Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(7): 3405-3414, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32005712

RESUMEN

Drug targeting to inflammatory brain pathologies such as stroke and traumatic brain injury remains an elusive goal. Using a mouse model of acute brain inflammation induced by local tumor necrosis factor alpha (TNFα), we found that uptake of intravenously injected antibody to vascular cell adhesion molecule 1 (anti-VCAM) in the inflamed brain is >10-fold greater than antibodies to transferrin receptor-1 and intercellular adhesion molecule 1 (TfR-1 and ICAM-1). Furthermore, uptake of anti-VCAM/liposomes exceeded that of anti-TfR and anti-ICAM counterparts by ∼27- and ∼8-fold, respectively, achieving brain/blood ratio >300-fold higher than that of immunoglobulin G/liposomes. Single-photon emission computed tomography imaging affirmed specific anti-VCAM/liposome targeting to inflamed brain in mice. Intravital microscopy via cranial window and flow cytometry showed that in the inflamed brain anti-VCAM/liposomes bind to endothelium, not to leukocytes. Anti-VCAM/LNP selectively accumulated in the inflamed brain, providing de novo expression of proteins encoded by cargo messenger RNA (mRNA). Anti-VCAM/LNP-mRNA mediated expression of thrombomodulin (a natural endothelial inhibitor of thrombosis, inflammation, and vascular leakage) and alleviated TNFα-induced brain edema. Thus VCAM-directed nanocarriers provide a platform for cerebrovascular targeting to inflamed brain, with the goal of normalizing the integrity of the blood-brain barrier, thus benefiting numerous brain pathologies.


Asunto(s)
Anticuerpos/administración & dosificación , Barrera Hematoencefálica/efectos de los fármacos , Encefalitis/tratamiento farmacológico , Endotelio Vascular/efectos de los fármacos , Nanomedicina/métodos , Animales , Barrera Hematoencefálica/inmunología , Encefalitis/genética , Encefalitis/inmunología , Endotelio Vascular/inmunología , Humanos , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/inmunología , Ratones , Receptores de Transferrina/genética , Receptores de Transferrina/inmunología , Trombomodulina/genética , Trombomodulina/inmunología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/inmunología
2.
Mol Ther ; 27(1): 188-199, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30449662

RESUMEN

Elevated low-density lipoprotein cholesterol (LDL-C) is one of the major contributors to cardiovascular heart disease (CHD), the leading cause of death worldwide. Due to severe side effects of statins, alternative treatment strategies are required for statin-intolerant patients. Monoclonal antibodies (mAbs) targeting proprotein convertase subtilisin/kexin type 9 (PCSK9) have shown great efficacy in LDL-C reduction. Limitations for this approach include the need for multiple injections as well as increased costs associated with patient management. Here, we engineered a DNA-encoded mAb (DMAb) targeting PCSK9 (daPCSK9), as an alternative approach to protein-based lipid-lowering therapeutics, and we characterized its expression and activity. A single intramuscular administration of mouse daPCSK9 generated expression in vivo for over 42 days that corresponded with a substantial decrease of 28.6% in non-high-density lipoprotein cholesterol (non-HDL-C) and 10.3% in total cholesterol by day 7 in wild-type mice. Repeated administrations of the DMAb plasmid led to increasing expression, with DMAb levels of 7.5 µg/mL at day 62. daPCSK9 therapeutics may provide a novel, simple, less frequent, cost-effective approach to reducing LDL-C, either as a stand-alone therapy or in combination with other LDL-lowering therapeutics for synergistic effect.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Proproteína Convertasa 9/inmunología , Animales , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/terapia , LDL-Colesterol/sangre , Terapia Genética/métodos , Células HEK293 , Humanos , Ratones , Plásmidos/genética
3.
Bioconjug Chem ; 29(4): 1209-1218, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29429330

RESUMEN

Genetic incorporation of biologically orthogonal functional groups into macromolecules has the potential to yield efficient, controlled, reproducible, site-specific conjugation of affinity ligands, contrast agents, or therapeutic cargoes. Here, we applied this approach to ferritin, a ubiquitous iron-storage protein that self-assembles into multimeric nanocages with remarkable stability, size uniformity (12 nm), and endogenous capacity for loading and transport of a variety of inorganic and organic cargoes. The unnatural amino acid, 4-azidophenylalanine (4-AzF), was incorporated at different sites in the human ferritin light chain (hFTL) to allow site-specific conjugation of alkyne-containing small molecules or affinity ligands to the exterior surface of the nanocage. The optimal positioning of the 4-AzF residue was evaluated by screening a library of variants for the efficiency of copper-free click conjugation. One of the engineered ferritins, hFTL-5X, was found to accommodate ∼14 small-molecule fluorophores (AlexaFluor 488) and 3-4 IgG molecules per nanocage. Intravascular injection in mice of radiolabeled hFTL-5X carrying antibody to cell adhesion molecule ICAM-1, but not control IgG, enabled specific targeting to the lung due to high basal expression of ICAM-1 (43.3 ± 6.99 vs 3.48 ± 0.14%ID/g for Ab vs IgG). Treatment of mice with endotoxin known to stimulate inflammatory ICAM-1 overexpression resulted in 2-fold enhancement of pulmonary targeting (84.4 ± 12.89 vs 43.3 ± 6.99%ID/g). Likewise, injection of fluorescent, ICAM-targeted hFTL-5X nanocages revealed the effect of endotoxin by enhancement of near-infrared signal, indicating potential utility of this approach for both vascular targeting and imaging.


Asunto(s)
Azidas/química , Ferritinas/química , Colorantes Fluorescentes/química , Inmunoconjugados/química , Molécula 1 de Adhesión Intercelular/análisis , Imagen Óptica/métodos , Fenilalanina/análogos & derivados , Alquinos/síntesis química , Alquinos/química , Animales , Azidas/síntesis química , Química Clic/métodos , Ferritinas/síntesis química , Colorantes Fluorescentes/síntesis química , Humanos , Inflamación/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Ratones , Nanoestructuras/química , Fenilalanina/síntesis química , Fenilalanina/química
4.
Bioconjug Chem ; 29(1): 56-66, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29200285

RESUMEN

The conjugation of antibodies to drugs and drug carriers improves delivery to target tissues. Widespread implementation and effective translation of this pharmacologic strategy awaits the development of affinity ligands capable of a defined degree of modification and highly efficient bioconjugation without loss of affinity. To date, such ligands are lacking for the targeting of therapeutics to vascular endothelial cells. To enable site-specific, click-chemistry conjugation to therapeutic cargo, we used the bacterial transpeptidase, sortase A, to attach short azidolysine containing peptides to three endothelial-specific single chain antibody fragments (scFv). While direct fusion of a recognition motif (sortag) to the scFv C-terminus generally resulted in low levels of sortase-mediated modification, improved reaction efficiency was observed for one protein, in which two amino acids had been introduced during cloning. This prompted insertion of a short, semi-rigid linker between scFv and sortag. The linker significantly enhanced modification of all three proteins, to the extent that unmodified scFv could no longer be detected. As proof of principle, purified, azide-modified scFv was conjugated to the antioxidant enzyme, catalase, resulting in robust endothelial targeting of functional cargo in vitro and in vivo.


Asunto(s)
Química Clic/métodos , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/farmacocinética , Secuencia de Aminoácidos , Aminoaciltransferasas/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Catalasa/metabolismo , Línea Celular , Cisteína Endopeptidasas/metabolismo , Humanos , Molécula 1 de Adhesión Intercelular/administración & dosificación , Molécula 1 de Adhesión Intercelular/química , Molécula 1 de Adhesión Intercelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/administración & dosificación , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/química , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/farmacocinética , Anticuerpos de Cadena Única/administración & dosificación , Anticuerpos de Cadena Única/metabolismo , Distribución Tisular
5.
Bioconjug Chem ; 27(3): 628-37, 2016 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-26718023

RESUMEN

Targeting nanocarriers to the endothelium, using affinity ligands to cell adhesion molecules such as ICAM-1 and PECAM-1, holds promise to improve the pharmacotherapy of many disease conditions. This approach capitalizes on the observation that antibody-targeted carriers of 100 nm and above accumulate in the pulmonary vasculature more effectively than free antibodies. Targeting of prospective nanocarriers in the 10-50 nm range, however, has not been studied. To address this intriguing issue, we conjugated monoclonal antibodies (Ab) to ICAM-1 and PECAM-1 or their single chain antigen-binding fragments (scFv) to ferritin nanoparticles (FNPs, size 12 nm), thereby producing Ab/FNPs and scFv/FNPs. Targeted FNPs retained their typical symmetric core-shell structure with sizes of 20-25 nm and ∼4-5 Ab (or ∼7-9 scFv) per particle. Ab/FNPs and scFv/FNPs, but not control IgG/FNPs, bound specifically to cells expressing target molecules and accumulated in the lungs after intravenous injection, with pulmonary targeting an order of magnitude higher than free Ab. Most intriguing, the targeting of Ab/FNPs to ICAM-1, but not PECAM-1, surpassed that of larger Ab/carriers targeted by the same ligand. These results indicate that (i) FNPs may provide a platform for targeting endothelial adhesion molecules with carriers in the 20 nm size range, which has not been previously reported; and (ii) ICAM-1 and PECAM-1 (known to localize in different domains of endothelial plasmalemma) differ in their accessibility to circulating objects of this size, common for blood components and nanocarriers.


Asunto(s)
Endotelio Vascular/metabolismo , Ferritinas/química , Nanopartículas , Animales , Microscopía Electrónica de Transmisión
6.
Methods Mol Biol ; 2410: 229-263, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34914050

RESUMEN

Vaccines are one of mankind's greatest medical advances, and their use has drastically reduced and in some cases eliminated (e.g., smallpox) disease and death caused by infectious agents. Traditional vaccine modalities including live-attenuated pathogen vaccines, wholly inactivated pathogen vaccines, and protein-based pathogen subunit vaccines have successfully been used to create efficacious vaccines against measles, mumps, rubella, polio, and yellow fever. These traditional vaccine modalities, however, take many months to years to develop and have thus proven less effective for use in creating vaccines to emerging or reemerging infectious diseases (EIDs) including influenza, Human immunodeficiency virus (HIV), dengue virus (DENV), chikungunya virus (CHIKV), West Nile virus (WNV), Middle East respiratory syndrome (MERS), and the severe acute respiratory syndrome coronaviruses 1 and 2 (SARS-CoV and SARS-CoV-2). As factors such as climate change and increased globalization continue to increase the pace of EID development, newer vaccine modalities are required to develop vaccines that can prevent or attenuate EID outbreaks throughout the world. One such modality, DNA vaccines, has been studied for over 30 years and has numerous qualities that make them ideal for meeting the challenge of EIDs including; (1) DNA vaccine candidates can be designed within hours of publishing of a pathogens genetic sequence; (2) they can be manufactured cheaply and rapidly in large quantities; (3) they are thermostable and have reduced requirement for a cold-chain during distribution, and (4) they have a remarkable safety record in the clinic. Optimizations made in plasmid design as well as in DNA vaccine delivery have greatly improved the immunogenicity of these vaccines. Here we describe the process of making a DNA vaccine to an EID pathogen and describe methods used for assessing the immunogenicity and protective efficacy of DNA vaccines in small animal models.


Asunto(s)
Enfermedades Transmisibles Emergentes , Vacunas de ADN , Vacunas Virales , Animales , COVID-19 , Enfermedades Transmisibles Emergentes/prevención & control , Humanos , Inmunidad , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , SARS-CoV-2 , Vacunas Atenuadas/inmunología , Vacunas de ADN/inmunología , Vacunas de Productos Inactivados/inmunología , Vacunas Sintéticas/inmunología , Vacunas Virales/genética , Vacunas Virales/inmunología
7.
Genes Cancer ; 12: 51-64, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33884106

RESUMEN

Prostate cancer is a prevalent cancer in men and consists of both indolent and aggressive phenotypes. While active surveillance is recommended for the former, current treatments for the latter include surgery, radiation, chemo and hormonal therapy. It has been observed that the recurrence in the treated patients is high and results in castration resistant prostate cancer for which treatment options are limited. This scenario has prompted us to consider immunotherapy with synthetic DNA vaccines, as this approach can generate antigen-specific tumor-killing immune cells. Given the multifocal and heterogeneous nature of prostate cancer, we hypothesized that synthetic DNA vaccines targeting different prostate specific antigens are likely to induce broader and improved immunity who are at high risk as well as advanced clinical stage of prostate cancer, compared to a single antigen approach. Utilizing a bioinformatics approach, synthetic enhanced DNA vaccine (SEV) constructs were generated against STEAP1, PAP, PARM1, PSCA, PCTA and PSP94. Synthetic enhanced vaccines for prostate cancer antigens were shown to elicit antigen-specific immune responses in mice and the anti-tumor activity was evident in a prostate tumor challenge mouse model. These studies support further evaluation of the DNA tools for immunotherapy of prostate cancer and perhaps other cancers.

8.
Nucleic Acid Ther ; 30(6): 379-391, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32907467

RESUMEN

Hyperammonemia is a dangerous life-threatening metabolic complication characterized by markedly elevated ammonia levels that can lead to irreversible brain damage if not carefully monitored. Current pharmacological treatment strategies available for hyperammonemia patients are suboptimal and associated with major side effects. In this study, we focus on developing and evaluating the in vivo delivery of novel DNA-encoded glutamine synthetase (GS) enzymes for the treatment of hyperammonemia. Direct in vivo delivered DNA-encoded GS enzyme was evaluated in ammonium acetate-induced hyperammonemia and thioacetamide-induced acute liver injury (ALI) models in C57BL/6 mice. In ammonium acetate-induced hyperammonemia model, we achieved a 30.5% decrease in blood ammonia levels 15 min postadministration of ammonium acetate, with DNA-encoded GS-treated group. Significant increase in survival was observed in ALI model with the treated mice. A comparison of the secreted versus intracellular DNA-encoded GS enzyme demonstrated similar increases in survival in the ALI model, with 40% mortality in the secreted enzymes and 30% mortality in the intracellular enzymes, as compared with 90% mortality in the control group. Direct in vivo delivery of DNA-encoded GS demonstrated important ammonia-lowering potential. These results provide the initial steps toward development of delivered DNA as a potential new approach to ammonia-lowering therapeutics.


Asunto(s)
ADN/farmacología , Glutamato-Amoníaco Ligasa/genética , Hiperamonemia/tratamiento farmacológico , Hígado/efectos de los fármacos , Amoníaco/metabolismo , Animales , Modelos Animales de Enfermedad , Glutamato-Amoníaco Ligasa/farmacología , Glutamina/metabolismo , Humanos , Hiperamonemia/metabolismo , Hígado/metabolismo , Ratones
9.
Mol Ther Methods Clin Dev ; 18: 652-663, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32802913

RESUMEN

Arginase is a complex and unique enzyme that plays diverse roles in health and disease. By metabolizing arginine, it can shape the outcome of innate and adaptive immune responses. The immunomodulatory capabilities of arginase could potentially be applied for local immunosuppression or induction of immune tolerance. With the use of an enhanced DNA delivery approach, we designed and studied a DNA-encoded secretable arginase enzyme as a tool for immune modulation and evaluated its immunomodulatory function in vivo. Strong immunosuppression of cluster of differentiation 4 (CD4) and CD8 T cells, as well as macrophages and dendritic cells, was observed in vitro in the presence of an arginase-rich supernatant. To further evaluate the efficacy of DNA-encoded arginase on in vivo immunosuppression against an antigen, a cancer antigen vaccine model was used in the presence or absence of DNA-encoded arginase. Significant in vivo immunosuppression was observed in the presence of DNA-encoded arginase. The efficacy of this DNA-encoded arginase delivery was examined in a local, imiquimod-induced, psoriasis-like, skin-inflammation model. Pretreatment of animals with the synthetic DNA-encoded arginase led to significant decreases in skin acanthosis, proinflammatory cytokines, and costimulatory molecules in extracted macrophages and dendritic cells. These results draw attention to the potential of direct in vivo-delivered arginase to function as an immunomodulatory agent for treatment of local inflammation or autoimmune diseases.

10.
Hum Vaccin Immunother ; 16(9): 2156-2164, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32463327

RESUMEN

Hepatitis B virus (HBV) causes a potentially life-threatening liver infection that frequently results in life-long chronic infection. HBV is responsible for 887,000 deaths each year, most resulting from chronic liver diseases and hepatocellular carcinoma. Presently, there are 250 million chronic HBV carriers worldwide who are at a high risk for developing cirrhosis and hepatocellular carcinoma (HCC). HCC is the most common type of liver cancer with a strong association with HBV infection. HBV transmission through blood transfusions and perinatal transfer from infected mother to child have been common routes of infection. In the present study, we describe the development of a synthetic DNA plasmid encoding an anti-HBV human monoclonal antibody specific for the common "a determinant region" of HBsAg of hepatitis B virus and demonstrate the ability of this platform at directing in vivo antibody expression. In vivo delivery of this DNA encoded monoclonal antibody (DMAb) plasmid in mice resulted in expression of human IgG over a period of one month following a single injection. Serum antibody was found to recognize the relevant conformational epitope from plasma purified native HBsAg as well as bound HBV in HepG2.2.15 cells. The serum DMAb efficiently neutralized HBV and prevented infection of HepaRG cells in vitro. Additional study of these HBV-DMAb as a possible therapy or immunoprophylaxis for HBV infection is warranted.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis B , Neoplasias Hepáticas , Animales , Anticuerpos Monoclonales , ADN Viral/genética , Femenino , Hepatitis B/prevención & control , Antígenos de Superficie de la Hepatitis B , Virus de la Hepatitis B/genética , Transmisión Vertical de Enfermedad Infecciosa , Ratones
11.
Nat Commun ; 11(1): 2601, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32433465

RESUMEN

The coronavirus family member, SARS-CoV-2 has been identified as the causal agent for the pandemic viral pneumonia disease, COVID-19. At this time, no vaccine is available to control further dissemination of the disease. We have previously engineered a synthetic DNA vaccine targeting the MERS coronavirus Spike (S) protein, the major surface antigen of coronaviruses, which is currently in clinical study. Here we build on this prior experience to generate a synthetic DNA-based vaccine candidate targeting SARS-CoV-2 S protein. The engineered construct, INO-4800, results in robust expression of the S protein in vitro. Following immunization of mice and guinea pigs with INO-4800 we measure antigen-specific T cell responses, functional antibodies which neutralize the SARS-CoV-2 infection and block Spike protein binding to the ACE2 receptor, and biodistribution of SARS-CoV-2 targeting antibodies to the lungs. This preliminary dataset identifies INO-4800 as a potential COVID-19 vaccine candidate, supporting further translational study.


Asunto(s)
Antígenos Virales/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas de ADN/inmunología , Vacunas Virales/inmunología , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Neutralizantes/inmunología , Antígenos Virales/química , Vacunas contra la COVID-19 , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Mapeo Epitopo , Cobayas , Inmunidad Humoral , Inmunoglobulina G/inmunología , Pulmón/inmunología , Ratones , Ratones Endogámicos BALB C , Coronavirus del Síndrome Respiratorio de Oriente Medio , Modelos Animales , Peptidil-Dipeptidasa A/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Vacunas Virales/química
12.
Methods Mol Biol ; 2033: 81-93, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31332749

RESUMEN

Covalent conjugation of chemical moieties to antibodies has numerous applications, including antibody-drug conjugates, antibody conjugation for diagnostics, and more. Most nonspecific chemical conjugation methods ligate onto any of a number of sites on the antibody, leading to multiple conjugated species, many of which perturb antibody function. To solve these problems, we used CRISPR/Cas9-edited hybridomas to introduce a Sortase tag (LPXTG) and a Flag tag at the 3' end of the CH3 heavy chain region of a mouse monoclonal antibody. The Flag tag allows easy purification of the antibody, while the LPXTG is then acted on by the bacterial transpeptidase Sortase to site-specifically add on any of a number of chemical moieties that possess a triglycine repeat. This technique thus allows rapid production of an antibody onto which a wide array of chemical moieties can be site-specifically conjugated.


Asunto(s)
Anticuerpos Monoclonales/genética , Edición Génica/métodos , Ingeniería Genética/métodos , Inmunoconjugados/genética , Animales , Anticuerpos Monoclonales/inmunología , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/inmunología , Humanos , Hibridomas/inmunología , Inmunoconjugados/inmunología , Ratones , Oligopéptidos/genética , Oligopéptidos/inmunología
13.
J Control Release ; 282: 13-24, 2018 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-29522833

RESUMEN

Ferritin subunits of heavy and light polypeptide chains self-assemble into a spherical nanocage that serves as a natural transport vehicle for metals but can include diverse cargoes. Ferritin nanoparticles are characterized by remarkable stability, small and uniform size. Chemical modifications and molecular re-engineering of ferritin yield a versatile platform of nanocarriers capable of delivering a broad range of therapeutic and imaging agents. Targeting moieties conjugated to the ferritin external surface provide multivalent anchoring of biological targets. Here, we highlight some of the current work on ferritin as well as examine potential strategies that could be used to functionalize ferritin via chemical and genetic means to enable its utility in vascular drug delivery.


Asunto(s)
Vasos Sanguíneos , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Ferritinas/química , Nanopartículas/química , Animales , Antineoplásicos/administración & dosificación , Vasos Sanguíneos/diagnóstico por imagen , Vasos Sanguíneos/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Humanos , Pulmón/irrigación sanguínea , Pulmón/diagnóstico por imagen , Pulmón/metabolismo , Modelos Moleculares , Neoplasias/irrigación sanguínea , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Tomografía de Emisión de Positrones/métodos , Vacunas/administración & dosificación
14.
Adv Drug Deliv Rev ; 130: 90-112, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-30149885

RESUMEN

Humoral and cellular host defense mechanisms including diverse phagocytes, leukocytes, and immune cells have evolved over millions of years to protect the body from microbes and other external and internal threats. These policing forces recognize engineered sub-micron drug delivery systems (DDS) as such a threat, and react accordingly. This leads to impediment of the therapeutic action, extensively studied and discussed in the literature. Here, we focus on side effects of DDS interactions with host defenses. We argue that for nanomedicine to reach its clinical potential, the field must redouble its efforts in understanding the interaction between drug delivery systems and the host defenses, so that we can engineer safer interventions with the greatest potential for clinical success.


Asunto(s)
Portadores de Fármacos/efectos adversos , Portadores de Fármacos/química , Animales , Humanos , Nanomedicina , Nanopartículas/efectos adversos , Nanopartículas/química , Tamaño de la Partícula , Propiedades de Superficie
15.
Sci Rep ; 8(1): 1760, 2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29379029

RESUMEN

Site-specific modification of antibodies has become a critical aspect in the development of next-generation immunoconjugates meeting criteria of clinically acceptable homogeneity, reproducibility, efficacy, ease of manufacturability, and cost-effectiveness. Using CRISPR/Cas9 genomic editing, we developed a simple and novel approach to produce site-specifically modified antibodies. A sortase tag was genetically incorporated into the C-terminal end of the third immunoglobulin heavy chain constant region (CH3) within a hybridoma cell line to manufacture antibodies capable of site-specific conjugation. This enabled an effective enzymatic site-controlled conjugation of fluorescent and radioactive cargoes to a genetically tagged mAb without impairment of antigen binding activity. After injection in mice, these immunoconjugates showed almost doubled specific targeting in the lung vs. chemically conjugated maternal mAb, and concomitant reduction in uptake in the liver and spleen. The approach outlined in this work provides a facile method for the development of more homogeneous, reproducible, effective, and scalable antibody conjugates for use as therapeutic and diagnostic tools.


Asunto(s)
Anticuerpos Monoclonales/genética , Sistemas CRISPR-Cas/genética , Inmunoconjugados/genética , Animales , Antígenos/genética , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Cisteína/genética , Humanos , Ratones , Ratas , Reproducibilidad de los Resultados
16.
J Control Release ; 291: 106-115, 2018 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-30336167

RESUMEN

Systemic administration of lipid nanoparticle (LNP)-encapsulated messenger RNA (mRNA) leads predominantly to hepatic uptake and expression. Here, we conjugated nucleoside-modified mRNA-LNPs with antibodies (Abs) specific to vascular cell adhesion molecule, PECAM-1. Systemic (intravenous) administration of Ab/LNP-mRNAs resulted in profound inhibition of hepatic uptake concomitantly with ~200-fold and 25-fold elevation of mRNA delivery and protein expression in the lungs compared to non-targeted counterparts. Unlike hepatic delivery of LNP-mRNA, Ab/LNP-mRNA is independent of apolipoprotein E. Vascular re-targeting of mRNA represents a promising, powerful, and unique approach for novel experimental and clinical interventions in organs of interest other than liver.


Asunto(s)
Apolipoproteínas E/metabolismo , Sistemas de Liberación de Medicamentos , Endotelio Vascular/metabolismo , Nanopartículas/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , ARN Mensajero/administración & dosificación , Administración Intravenosa , Animales , Línea Celular , Portadores de Fármacos/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inmunoconjugados/metabolismo , Ratones Endogámicos C57BL , ARN Mensajero/farmacocinética , Distribución Tisular
17.
Biomaterials ; 185: 348-359, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30273834

RESUMEN

One of the goals of nanomedicine is targeted delivery of therapeutic enzymes to the sub-cellular compartments where their action is needed. Endothelial caveolae-derived endosomes represent an important yet challenging destination for targeting, in part due to smaller size of the entry aperture of caveolae (ca. 30-50 nm). Here, we designed modular, multi-molecular, ferritin-based nanocarriers with uniform size (20 nm diameter) for easy drug-loading and targeted delivery of enzymatic cargo to these specific vesicles. These nanocarriers targeted to caveolar Plasmalemmal Vesicle-Associated Protein (Plvap) deliver superoxide dismutase (SOD) into endosomes in endothelial cells, the specific site of influx of superoxide mediating by such pro-inflammatory signaling as some cytokines and lipopolysaccharide (LPS). Cell studies showed efficient internalization of Plvap-targeted SOD-loaded nanocarriers followed by dissociation from caveolin-containing vesicles and intracellular transport to endosomes. The nanocarriers had a profound protective anti-inflammatory effect in an animal model of LPS-induced inflammation, in agreement with the characteristics of their endothelial uptake and intracellular transport, indicating that these novel, targeted nanocarriers provide an advantageous platform for caveolae-dependent delivery of biotherapeutics.


Asunto(s)
Caveolas/metabolismo , Portadores de Fármacos/metabolismo , Ferritinas/metabolismo , Nanopartículas/metabolismo , Superóxido Dismutasa/administración & dosificación , Animales , Proteínas Arqueales/metabolismo , Archaeoglobus fulgidus/metabolismo , Línea Celular , Sistemas de Liberación de Medicamentos , Inmunoconjugados/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Superóxido Dismutasa/farmacocinética
18.
Nat Commun ; 9(1): 2684, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29992966

RESUMEN

Drug delivery by nanocarriers (NCs) has long been stymied by dominant liver uptake and limited target organ deposition, even when NCs are targeted using affinity moieties. Here we report a universal solution: red blood cell (RBC)-hitchhiking (RH), in which NCs adsorbed onto the RBCs transfer from RBCs to the first organ downstream of the intravascular injection. RH improves delivery for a wide range of NCs and even viral vectors. For example, RH injected intravenously increases liposome uptake in the first downstream organ, lungs, by ~40-fold compared with free NCs. Intra-carotid artery injection of RH NCs delivers >10% of the injected NC dose to the brain, ~10× higher than that achieved with affinity moieties. Further, RH works in mice, pigs, and ex vivo human lungs without causing RBC or end-organ toxicities. Thus, RH is a clinically translatable platform technology poised to augment drug delivery in acute lung disease, stroke, and several other diseases.


Asunto(s)
Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Eritrocitos/química , Nanopartículas/química , Adsorción , Animales , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/farmacocinética , Humanos , Pulmón/metabolismo , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/terapia , Ratones Endogámicos C57BL , Nanopartículas/administración & dosificación , Ratas , Porcinos
19.
J Control Release ; 234: 115-23, 2016 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-27210108

RESUMEN

Controlled endothelial delivery of SOD may alleviate abnormal local surplus of superoxide involved in ischemia-reperfusion, inflammation and other disease conditions. Targeting SOD to endothelial surface vs. intracellular compartments is desirable to prevent pathological effects of external vs. endogenous superoxide, respectively. Thus, SOD conjugated with antibodies to cell adhesion molecule PECAM (Ab/SOD) inhibits pro-inflammatory signaling mediated by endogenous superoxide produced in the endothelial endosomes in response to cytokines. Here we defined control of surface vs. endosomal delivery and effect of Ab/SOD, focusing on conjugate size and targeting to PECAM vs. ICAM. Ab/SOD enlargement from about 100 to 300nm enhanced amount of cell-bound SOD and protection against extracellular superoxide. In contrast, enlargement inhibited endocytosis of Ab/SOD and diminished mitigation of inflammatory signaling of endothelial superoxide. In addition to size, shape is important: endocytosis of antibody-coated spheres was more effective than that of polymorphous antibody conjugates. Further, targeting to ICAM provides higher endocytic efficacy than targeting to PECAM. ICAM-targeted Ab/SOD more effectively mitigated inflammatory signaling by intracellular superoxide in vitro and in animal models, although total uptake was inferior to that of PECAM-targeted Ab/SOD. Therefore, both geometry and targeting features of Ab/SOD conjugates control delivery to cell surface vs. endosomes for optimal protection against extracellular vs. endosomal oxidative stress, respectively.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Endotelio Vascular/efectos de los fármacos , Inmunoconjugados/administración & dosificación , Molécula 1 de Adhesión Intercelular/inmunología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/inmunología , Superóxido Dismutasa/administración & dosificación , Animales , Anticuerpos Monoclonales/farmacocinética , Anticuerpos Monoclonales/farmacología , Endocitosis/efectos de los fármacos , Endosomas/metabolismo , Endotelio Vascular/metabolismo , Endotoxemia/tratamiento farmacológico , Células Endoteliales de la Vena Umbilical Humana , Inmunoconjugados/farmacocinética , Inmunoconjugados/farmacología , Ratones Endogámicos C57BL , Nanopartículas/química , Estrés Oxidativo/efectos de los fármacos , Superóxido Dismutasa/farmacocinética , Superóxido Dismutasa/farmacología , Superóxidos/metabolismo
20.
J Control Release ; 226: 229-37, 2016 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-26855052

RESUMEN

Endothelial cells (EC) represent an important target for pharmacologic intervention, given their central role in a wide variety of human pathophysiologic processes. Studies in lab animal species have established that conjugation of drugs and carriers with antibodies directed to surface targets like the Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1, a highly expressed endothelial transmembrane protein) help to achieve specific therapeutic interventions in ECs. To translate such "vascular immunotargeting" to clinical practice, it is necessary to replace antibodies by advanced ligands that are more amenable to use in humans. We report the molecular design of a single chain variable antibody fragment (scFv) that binds with high affinity to human PECAM-1 and cross-reacts with its counterpart in rats and other animal species, allowing parallel testing in vivo and in human endothelial cells in microfluidic model. Site-specific modification of the scFv allows conjugation of protein cargo and liposomes, enabling their endothelial targeting in these models. This study provides a template for molecular engineering of ligands, enabling studies of drug targeting in animal species and subsequent use in humans.


Asunto(s)
Sistemas de Liberación de Medicamentos , Endotelio/inmunología , Liposomas/inmunología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/inmunología , Anticuerpos de Cadena Única/inmunología , Secuencia de Aminoácidos , Animales , Afinidad de Anticuerpos , Línea Celular , Células Endoteliales/inmunología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Liposomas/administración & dosificación , Liposomas/química , Liposomas/farmacocinética , Ratas , Anticuerpos de Cadena Única/administración & dosificación , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA