Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Metab ; 6(7): 1253-1267, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38789798

RESUMEN

The energy cost of neuronal activity is mainly sustained by glucose1,2. However, in an apparent paradox, neurons modestly metabolize glucose through glycolysis3-6, a circumstance that can be accounted for by the constant degradation of 6-phosphofructo-2-kinase-fructose-2,6-bisphosphatase-3 (PFKFB3)3,7,8, a key glycolysis-promoting enzyme. To evaluate the in vivo physiological importance of this hypoglycolytic metabolism, here we genetically engineered mice with their neurons transformed into active glycolytic cells through Pfkfb3 expression. In vivo molecular, biochemical and metabolic flux analyses of these neurons revealed an accumulation of anomalous mitochondria, complex I disassembly, bioenergetic deficiency and mitochondrial redox stress. Notably, glycolysis-mediated nicotinamide adenine dinucleotide (NAD+) reduction impaired sirtuin-dependent autophagy. Furthermore, these mice displayed cognitive decline and a metabolic syndrome that was mimicked by confining Pfkfb3 expression to hypothalamic neurons. Neuron-specific genetic ablation of mitochondrial redox stress or brain NAD+ restoration corrected these behavioural alterations. Thus, the weak glycolytic nature of neurons is required to sustain higher-order organismal functions.


Asunto(s)
Cognición , Glucólisis , Neuronas , Fosfofructoquinasa-2 , Animales , Neuronas/metabolismo , Ratones , Fosfofructoquinasa-2/metabolismo , Fosfofructoquinasa-2/genética , Cognición/fisiología , Mitocondrias/metabolismo , Metabolismo Energético , NAD/metabolismo , Glucosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA