/inmunología , Interacciones Huésped-Patógeno/inmunología , Plantas/inmunología , Plantas/metabolismo , Animales , Bacterias , Resistencia a la Enfermedad/fisiología , Hongos , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/fisiología , Insectos , Enfermedades de las Plantas/inmunología , Proteínas de Plantas , Virus
18.
Microb Pathog ; 129: 7-18, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30710672

RESUMEN

Fungal diseases cause considerable damage to the economically important crops worldwide thus posing continuous threat to global food security. Management of these diseases is normally done via utilization of chemicals that have severe negative impact upon human health and surrounding ecosystems. Finding eco-friendly alternatives has led the researchers to focus towards biological control of fungal diseases through biocontrol agents such as antagonistic fungi (AF) and other microorganisms. AF include various genera of fungi that cure the fungal diseases on plants effectively. Furthermore, they play a regulatory role in various plant physiological pathways and interactions. AF are highly host specific having negligible effects on non-target organisms and have fast mass production capability. However, understanding the mechanisms of the effects of AF on plant diseases is a prerequisite for their effective utilization as biocontrol agent. Trichoderma is one of the most important fungal genera known for its antagonistic activity against disease causing fungal pathogens. Therefore, in this review, we have focused upon Trichoderma-mediated fungal diseases management via illustrating its taxonomy, important strains, biodiversity and mode of action. Furthermore, we have assessed the criteria to be followed for selection of AF and the factors influencing their efficiency. Finally, we evaluated the advantages and limitations of Trichoderma as AF. We conclude that effective AF utilization against fungal pathogens can serve as a safe strategy for our Planet.


Asunto(s)
Antibiosis , Control Biológico de Vectores/métodos , Enfermedades de las Plantas/prevención & control , Plantas/microbiología , Trichoderma/crecimiento & desarrollo
19.
Microb Pathog ; 137: 103758, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31550522

RESUMEN

MYB TFs in plants are of crucial importance not only for growth and development but also for plant defense against pathogens. CaPHL8, an MYB TF, was identified as a positive regulator of pepper defense against Ralstonia solanacerum inoculation (RSI). Phylogenetic evaluation and functional characterization of CaPHL8 revealed its role in pepper defense evolution. Analysis of the amino acid sequence of PHL8 demonstrates its maximum similarity with the MYB family transcription factor in other plants. Up-regulation of CaPHL8 was observed in pepper plants facing Ralstonia attack.. Consistently the GUS activity of pCaPHL8 showed significantly high activity under RSI as compared to mock-treated plants. The loss of function studies of CaPHL8 conducted through VIGS (virus-induced gene silencing) confirmed the reduced pepper immunity to R. solanacearum and impaired plant growth accompanied by high pathogen growth. Compromised pepper immunity in silenced plants was coupled with a reduction in transcription of defense linked marker genes. On the other hand, transiently overexpressing CaPHL8 (35S::CaPHL8-HA) in pepper caused a hypersensitive response, elevated H2O2 production and high expression of immunity associated marker genes. Stable expression of CaPHL8-HA protein was confirmed by Western blot. Additionally, unlike many other TFs, CaPHL8 is not involved in high-temperature stress tolerance as evident by phenotype and non-significant transcription of high temperature-tolerance related marker genes in pepper. So, all these findings confirm that CaPHL8 is induced by RSI, not by high temperature and high humidity (HTHH). It provides adaptive plasticity to pepper by activating defense to RSI by direct or indirect regulation of different immunity -associated genes.


Asunto(s)
Capsicum/inmunología , Resistencia a la Enfermedad/inmunología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/inmunología , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Capsicum/genética , Capsicum/microbiología , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Respuesta al Choque Térmico , Interacciones Huésped-Patógeno , Calor , Humedad , Peróxido de Hidrógeno/metabolismo , Filogenia , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas , Inmunidad de la Planta , Proteínas de Plantas/genética , Ralstonia solanacearum/fisiología
20.
Pestic Biochem Physiol ; 155: 108-118, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30857620

RESUMEN

The beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) is a highly polyphagous pest which causes considerable economic losses to cotton and many vegetable crops. Tannins are among the most important secondary metabolites in cotton plants. We show that tannic acid enhances the toxic effect of chlorantraniliprole on S. exigua when presented in combination. Bioassays using third-instar S. exigua larvae on an artificial diet showed that consumption of tannic acid with chlorantraniliprole at the concentration of (2 mg/g and LC50 0.018 mg/L) had higher toxicity when compared to either chlorantraniliprole or tannic acid alone (LC50 0.027 mg/L). The diet containing tannic acid with chlorantraniliprole significantly prolonged larval and pupal developmental time and extended mean generation time and total pre-oviposition period compared to either chemical alone. Moreover, fecundity, survival rate, reproductive value, intrinsic rate of increase, finite rate of increase and net reproduction rate declined significantly when exposed to the combined treatment. No difference was observed between tannic acid and the control. Meanwhile, tannic acid with chlorantraniliprole had markedly antifeedant effects; causing significant decline in the relative growth rate (RGR), the relative consumption rate (RCR), the efficiency of conversion of ingested food (ECI), the efficiency of conversion of digested food and an increase in the approximate digestibility (AD) compared to either chemical alone. Tannic acid with chlorantraniliprole also decreased the insect's carbohydrate, lipid and protein contents significantly. The results showed that the interaction between tannic acid and chlorantraniliprole on the growth inhibition of larvae was additive and tannic acid increased the toxicity of chlorantraniliprole to insects. The results of this study provide information useful in integrated pest management programs for S. exigua and show that tannic acid combined with chlorantraniliprole may be a route to reducing the use of synthetic pesticides.


Asunto(s)
Insecticidas/farmacología , Spodoptera/efectos de los fármacos , Taninos/farmacología , ortoaminobenzoatos/farmacología , Animales , Larva/efectos de los fármacos , Reproducción/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA