Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 39(9): e102731, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32149416

RESUMEN

Mitochondria house anabolic and catabolic processes that must be balanced and adjusted to meet cellular demands. The RNA-binding protein CLUH (clustered mitochondria homolog) binds mRNAs of nuclear-encoded mitochondrial proteins and is highly expressed in the liver, where it regulates metabolic plasticity. Here, we show that in primary hepatocytes, CLUH coalesces in specific ribonucleoprotein particles that define the translational fate of target mRNAs, such as Pcx, Hadha, and Hmgcs2, to match nutrient availability. Moreover, CLUH granules play signaling roles, by recruiting mTOR kinase and the RNA-binding proteins G3BP1 and G3BP2. Upon starvation, CLUH regulates translation of Hmgcs2, involved in ketogenesis, inhibits mTORC1 activation and mitochondrial anabolic pathways, and promotes mitochondrial turnover, thus allowing efficient reprograming of metabolic function. In the absence of CLUH, a mitophagy block causes mitochondrial clustering that is rescued by rapamycin treatment or depletion of G3BP1 and G3BP2. Our data demonstrate that metabolic adaptation of liver mitochondria to nutrient availability depends on a compartmentalized CLUH-dependent post-transcriptional mechanism that controls both mTORC1 and G3BP signaling and ensures survival.


Asunto(s)
Mitocondrias Hepáticas/fisiología , Proteínas Mitocondriales/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Animales , Células COS , Chlorocebus aethiops , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/metabolismo , Regulación de la Expresión Génica , Células HeLa , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Mitofagia , Proteínas de Unión al ARN/genética
2.
Genet Med ; 26(5): 101087, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38288683

RESUMEN

PURPOSE: Interneuronopathies are a group of neurodevelopmental disorders characterized by deficient migration and differentiation of gamma-aminobutyric acidergic interneurons resulting in a broad clinical spectrum, including autism spectrum disorders, early-onset epileptic encephalopathy, intellectual disability, and schizophrenic disorders. SP9 is a transcription factor belonging to the Krüppel-like factor and specificity protein family, the members of which harbor highly conserved DNA-binding domains. SP9 plays a central role in interneuron development and tangential migration, but it has not yet been implicated in a human neurodevelopmental disorder. METHODS: Cases with SP9 variants were collected through international data-sharing networks. To address the specific impact of SP9 variants, in silico and in vitro assays were carried out. RESULTS: De novo heterozygous variants in SP9 cause a novel form of interneuronopathy. SP9 missense variants affecting the glutamate 378 amino acid result in severe epileptic encephalopathy because of hypomorphic and neomorphic DNA-binding effects, whereas SP9 loss-of-function variants result in a milder phenotype with epilepsy, developmental delay, and autism spectrum disorder. CONCLUSION: De novo heterozygous SP9 variants are responsible for a neurodevelopmental disease. Interestingly, variants located in conserved DNA-binding domains of KLF/SP family transcription factors may lead to neomorphic DNA-binding functions resulting in a combination of loss- and gain-of-function effects.


Asunto(s)
Trastorno del Espectro Autista , Epilepsia , Discapacidad Intelectual , Interneuronas , Factores de Transcripción Sp , Factores de Transcripción , Adolescente , Niño , Preescolar , Femenino , Humanos , Masculino , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Epilepsia/genética , Epilepsia/patología , Heterocigoto , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Interneuronas/metabolismo , Interneuronas/patología , Mutación Missense/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Fenotipo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción Sp/genética
3.
FASEB J ; 33(5): 5864-5875, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30817178

RESUMEN

Angiogenesis is a complex process leading to the growth of new blood vessels from existing vasculature, triggered by local proangiogenic factors such as VEGF. An excess of angiogenesis is a recurrent feature of various pathologic conditions such as tumor growth. Phostines are a family of synthetic glycomimetic compounds that exhibit anticancer properties, and the lead compound 3-hydroxy-4,5-bis-benzyloxy-6-benzyloxymethyl-2-phenyl2-oxo-2λ5-[1,2]oxaphosphinane (PST 3.1a) shows antiglioblastoma properties both in vitro and in vivo. In the present study, we assessed the effect of PST 3.1a on angiogenesis and endothelial metabolism. In vitro, PST 3.1a (10 µM) inhibited all steps that regulate angiogenesis, including migration, proliferation, adhesion, and tube formation. In vivo, PST 3.1a reduced intersegmental vessel formation and vascularization of the subintestinal plexus in zebrafish embryos and also altered pathologic angiogenesis and glioblastoma progression in vivo. Mechanistically, PST 3.1a altered interaction of VEGF receptor 2 and glycosylation-regulating protein galectin-1, a key component regulating angiogenesis associated with tumor resistance. Thus, these data show that use of PST 3.1a is an innovative approach to target angiogenesis.-Bousseau, S., Marchand, M., Soleti, R., Vergori, L., Hilairet, G., Recoquillon, S., Le Mao, M., Gueguen, N., Khiati, S., Clarion, L., Bakalara, N., Martinez, M. C., Germain, S., Lenaers, G., Andriantsitohaina, R. Phostine 3.1a as a pharmacological compound with antiangiogenic properties against diseases with excess vascularization.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Neovascularización Patológica/tratamiento farmacológico , Fosfinas/farmacología , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Apoptosis , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular , Células Endoteliales/metabolismo , Matriz Extracelular/metabolismo , Galectina 1/metabolismo , Glioblastoma/metabolismo , Glicosilación , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Transducción de Señal/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra
4.
EMBO Rep ; 19(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29438979

RESUMEN

Tyrosyl-DNA phosphodiesterase 2 (TDP2) repairs abortive topoisomerase II cleavage complexes. Here, we identify a novel short isoform of TDP2 (TDP2S) expressed from an alternative transcription start site. TDP2S contains a mitochondrial targeting sequence, contributing to its enrichment in the mitochondria and cytosol, while full-length TDP2 contains a nuclear localization signal and the ubiquitin-associated domain in the N-terminus. Our study reveals that both TDP2 isoforms are present and active in the mitochondria. Comparison of isogenic wild-type (WT) and TDP2 knockout (TDP2-/-/-) DT40 cells shows that TDP2-/-/- cells are hypersensitive to mitochondrial-targeted doxorubicin (mtDox), and that complementing TDP2-/-/- cells with human TDP2 restores resistance to mtDox. Furthermore, mtDox selectively depletes mitochondrial DNA in TDP2-/-/- cells. Using CRISPR-engineered human cells expressing only the TDP2S isoform, we show that TDP2S also protects human cells against mtDox. Finally, lack of TDP2 in the mitochondria reduces the mitochondria transcription levels in two different human cell lines. In addition to identifying a novel TDP2S isoform, our report demonstrates the presence and importance of both TDP2 isoforms in the mitochondria.


Asunto(s)
Doxorrubicina/farmacología , Resistencia a Antineoplásicos/genética , Neoplasias/tratamiento farmacológico , Proteínas Nucleares/genética , Factores de Transcripción/genética , Empalme Alternativo/genética , Línea Celular Tumoral , Proteínas de Unión al ADN , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Neoplasias/genética , Neoplasias/patología , Proteínas Nucleares/antagonistas & inhibidores , Hidrolasas Diéster Fosfóricas , Isoformas de Proteínas/genética , Factores de Transcripción/antagonistas & inhibidores
5.
Am J Hum Genet ; 99(3): 695-703, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27545681

RESUMEN

Via whole-exome sequencing, we identified rare autosomal-recessive variants in UBA5 in five children from four unrelated families affected with a similar pattern of severe intellectual deficiency, microcephaly, movement disorders, and/or early-onset intractable epilepsy. UBA5 encodes the E1-activating enzyme of ubiquitin-fold modifier 1 (UFM1), a recently identified ubiquitin-like protein. Biochemical studies of mutant UBA5 proteins and studies in fibroblasts from affected individuals revealed that UBA5 mutations impair the process of ufmylation, resulting in an abnormal endoplasmic reticulum structure. In Caenorhabditis elegans, knockout of uba-5 and of human orthologous genes in the UFM1 cascade alter cholinergic, but not glutamatergic, neurotransmission. In addition, uba5 silencing in zebrafish decreased motility while inducing abnormal movements suggestive of seizures. These clinical, biochemical, and experimental findings support our finding of UBA5 mutations as a pathophysiological cause for early-onset encephalopathies due to abnormal protein ufmylation.


Asunto(s)
Alelos , Encefalopatías/genética , Mutación/genética , Proteínas/metabolismo , Enzimas Activadoras de Ubiquitina/genética , Edad de Inicio , Animales , Mapeo Encefálico , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Niño , Preescolar , Neuronas Colinérgicas/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Epilepsia/genética , Exoma/genética , Femenino , Fibroblastos , Genes Recesivos/genética , Humanos , Discapacidad Intelectual/genética , Imagen por Resonancia Magnética , Masculino , Microcefalia/genética , Trastornos del Movimiento , Proteínas/genética , Transmisión Sináptica/genética , Ubiquitina/genética , Ubiquitina/metabolismo , Enzimas Activadoras de Ubiquitina/deficiencia , Enzimas Activadoras de Ubiquitina/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
6.
J Cell Sci ; 130(11): 1940-1951, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28424233

RESUMEN

Mitochondrial dynamics and distribution are critical for supplying ATP in response to energy demand. CLUH is a protein involved in mitochondrial distribution whose dysfunction leads to mitochondrial clustering, the metabolic consequences of which remain unknown. To gain insight into the role of CLUH on mitochondrial energy production and cellular metabolism, we have generated CLUH-knockout cells using CRISPR/Cas9. Mitochondrial clustering was associated with a smaller cell size and with decreased abundance of respiratory complexes, resulting in oxidative phosphorylation (OXPHOS) defects. This energetic impairment was found to be due to the alteration of mitochondrial translation and to a metabolic shift towards glucose dependency. Metabolomic profiling by mass spectroscopy revealed an increase in the concentration of some amino acids, indicating a dysfunctional Krebs cycle, and increased palmitoylcarnitine concentration, indicating an alteration of fatty acid oxidation, and a dramatic decrease in the concentrations of phosphatidylcholine and sphingomyeline, consistent with the decreased cell size. Taken together, our study establishes a clear function for CLUH in coupling mitochondrial distribution to the control of cell energetic and metabolic status.


Asunto(s)
Ciclo del Ácido Cítrico/genética , ADN Mitocondrial/genética , Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , Proteínas de Unión al ARN/metabolismo , Adenosina Trifosfato/biosíntesis , Sistemas CRISPR-Cas , Ciclo del Ácido Cítrico/efectos de los fármacos , Daño del ADN , ADN Mitocondrial/metabolismo , Etidio/toxicidad , Eliminación de Gen , Células HeLa , Humanos , Metabolómica , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Dinámicas Mitocondriales/efectos de los fármacos , Imagen Óptica , Oxidación-Reducción , Fosforilación Oxidativa/efectos de los fármacos , Palmitoilcarnitina/metabolismo , Fosfatidilcolinas/metabolismo , Proteínas de Unión al ARN/genética
7.
J Biol Chem ; 292(49): 20162-20172, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29021209

RESUMEN

Mitochondrial DNA (mtDNA) is essential for cell viability because it encodes subunits of the respiratory chain complexes. Mitochondrial topoisomerase IB (TOP1MT) facilitates mtDNA replication by removing DNA topological tensions produced during mtDNA transcription, but it appears to be dispensable. To test whether cells lacking TOP1MT have aberrant mtDNA transcription, we performed mitochondrial transcriptome profiling. To that end, we designed and implemented a customized tiling array, which enabled genome-wide, strand-specific, and simultaneous detection of all mitochondrial transcripts. Our technique revealed that Top1mt KO mouse cells process the mitochondrial transcripts normally but that protein-coding mitochondrial transcripts are elevated. Moreover, we found discrete long noncoding RNAs produced by H-strand transcription and encompassing the noncoding regulatory region of mtDNA in human and murine cells and tissues. Of note, these noncoding RNAs were strongly up-regulated in the absence of TOP1MT. In contrast, 7S DNA, produced by mtDNA replication, was reduced in the Top1mt KO cells. We propose that the long noncoding RNA species in the D-loop region are generated by the extension of H-strand transcripts beyond their canonical stop site and that TOP1MT acts as a topological barrier and regulator for mtDNA transcription and D-loop formation.


Asunto(s)
ADN-Topoisomerasas de Tipo I/fisiología , ADN Mitocondrial/genética , Perfilación de la Expresión Génica , Transcripción Genética , Animales , Células Cultivadas , ADN-Topoisomerasas de Tipo I/genética , Técnicas de Inactivación de Genes , Humanos , Ratones , Proteínas Mitocondriales , ARN/análisis , ARN Largo no Codificante , ARN Mitocondrial , Secuencias Reguladoras de Ácidos Nucleicos
8.
Proc Natl Acad Sci U S A ; 112(36): 11282-7, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26305952

RESUMEN

The liver has an exceptional replicative capacity following partial hepatectomy or chemical injuries. Cellular proliferation requires increased production of energy and essential metabolites, which critically depend on the mitochondria. To determine whether Top1mt, the vertebrate mitochondrial topoisomerase, is involved in this process, we studied liver regeneration after carbon tetrachloride (CCl4) administration. TOP1mt knockout (KO) mice showed a marked reduction in regeneration and hepatocyte proliferation. The hepatic mitochondrial DNA (mtDNA) failed to increase during recovery from CCl4 exposure. Reduced glutathione was also depleted, indicating increased reactive oxygen species (ROS). Steady-state levels of ATP, O2 consumption, mtDNA, and mitochondrial mass were also reduced in primary hepatocytes from CCl4-treated KO mice. To further test whether Top1mt acted by enabling mtDNA regeneration, we tested TOP1mt KO fibroblasts and human colon carcinoma HCT116 cells and measured mtDNA after 3-d treatment with ethidium bromide. Both types of TOP1mt knockout cells showed defective mtDNA regeneration following mtDNA depletion. Our study demonstrates that Top1mt is required for normal mtDNA homeostasis and for linking mtDNA expansion with hepatocyte proliferation.


Asunto(s)
ADN-Topoisomerasas de Tipo I/metabolismo , Hepatocitos/metabolismo , Regeneración Hepática/fisiología , Mitocondrias Hepáticas/enzimología , Adenosina Trifosfato/metabolismo , Animales , Western Blotting , Tetracloruro de Carbono/toxicidad , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/fisiopatología , ADN-Topoisomerasas de Tipo I/genética , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Técnicas de Inactivación de Genes , Glutatión/metabolismo , Células HCT116 , Hepatocitos/efectos de los fármacos , Hepatocitos/ultraestructura , Humanos , Regeneración Hepática/genética , Ratones Noqueados , Microscopía Electrónica de Transmisión , Mitocondrias Hepáticas/genética , Mitocondrias Hepáticas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
9.
Nucleic Acids Res ; 42(11): 7259-67, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24803675

RESUMEN

Topoisomerases are critical for replication, DNA packing and repair, as well as for transcription by allowing changes in DNA topology. Cellular DNA is present both in nuclei and mitochondria, and mitochondrial topoisomerase I (Top1mt) is the only DNA topoisomerase specific for mitochondria in vertebrates. Here, we report in detail the generation of TOP1mt knockout mice, and demonstrate that mitochondrial DNA (mtDNA) displays increased negative supercoiling in TOP1mt knockout cells and murine tissues. This finding suggested imbalanced topoisomerase activity in the absence of Top1mt and the activity of other topoisomerases in mitochondria. Accordingly, we found that both Top2α and Top2ß are present and active in mouse and human mitochondria. The presence of Top2α-DNA complexes in the mtDNA D-loop region, at the sites where both ends of 7S DNA are positioned, suggests a structural role for Top2 in addition to its classical topoisomerase activities.


Asunto(s)
Antígenos de Neoplasias/análisis , ADN-Topoisomerasas de Tipo II/análisis , ADN-Topoisomerasas de Tipo I/genética , ADN Mitocondrial/metabolismo , ADN Superhelicoidal/metabolismo , Proteínas de Unión al ADN/análisis , Mitocondrias/enzimología , Animales , Antígenos de Neoplasias/química , Antígenos de Neoplasias/metabolismo , ADN-Topoisomerasas de Tipo II/química , ADN-Topoisomerasas de Tipo II/metabolismo , ADN Mitocondrial/química , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Humanos , Ratones , Ratones Noqueados , Proteínas de Unión a Poli-ADP-Ribosa
10.
J Biol Chem ; 289(26): 18595-602, 2014 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-24798329

RESUMEN

Mitochondrial topoisomerase I (Top1mt) is a type IB topoisomerase present in vertebrates and exclusively targeted to mitochondria. Top1mt relaxes mitochondrial DNA (mtDNA) supercoiling by introducing transient cleavage complexes wherein the broken DNA strand swivels around the intact strand. Top1mt cleavage complexes (Top1mtcc) can be stabilized in vitro by camptothecin (CPT). However, CPT does not trap Top1mtcc efficiently in cells and is highly cytotoxic due to nuclear Top1 targeting. To map Top1mtcc on mtDNA in vivo and to overcome the limitations of CPT, we designed two substitutions (T546A and N550H) in Top1mt to stabilize Top1mtcc. We refer to the double-mutant enzyme as Top1mt*. Using retroviral transduction and ChIP-on-chip assays with Top1mt* in Top1mt knock-out murine embryonic fibroblasts, we demonstrate that Top1mt* forms high levels of cleavage complexes preferentially in the noncoding regulatory region of mtDNA, accumulating especially at the heavy strand replication origin OH, in the ribosomal genes (12S and 16S) and at the light strand replication origin OL. Expression of Top1mt* also caused rapid mtDNA depletion without affecting mitochondria mass, suggesting the existence of specific mitochondrial pathways for the removal of damaged mtDNA.


Asunto(s)
ADN-Topoisomerasas de Tipo I/metabolismo , ADN Mitocondrial/genética , Mitocondrias/enzimología , Animales , Daño del ADN , ADN-Topoisomerasas de Tipo I/genética , ADN Mitocondrial/química , ADN Mitocondrial/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/genética , Secuencias Reguladoras de Ácidos Nucleicos
11.
Mol Pharmacol ; 86(2): 193-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24890608

RESUMEN

Lamellarin D (Lam-D) is a hexacyclic pyrole alkaloid isolated from marine invertebrates, whose biologic properties have been attributed to mitochondrial targeting. Mitochondria contain their own DNA (mtDNA), and the only specific mitochondrial topoisomerase in vertebrates is mitochondrial topoisomerase I (Top1mt). Here, we show that Top1mt is a direct mitochondrial target of Lam-D. In vitro Lam-D traps Top1mt and induces Top1mt cleavage complexes (Top1mtcc). Using single-molecule analyses, we also show that Lam-D slows down supercoil relaxation of Top1mt and strongly inhibits Top1mt religation in contrast to the inefficacy of camptothecin on Top1mt. In living cells, we show that Lam-D accumulates rapidly inside mitochondria, induces cellular Top1mtcc, and leads to mtDNA damage. This study provides evidence that Top1mt is a direct mitochondrial target of Lam-D and suggests that developing Top1mt inhibitors represents a novel strategy for targeting mitochondrial DNA.


Asunto(s)
Cumarinas/farmacología , ADN-Topoisomerasas de Tipo I/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Isoquinolinas/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Línea Celular Tumoral , ADN-Topoisomerasas de Tipo I/genética , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Humanos , Mitocondrias/genética
12.
Elife ; 122023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37505079

RESUMEN

Impaired spermatogenesis and male infertility are common manifestations associated with mitochondrial diseases, yet the underlying mechanisms linking these conditions remain elusive. In this study, we demonstrate that mice deficient for the mitochondrial intra-membrane rhomboid protease PARL, a recently reported model of the mitochondrial encephalopathy Leigh syndrome, develop early testicular atrophy caused by a complete arrest of spermatogenesis during meiotic prophase I, followed by degeneration and death of arrested spermatocytes. This process is independent of neurodegeneration. Interestingly, genetic modifications of PINK1, PGAM5, and TTC19 - three major substrates of PARL with important roles in mitochondrial homeostasis - fail to reproduce or modify this severe phenotype, indicating that the spermatogenic arrest arises from distinct molecular pathways. We further observed severe abnormalities in mitochondrial ultrastructure in PARL-deficient spermatocytes, along with prominent electron transfer chain defects, disrupted coenzyme Q (CoQ) biosynthesis, and metabolic rewiring. These mitochondrial defects are associated with a germ cell-specific decrease in GPX4 expression leading arrested spermatocytes to ferroptosis - a regulated cell death modality characterized by uncontrolled lipid peroxidation. Our results suggest that mitochondrial defects induced by PARL depletion act as an initiating trigger for ferroptosis in primary spermatocytes through simultaneous effects on GPX4 and CoQ - two major inhibitors of ferroptosis. These findings shed new light on the potential role of ferroptosis in the pathogenesis of mitochondrial diseases and male infertility warranting further investigation.


Up to 9% of men are thought to experience infertility. These individuals may not produce enough healthy sperm cells. The root cause of infertility is often not discovered but, in some cases, it is associated with genetic defects in cell compartments known as mitochondria. Mitochondria are responsible for converting energy from food into a form of chemical energy cells need to power vital processes. However, it remains unclear how defects in mitochondria contribute to male infertility. Leigh syndrome is one of the most prevalent and severe diseases caused by genetic defects in mitochondria. The condition often develops in childhood and affects the nervous system, muscle and other organs, leading to many symptoms including muscle weakness and neurological regression. A previous study found that mutant mice that lack an enzyme, called PARL, display symptoms that are similar to those observed in humans with Leigh syndrome. PARL is found inside mitochondria where it cuts specific proteins to ensure they are working correctly in the cells. Radaelli et al. used extensive microscopy and biochemical analyses to study the fertility of male mice lacking PARL. The experiments revealed that the males were infertile due to a failure to produce sperm: spermatocytes, which usually develop into sperm cells, where much more likely to die in mice without PARL (by a process known as ferroptosis). Further experiments demonstrated that the mitochondria of the mutant mice had a shortage of two crucial molecules, a protein called GPX4 and a lipid called Coenzyme Q, which are required to prevent death by ferroptosis. It appears that this shortage was responsible for the demise of spermatocytes in the male mutant mice affected by infertility. These findings reveal a new role for PARL in the body and provide evidence that mitochondrial defects in living mammals can trigger ferroptosis, thereby contributing to male infertility. In the future, this research may pave the way for new treatments for male infertility and other diseases associated with defects in mitochondria.


Asunto(s)
Ferroptosis , Infertilidad Masculina , Animales , Humanos , Masculino , Ratones , Infertilidad Masculina/genética , Meiosis , Metaloproteasas/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Espermatogénesis/genética
13.
Langmuir ; 28(17): 6816-25, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22435568

RESUMEN

Langmuir monolayers have been extensively investigated by various experimental techniques. These studies allowed an in-depth understanding of the molecular conformation in the layer, phase transitions, and the structure of the multilayer. As the monolayer is compressed and the surface pressure is increased beyond a critical value, usually occurring in the minimal closely packed molecular area, the monolayer fractures and/or folds, forming multilayers in a process referred to as collapse. Various mechanisms for monolayer collapse and the resulting reorganization of the film have been proposed, and only a few studies have demonstrated the formation of a bilayer after collapse and with the use of a Ca(2+) solution. In this work, Langmuir isotherms coupled with imaging ellipsometry and polarization modulation infrared reflection absorption spectroscopy were recorded to investigate the air-water interface properties of Langmuir films of anionic nucleolipids. We report for these new molecules the formation of a quasi-hexagonal packing of bilayer domains at a low compression rate, a singular behavior for lipids at the air-water interface that has not yet been documented.


Asunto(s)
Membrana Dobles de Lípidos/química , Tampones (Química) , Calcio/química , Espectrofotometría Infrarroja
14.
Mitochondrion ; 64: 19-26, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35189384

RESUMEN

Cancer/Testis Antigens (CTAs) represent a group of proteins whose expression under physiological conditions is restricted to testis but activated in many human cancers. Also, it was observed that co-expression of multiple CTAs worsens the patient prognosis. Five CTAs were reported acting in mitochondria and we recently reported 147 transcripts encoded by 67 CTAs encoding for proteins potentially targeted to mitochondria. Among them, we identified the two isoforms encoded by CT55 for whom the function is poorly understood. First, we found that patients with tumors expressing wild-type CT55 are associated with poor survival. Moreover, CT55 silencing decreases dramatically cell proliferation. Second, to investigate the role of CT55 on mitochondria, we first show that CT55 is localized to both mitochondria and endoplasmic reticulum (ER) due to the presence of an ambiguous N-terminal targeting signal. Then, we show that CT55 silencing decreases mtDNA copy number and delays mtDNA recovery after an acute depletion. Moreover, demethylation of CT55 promotor increases its expression, which in turn increases mtDNA copy number. Finally, we measured the mtDNA copy number in NCI-60 cell lines and screened for genes whose expression is strongly correlated to mtDNA amount. We identified CT55 as the second highest correlated hit. Also, we show that compared to siRNA scrambled control (siCtrl) treatment, CT55 specific siRNA (siCT55) treatment down-regulates aerobic respiration, indicating that CT55 sustains mitochondrial respiration. Altogether, these data show for first time that CT55 acts on mtDNA copy number, modulates mitochondrial activity to sustain cancer cell proliferation.


Asunto(s)
ADN Mitocondrial , Neoplasias , Proliferación Celular , Variaciones en el Número de Copia de ADN , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Humanos , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , ARN Interferente Pequeño , Testículo/metabolismo
15.
Biomedicines ; 10(7)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35884972

RESUMEN

(1) Background: The development of mitochondrial medicine has been severely impeded by a lack of effective therapies. (2) Methods: To better understand Mitochondrial Encephalopathy Lactic Acidosis Syndrome Stroke-like episodes (MELAS) syndrome, neuronal cybrid cells carrying different mutation loads of the m.3243A > G mitochondrial DNA variant were analysed using a multi-omic approach. (3) Results: Specific metabolomic signatures revealed that the glutamate pathway was significantly increased in MELAS cells with a direct correlation between glutamate concentration and the m.3243A > G heteroplasmy level. Transcriptomic analysis in mutant cells further revealed alterations in specific gene clusters, including those of the glutamate, gamma-aminobutyric acid pathways, and tricarboxylic acid (TCA) cycle. These results were supported by post-mortem brain tissue analysis from a MELAS patient, confirming the glutamate dysregulation. Exposure of MELAS cells to ketone bodies significantly reduced the glutamate level and improved mitochondrial functions, reducing the accumulation of several intermediate metabolites of the TCA cycle and alleviating the NADH-redox imbalance. (4) Conclusions: Thus, a multi-omic integrated approach to MELAS cells revealed glutamate as a promising disease biomarker, while also indicating that a ketogenic diet should be tested in MELAS patients.

16.
Trends Endocrinol Metab ; 32(4): 193-195, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33551206

RESUMEN

Anticipating very long space trips, da Silveira et al. performed pan-omic analyses on in-flight samples from astronauts, mice, and cells. Results revealed major mitochondrial dysfunctions responsible for alterations in metabolism, immunity, and circadian rhythm, which should prompt the evaluation of countermeasures to reduce the risks of future space odysseys, especially toward the planet Mars.


Asunto(s)
Mitocondrias , Vuelo Espacial , Animales , Astronautas , Células Cultivadas , Ritmo Circadiano/fisiología , Humanos , Ratones , Mitocondrias/fisiología
17.
Mitochondrion ; 56: 73-81, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33220498

RESUMEN

Cancer/Testis Antigens (CTAs) genes are expressed only during spermatogenesis and tumorigenesis. Both processes share common specific metabolic adaptation related to energy supply, with a glucose to lactate gradient, leading to changes in mitochondrial physiology paralleling CTAs expression. In this review, we address the role of CTAs in mitochondria (mitoCTAs), by reviewing all published data, and assessing the putative localization of CTAs by screening for the presence of a mitochondrial targeting sequence (MTS). We evidenced that among the 276 CTAs, five were already shown to interfere with mitochondrial activities and 67 display a potential MTS.


Asunto(s)
Antígenos de Neoplasias/genética , Mitocondrias/metabolismo , Neoplasias/genética , Espermatogénesis , Antígenos de Neoplasias/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Mitocondrias/genética , Neoplasias/metabolismo , Testículo/metabolismo
18.
Biology (Basel) ; 10(11)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34827149

RESUMEN

Despite improvements in therapeutic strategies for treating breast cancers, tumor relapse and chemoresistance remain major issues in patient outcomes. Indeed, cancer cells display a metabolic plasticity allowing a quick adaptation to the tumoral microenvironment and to cellular stresses induced by chemotherapy. Recently, long non-coding RNA molecules (lncRNAs) have emerged as important regulators of cellular metabolic orientation. In the present study, we addressed the role of the long non-coding RNA molecule (lncRNA) SAMMSON on the metabolic reprogramming and chemoresistance of MCF-7 breast cancer cells resistant to doxorubicin (MCF-7dox). Our results showed an overexpression of SAMMSON in MCF-7dox compared to doxorubicin-sensitive cells (MCF-7). Silencing of SAMMSON expression by siRNA in MCF-7dox cells resulted in a metabolic rewiring with improvement of oxidative metabolism, decreased mitochondrial ROS production, increased mitochondrial replication, transcription and translation and an attenuation of chemoresistance. These results highlight the role of SAMMSON in the metabolic adaptations leading to the development of chemoresistance in breast cancer cells. Thus, targeting SAMMSON expression levels represents a promising therapeutic route to circumvent doxorubicin resistance in breast cancers.

19.
Brain Commun ; 3(2): fcab063, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34056600

RESUMEN

Biallelic mutations in ACO2, encoding the mitochondrial aconitase 2, have been identified in individuals with neurodegenerative syndromes, including infantile cerebellar retinal degeneration and recessive optic neuropathies (locus OPA9). By screening European cohorts of individuals with genetically unsolved inherited optic neuropathies, we identified 61 cases harbouring variants in ACO2, among whom 50 carried dominant mutations, emphasizing for the first time the important contribution of ACO2 monoallelic pathogenic variants to dominant optic atrophy. Analysis of the ophthalmological and clinical data revealed that recessive cases are affected more severely than dominant cases, while not significantly earlier. In addition, 27% of the recessive cases and 11% of the dominant cases manifested with extraocular features in addition to optic atrophy. In silico analyses of ACO2 variants predicted their deleterious impacts on ACO2 biophysical properties. Skin derived fibroblasts from patients harbouring dominant and recessive ACO2 mutations revealed a reduction of ACO2 abundance and enzymatic activity, and the impairment of the mitochondrial respiration using citrate and pyruvate as substrates, while the addition of other Krebs cycle intermediates restored a normal respiration, suggesting a possible short-cut adaptation of the tricarboxylic citric acid cycle. Analysis of the mitochondrial genome abundance disclosed a significant reduction of the mitochondrial DNA amount in all ACO2 fibroblasts. Overall, our data position ACO2 as the third most frequently mutated gene in autosomal inherited optic neuropathies, after OPA1 and WFS1, and emphasize the crucial involvement of the first steps of the Krebs cycle in the maintenance and survival of retinal ganglion cells.

20.
Bioconjug Chem ; 21(6): 1062-9, 2010 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-20481514

RESUMEN

Cationic nucleoside lipids (CNLs) derived from 5-nitroindole and 4-nitroimidazole bases were prepared from d-ribose by using a straightforward chemical synthesis. TEM experiments indicate that these amphiphilic molecules self-assemble to form supramolecular organizations in aqueous solutions. Electrophoresis and standard ethidium bromide (EB) fluorescence displacement assay shows that CNLs are able to bind siRNA. We demonstrated that both the nature of the universal bases and the stereochemistry of the anomeric position (alpha, beta) have an impact on the CNLs-siRNA complex formation. Correlations among chemical structure, stereochemistry, siRNA knockdown effect, and binding affinities for all the compounds were shown and analyzed with a simple molecular modeling study. The best binding affinities for siRNA were found for the beta anomer of the 5-nitroindole CNL which exhibits protein knockdown activity similar to the standard siPORT NeoFX positive control. It is noteworthy that no significant cytotoxicity at the tested concentration was observed for the novel CNLs.


Asunto(s)
Lípidos/química , Nucleósidos/química , ARN Interferente Pequeño/genética , Ribosa/química , Transfección/métodos , Sitios de Unión , Cationes/química , Electroforesis , Etidio/química , Etidio/metabolismo , Indoles/química , Microscopía Electrónica de Transmisión , Modelos Moleculares , Nitroimidazoles/química , ARN Interferente Pequeño/química , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA