Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Immunity ; 54(9): 2117-2132.e7, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34525340

RESUMEN

The nature of the anti-tumor immune response changes as primary tumors progress and metastasize. We investigated the role of resident memory (Trm) and circulating memory (Tcirm) cells in anti-tumor responses at metastatic locations using a mouse model of melanoma-associated vitiligo. We found that the transcriptional characteristics of tumor-specific CD8+ T cells were defined by the tissue of occupancy. Parabiosis revealed that tumor-specific Trm and Tcirm compartments persisted throughout visceral organs, but Trm cells dominated lymph nodes (LNs). Single-cell RNA-sequencing profiles of Trm cells in LN and skin were distinct, and T cell clonotypes that occupied both tissues were overwhelmingly maintained as Trm in LNs. Whereas Tcirm cells prevented melanoma growth in the lungs, Trm afforded long-lived protection against melanoma seeding in LNs. Expanded Trm populations were also present in melanoma-involved LNs from patients, and their transcriptional signature predicted better survival. Thus, tumor-specific Trm cells persist in LNs, restricting metastatic cancer.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , Ganglios Linfáticos/inmunología , Melanoma Experimental/inmunología , Melanoma/inmunología , Neoplasias Cutáneas/inmunología , Animales , Humanos , Ratones , Vitíligo , Melanoma Cutáneo Maligno
2.
Immunity ; 53(1): 13-15, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32668223

RESUMEN

Metabolic support for regulatory T (Treg) cells in noninflamed tumors is not well understood. In this issue of Immunity, Kumagai et. al. show how oncogene-driven fatty-acid synthesis favors Treg cells over effector T cells and how this imbalance can be overcome.


Asunto(s)
Neoplasias , Linfocitos T Reguladores , Humanos , Oncogenes , Microambiente Tumoral
3.
Semin Immunol ; 49: 101435, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-33272898

RESUMEN

Long-lived memory CD8+ T cells play important roles in tumor immunity. Studies over the past two decades have identified four subsets of memory CD8+ T cells - central, effector, stem-like, and tissue resident memory - that either circulate through blood, lymphoid and peripheral organs, or reside in tissues where cancers develop. In this article, we will review studies from both pre-clinical mouse models and human patients to summarize the phenotype, distribution and unique features of each memory subset, and highlight specific roles of each subset in anti-tumor immunity. Moreover, we will discuss how stem-cell like and resident memory CD8+ T cell subsets relate to exhausted tumor-infiltrating lymphocytes (TIL) populations. These studies reveal how memory CD8+ T cell subsets together orchestrate durable immunity to cancer.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica , Neoplasias/inmunología , Animales , Linfocitos T CD8-positivos/metabolismo , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/terapia , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Microambiente Tumoral/inmunología
4.
Proc Natl Acad Sci U S A ; 116(48): 24075-24083, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31712433

RESUMEN

Messenger RNAs (mRNAs) encode information in both their primary sequence and their higher order structure. The independent contributions of factors like codon usage and secondary structure to regulating protein expression are difficult to establish as they are often highly correlated in endogenous sequences. Here, we used 2 approaches, global inclusion of modified nucleotides and rational sequence design of exogenously delivered constructs, to understand the role of mRNA secondary structure independent from codon usage. Unexpectedly, highly expressed mRNAs contained a highly structured coding sequence (CDS). Modified nucleotides that stabilize mRNA secondary structure enabled high expression across a wide variety of primary sequences. Using a set of eGFP mRNAs with independently altered codon usage and CDS structure, we find that the structure of the CDS regulates protein expression through changes in functional mRNA half-life (i.e., mRNA being actively translated). This work highlights an underappreciated role of mRNA secondary structure in the regulation of mRNA stability.


Asunto(s)
Biosíntesis de Proteínas/fisiología , Estabilidad del ARN , ARN Mensajero/química , Semivida , Células HeLa , Humanos , Conformación de Ácido Nucleico , Proteínas/metabolismo
5.
Anal Biochem ; 494: 108-13, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26548959

RESUMEN

Measuring and monitoring of protein oxidation modifications is important for biopharmaceutical process development and stability assessment during long-term storage. Currently available methods for biomolecules oxidation analysis use time-consuming peptide mapping analysis. Therefore, it is desirable to develop high-throughput methods for advanced process control of protein oxidation. Here, we present a novel approach by which oxidative protein modifications are monitored by an indirect potentiometric method. The method is based on adding an electron mediator, which enhances electron transfer (ET) between all redox species and the electrode surface. Specifically, the procedure involves measuring the sharp change in the open circuit potential (OCP) for the mediator system (redox couple) as a result of its interaction with the oxidized protein species in the solution. Application of Pt and Ag/AgCl microelectrodes allowed for a high-sensitivity protein oxidation analysis. We found that the Ru(NH3)6(2+/3+) redox couple is suitable for measuring the total oxidation of a wide range of therapeutic proteins between 1.1 and 13.6%. Accuracy determined by comparing with the known percentage oxidation of the reference standard showed that percentage oxidation determined for each sample was within ± 20% of the expected percentage oxidation determined by mass spectrometry.


Asunto(s)
Espectrometría de Masas , Proteínas/química , Anticuerpos Monoclonales/química , Cromatografía Líquida de Alta Presión , Técnicas Electroquímicas , Microelectrodos , Compuestos Organometálicos/química , Concentración Osmolar , Oxidación-Reducción , Proteínas/metabolismo , Plata/química
6.
Front Immunol ; 13: 768753, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35265066

RESUMEN

Melanoma tumors are highly immunogenic, making them an attractive target for immunotherapy. However, many patients do not mount robust clinical responses to targeted therapies, which is attributable, at least in part, to suppression of immune responses by tumor-associated macrophages (TAMs) in the tumor microenvironment (TME). Using a human in vitro tri-culture system of macrophages with activated autologous T cells and BRAFV600E mutant melanoma cells, we now show that activated T cells and the synthetic triterpenoid the methyl ester of 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO-Me) attenuate immune suppression. Surface expression of CD206, CD16 and CD163 on melanoma-conditioned macrophages was inhibited by the addition of T cells, suggesting relief of immuno-suppressive macrophage activation. We also demonstrated that addition of CDDO-Me to tri-cultures enhanced T cell-mediated reductions in CCL2, VEGF and IL-6 production in a contact-independent manner. Because these results suggest CDDO-Me alters melanoma-conditioned macrophage activation, we interrogated CDDO-Me-mediated changes in macrophage signaling pathway activation. Our results indicated that CDDO-Me inhibited phosphorylation of STAT3, a known inducer of TAM activation. Collectively, our studies suggest that activated T cells and CDDO-Me synergistically relieve immune suppression in melanoma cultures and implicate the potential utility of CDDO-Me in the treatment of melanoma.


Asunto(s)
Melanoma , Ácido Oleanólico , Humanos , Inmunosupresores , Macrófagos , Melanoma/tratamiento farmacológico , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacología , Ácido Oleanólico/uso terapéutico , Linfocitos T , Microambiente Tumoral
7.
Sci Adv ; 6(26): eaaz6893, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32637598

RESUMEN

Messenger RNA (mRNA) represents an attractive therapeutic modality for potentially a wide range of clinical indications but requires uridine chemistry modification and/or tuning of the production process to prevent activation of cellular innate immune sensors and a concomitant reduction in protein expression. To decipher the relative contributions of these factors on immune activation, here, we compared, in multiple cell and in vivo models, mRNA that encodes human erythropoietin incorporating either canonical uridine or N1-methyl-pseudouridine (1mΨ), synthesized by either a standard process shown to have double-stranded RNA (dsRNA) impurities or a modified process that yields a highly purified mRNA preparation. Our data demonstrate that the lowest stimulation of immune endpoints was with 1mΨ made by the modified process, while mRNA containing canonical uridine was immunostimulatory regardless of process. These findings confirm that uridine modification and the reduction of dsRNA impurities are both necessary and sufficient at controlling the immune-activating profile of therapeutic mRNA.

8.
Sci Transl Med ; 11(477)2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30700577

RESUMEN

Many solid cancers contain dysfunctional immune microenvironments. Immune system modulators that initiate responses to foreign pathogens could be promising candidates for reigniting productive responses toward tumors. Interleukin-1 (IL-1) and IL-12 cytokine family members cooperate at barrier tissues after microbial invasion, in human inflammatory diseases, and in antitumoral immunity. IL-36γ, in classic alarmin fashion, acts in damaged tissues, whereas IL-23 centrally coordinates immune responses to danger signals. In this study, direct intratumoral delivery of messenger RNAs (mRNAs) encoding these cytokines produced robust anticancer responses in a broad range of tumor microenvironments. The addition of mRNA encoding the T cell costimulator OX40L increased complete response rates in treated and untreated distal tumors compared to the cytokine mRNAs alone. Mice exhibiting complete responses were subsequently protected from tumor rechallenge. Treatments with these mRNA mixtures induced downstream cytokine and chemokine expression, and also activated multiple dendritic cell (DC) and T cell types. Consistent with this, efficacy was dependent on Batf3-dependent cross-presenting DCs and cytotoxic CD8+ T cells. IL-23/IL-36γ/OX40L triplet mRNA mixture triggered substantial immune cell recruitment into tumors, enabling effective tumor destruction irrespective of previous tumoral immune infiltrates. Last, combining triplet mRNA with checkpoint blockade led to efficacy in models otherwise resistant to systemic immune checkpoint inhibition. Human cell studies showed similar cytokine responses to the individual components of this mRNA mixture, suggesting translatability of immunomodulatory activity to human patients.


Asunto(s)
Inmunidad , Interleucina-1/genética , Interleucina-23/genética , Neoplasias/inmunología , Ligando OX40/genética , ARN Mensajero/administración & dosificación , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Humanos , Inflamación/patología , Interleucina-1/metabolismo , Interleucina-23/metabolismo , Ganglios Linfáticos/patología , Activación de Linfocitos/inmunología , Ratones , Ligando OX40/metabolismo , Distribución Tisular , Microambiente Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA