Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Exp Physiol ; 106(4): 812-819, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33527606

RESUMEN

NEW FINDINGS: What is the central question of this study? Forced treadmill exercise using electrical shock is the most common technique in rodent exercise studies. Here, we examined how the use of electrical shock during forced treadmill exercise affects behavioural and physiological responses in comparison to a novel non-electrical shock technique. What is the main finding and its importance? In comparison to mice that underwent traditional treadmill running induced by electrical shock, mice that underwent forced running using a novel technique involving gentle prodding to induce running showed: (i) higher locomotor activity; (ii) less anxiety-like behaviour; and (iii) altered exercise-induced muscle pain immediately after exercise. ABSTRACT: Animal models of exercise have been useful to understand underlying cellular and molecular mechanisms. Many studies have used methods of exercise that are unduly stressful (e.g., electrical shock to force running), potentially skewing results. Here, we compared physiological and behavioural responses of mice after exercise induced using a prodding technique that avoids electrical shock versus a traditional protocol using electrical shock. We found that exercise performance was similar for both techniques; however, the shock group demonstrated significantly lower locomotor activity and higher anxiety-like behaviour. We also observed divergent effects on muscle pain; the prodding group showed hyperalgesia immediately after exercise, whereas the shock group showed hypoalgesia. Corticosterone concentrations were elevated to a similar extent for both groups. In conclusion, mice that were exercised without shock generated similar maximal exercise performance, but postexercise these mice showed an increase in locomotor activity, less anxiety-like behaviour and altered muscle pain in comparison to mice that exercised with shock. Our data suggest that running of mice without the use of electrical shock is potentially less stressful and might be a better technique to study the physiological and behavioural responses to exercise.


Asunto(s)
Estimulación Eléctrica , Condicionamiento Físico Animal , Estimulación Física , Carrera , Animales , Corticosterona , Hiperalgesia , Ratones , Condicionamiento Físico Animal/fisiología , Carrera/fisiología
2.
Cardiovasc Diabetol ; 19(1): 136, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32907629

RESUMEN

The endothelium plays a pivotal role in maintaining vascular health. Obesity is a global epidemic that has seen dramatic increases in both adult and pediatric populations. Obesity perturbs the integrity of normal endothelium, leading to endothelial dysfunction which predisposes the patient to cardiovascular diseases. MicroRNAs (miRNAs) are short, single-stranded, non-coding RNA molecules that play important roles in a variety of cellular processes such as differentiation, proliferation, apoptosis, and stress response; their alteration contributes to the development of many pathologies including obesity. Mediators of obesity-induced endothelial dysfunction include altered endothelial nitric oxide synthase (eNOS), Sirtuin 1 (SIRT1), oxidative stress, autophagy machinery and endoplasmic reticulum (ER) stress. All of these factors have been shown to be either directly or indirectly caused by gene regulatory mechanisms of miRNAs. In this review, we aim to provide a comprehensive description of the therapeutic potential of miRNAs to treat obesity-induced endothelial dysfunction. This may lead to the identification of new targets for interventions that may prevent or delay the development of obesity-related cardiovascular disease.


Asunto(s)
Endotelio/fisiopatología , MicroARNs/genética , Obesidad/fisiopatología , Antagomirs , Autofagia/genética , Estrés del Retículo Endoplásmico/genética , Regulación de la Expresión Génica , Humanos , MicroARNs/antagonistas & inhibidores , MicroARNs/uso terapéutico , Imitación Molecular , Terapia Molecular Dirigida , Óxido Nítrico Sintasa de Tipo III/genética , Obesidad/genética , Estrés Oxidativo/genética , Tratamiento con ARN de Interferencia , Sirtuina 1/genética
3.
J Mol Cell Cardiol ; 112: 123-130, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28822805

RESUMEN

The cardiac transverse (T)-tubule membrane system is the safeguard for cardiac function and undergoes dramatic remodeling in response to cardiac stress. However, the mechanism by which cardiomyocytes repair damaged T-tubule network remains unclear. In the present study, we tested the hypothesis that MG53, a muscle-specific membrane repair protein, antagonizes T-tubule damage to protect against maladaptive remodeling and thereby loss of excitation-contraction coupling and cardiac function. Using MG53-knockout (MG53-KO) mice, we first established that deficiency of MG53 had no impact on maturation of the T-tubule network in developing hearts. Additionally, MG53 ablation did not influence T-tubule integrity in unstressed adult hearts as late as 10months of age. Following left ventricular pressure overload-induced cardiac stress, MG53 protein levels were increased by approximately three-fold in wild-type mice, indicating that pathological stress induces a significant upregulation of MG53. MG53-deficient mice had worsened T-tubule disruption and pronounced dysregulation of Ca2+ handling properties, including decreased Ca2+ transient amplitude and prolonged time to peak and decay. Moreover, MG53 deficiency exacerbated cardiac hypertrophy and dysfunction and decreased survival following cardiac stress. Our data suggest MG53 is not required for T-tubule development and maintenance in normal physiology. However, MG53 is essential to preserve T-tubule integrity and thereby Ca2+ handling properties and cardiac function under pathological cardiac stress.


Asunto(s)
Proteínas Portadoras/metabolismo , Miocardio/metabolismo , Miocardio/patología , Sarcolema/metabolismo , Animales , Señalización del Calcio , Regulación hacia Abajo , Acoplamiento Excitación-Contracción , Corazón/embriología , Masculino , Proteínas de la Membrana , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Sarcolema/ultraestructura , Intercambiador de Sodio-Calcio/metabolismo
4.
Res Sq ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798501

RESUMEN

Introduction: Physical activity is commonly used for both measuring and treating dysfunction. While preclinical work has been historically biased towards males, the use of both male and female animals is gaining popularity after multiple NIH initiatives. With increasing inclusion of both sexes, it has become imperative to determine sex differences in common behavioral assays. The purpose of this study was to determine baseline sex differences in 3 activity assays: voluntary wheel running, forced treadmill running, and open field testing. Methods: This was a secondary analysis of sex differences in healthy mice in 3 different assays: Separate mice were used for each assay. Specifically, 16 mice underwent 28 days of voluntary wheel running, 178 mice underwent forced treadmill running, and 88 mice underwent open field testing. Differences between sex across several activity parameters were examined for each assay. Results: In voluntary wheel running, sex differences with larger effect sizes were observed in distance run, running time, and bout duration, with smaller effect size differences in speed, and no difference in total bouts. In forced treadmill running, differences were shown in time to exhaustion, but no difference in max speed attained. In open field, there were sex differences in active time but not in distance and speed in data aggregated over 30 minutes; however, distance and speed in male mice showed a downward trajectory over the final 20 minutes of testing, whereas females maintained the same trajectory. Conclusion: These data suggest that male mice demonstrate comparable activity intensity as female mice but do not match female's duration of activity, especially for volitional tasks. Researchers utilizing these assays should account for sex differences as they could potentially mask true findings in an experiment. Plain English Summary: Physical activity is a common measure to examine function in human subjects with and without disease. Animal models often use measures of physical activity to assess function, yet most of these measures have been done in males only, making interpretation and translation to females and humans difficult. Several measures have been used to measure activity in animals, including those examining voluntary running behavior, maximum capacity, and general activity levels; sex differences between these measures are unclear. We discovered sex differences throughout each of three activity tests. In voluntary running behavior there were large differences between sexes with females running a greater distance and spending more time running. There were small differences in the maximum capacity with females running for a longer period at high intensity. General activity levels showed small differences with females being less active than males. Thus, the greatest differences were found for voluntary running and small differences were found for maximum capacity and general activity levels; differences observed were dependent on the task. Researchers utilizing these assays should account for sex differences as they could potentially mask true findings in an experiment.

5.
Front Pain Res (Lausanne) ; 4: 1215197, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37795390

RESUMEN

Immediate exercise-induced pain (IEIP) and DOMS are two types of exercise-induced muscle pain and can act as barriers to exercise. The burning sensation of IEIP occurs during and immediately after intensive exercise, whereas the soreness of DOMS occurs later. Acid-sensing ion channels (ASICs) within muscle afferents are activated by H+ and other chemicals and have been shown to play a role in various chronic muscle pain conditions. Here, we further defined the role of ASICs in IEIP, and also tested if ASIC3 is required for DOMS. After undergoing exhaustive treadmill exercise, exercise-induced muscle pain was assessed in wild-type (WT) and ASIC3-/- mice at baseline via muscle withdrawal threshold (MWT), immediately, and 24 h after exercise. Locomotor movement, grip strength, and repeat exercise performance were tested at baseline and 24 h after exercise to evaluate DOMS. We found that ASIC3-/- had similar baseline muscle pain, locomotor activity, grip strength, and exercise performance as WT mice. WT showed diminished MWT immediately after exercise indicating they developed IEIP, but ASIC3-/- mice did not. At 24 h after baseline exercise, both ASIC3-/- and WT had similarly lower MWT and grip strength, however, ASIC3-/- displayed significantly lower locomotor activity and repeat exercise performance at 24 h time points compared to WT. In addition, ASIC3-/- mice had higher muscle injury as measured by serum lactate dehydrogenase and creatine kinase levels at 24 h after exercise. These results show that ASIC3 is required for IEIP, but not DOMS, and in fact might play a protective role to prevent muscle injury associated with strenuous exercise.

6.
Cureus ; 13(9): e18194, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34589374

RESUMEN

Anticancer drugs play an important role in reducing mortality rates and increasing life expectancy in cancer patients. Treatments include monotherapy and/or a combination of radiation therapy, chemotherapy, hormone therapy, or immunotherapy. Despite great advances in drug development, some of these treatments have been shown to induce cardiotoxicity directly affecting heart function and structure, as well as accelerating the development of cardiovascular disease. Such side effects restrict treatment options and can negatively affect disease management. Consequently, when managing cancer patients, it is vital to understand the mechanisms causing cardiotoxicity to better monitor heart function, develop preventative measures against cardiotoxicity, and treat heart failure when it occurs in this patient population. This review discusses the role and mechanism of major chemotherapy agents with principal cardiovascular complications in cancer patients.

7.
J Appl Physiol (1985) ; 129(1): 17-26, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32463731

RESUMEN

Exercise training is an effective therapy for many pain-related conditions, and trained athletes have lower pain perception compared with unconditioned people. Some painful conditions, including strenuous exercise, are associated with elevated levels of protons, metabolites, and inflammatory factors, which may activate receptors and/or ion channels, including acid-sensing ion channels (ASICs), on nociceptive sensory neurons. We hypothesized that ASICs are required for immediate exercise-induced muscle pain (IEIP) and that exercise training diminishes IEIP by modulating ASICs within muscle afferents. We found high-intensity interval training (HIIT) reduced IEIP in C57BL/6 mice and diminished ASIC mRNA levels in lumber dorsal root ganglia, and this downregulation of ASICs correlated with improved exercise capacity. Additionally, we found that ASIC3 -/- mice did not develop IEIP; however, the exercise capacity of ASIC3 -/- was similar to wild-type mice. These results suggest that ASICs are required for IEIP and that diminishment of IEIP after exercise training correlates with downregulation of ASICs in sensory neurons.NEW & NOTEWORTHY Exercise performance can be limited by the sensations of muscle fatigue and pain transmitted by muscle afferents. It has been proposed that exercise training abrogates these negative feedback signals. We found that acid-sensing ion channels (ASICs) are required for immediate exercise-induced muscle pain (IEIP). Moreover, exercise training prevented IEIP and was correlated with downregulation of ASICs in sensory neurons.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Mialgia , Animales , Ganglios Espinales , Ratones , Ratones Endogámicos C57BL , Células Receptoras Sensoriales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA