Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
BMC Bioinformatics ; 25(1): 150, 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38616247

RESUMEN

BACKGROUND: The Eastern Africa Network for Bioinformatics Training (EANBiT) has matured through continuous evaluation, feedback, and codesign. We highlight how the program has evolved to meet challenges and achieve its goals and how experiential learning through mini projects enhances the acquisition of skills and collaboration. We continued to learn and grow through honest feedback and evaluation of the program, trainers, and modules, enabling us to provide robust training even during the Coronavirus disease 2019 (COVID-19) pandemic, when we had to redesign the program due to restricted travel and in person group meetings. RESULTS: In response to the pandemic, we developed a program to maintain "residential" training experiences and benefits remotely. We had to answer the following questions: What must change to still achieve the RT goals? What optimal platforms should be used? How would we manage connectivity and data challenges? How could we avoid online fatigue? Going virtual presented an opportunity to reflect on the essence and uniqueness of the program and its ability to meet the objective of strengthening bioinformatics skills among the cohorts of students using different delivery approaches. It allowed an increase in the number of participants. Evaluating each program component is critical for improvement, primarily when feedback feeds into the program's continuous amendment. Initially, the participants noted that there were too many modules, insufficient time, and a lack of hands-on training as a result of too much focus on theory. In the subsequent iterations, we reduced the number of modules from 27 to five, created a harmonized repository for the materials on GitHub, and introduced project-based learning through the mini projects. CONCLUSION: We demonstrate that implementing a program design through detailed monitoring and evaluation leads to success, especially when participants who are the best fit for the program are selected on an appropriate level of skills, motivation, and commitment.


Asunto(s)
COVID-19 , Aprendizaje , Humanos , África Oriental , COVID-19/epidemiología , Biología Computacional , Pandemias
2.
Malar J ; 20(1): 129, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33663492

RESUMEN

BACKGROUND: Plasmodium falciparum parasite populations in Ethiopia have been experiencing local selective pressures from drugs and immunity, leading to evolutionary adaptation. However, there was a paucity of data on genomic characterization and evolutionary adaptations of P. falciparum isolates from the central area of Ethiopia. METHODS: Whole-genome analysis of 25 P. falciparum isolates from central Ethiopia, specifically from West Arsi, were studied to determine their genetic diversity, population structures, and signatures of selection in known drug resistance alleles against global isolates from Cambodia, Thailand, DR Congo, and Malawi. RESULTS: A total of 18,517 high-quality single-nucleotide polymorphisms (SNPs) were identified in Ethiopian P. falciparum isolates. About 84% of the Ethiopian P. falciparum isolates had a FWS value > 0.95 showing a dominant single genotype infection in most isolates at the time of collection with little potential for out-crossing as expected in areas with low transmission intensity. Within-host diversity of Ethiopian infections was significantly different from East African (p < 0.001), but not Southeast Asian infections (P > 0.05). A significant population structure has been observed by PCA and population differentiation between Ethiopian parasites and East African (Fst ~ 10%) and Southeast Asian populations (Fst ~ 18%), suggesting limited gene flow and the independent evolution of the Ethiopian parasite population. Moreover, a total of 125 genes under balancing selection was found that include ama1, trap, eba175, and lsa3, previously identified as targets of human host immunity. Recent directional selection analysis using integrated standardized haplotype score (IHS) did not detect any selection signatures in the Pfcrt, Pfdhfr, Pfdhps, Pfmdr1, and PfK13 genes. However, known drug resistance-conferring mutations analysis showed that at least one SNP marker was fixed in these genes, but not in Pfdhps and PfK13. CONCLUSION: Plasmodium falciparum populations in the central region of Ethiopia was structurally diverged from both Southeast Asian and other East African populations. Malaria infections in Ethiopia had low within-host diversity, and parasites carry fixed chloroquine resistance markers despite the withdrawal of this drug for the treatment of P. falciparum.


Asunto(s)
Evolución Molecular , Variación Genética , Genoma de Protozoos , Plasmodium falciparum/genética , Etiopía , Secuenciación de Nucleótidos de Alto Rendimiento , Selección Genética , Secuenciación Completa del Genoma
3.
Malar J ; 19(1): 391, 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33148255

RESUMEN

BACKGROUND: Histidine-rich protein 2 (HRP2)-based malaria rapid diagnostic tests (RDTs) are effective and widely used for the detection of wild-type Plasmodium falciparum infections. Although recent studies have reported false negative HRP2 RDT results due to pfhrp2 and pfhrp3 gene deletions in different countries, there is a paucity of data on the deletions of these genes in Tanzania. METHODS: A community-based cross-sectional survey was conducted between July and November 2017 in four regions: Geita, Kigoma, Mtwara and Ruvuma. All participants had microscopy and RDT performed in the field and provided a blood sample for laboratory multiplex antigen detection (for Plasmodium lactate dehydrogenase, aldolase, and P. falciparum HRP2). Samples showing RDT false negativity or aberrant relationship of HRP2 to pan-Plasmodium antigens were genotyped to detect the presence/absence of pfhrp2/3 genes. RESULTS: Of all samples screened by the multiplex antigen assay (n = 7543), 2417 (32.0%) were positive for any Plasmodium antigens while 5126 (68.0%) were negative for all antigens. The vast majority of the antigen positive samples contained HRP2 (2411, 99.8%), but 6 (0.2%) had only pLDH and/or aldolase without HRP2. Overall, 13 samples had an atypical relationship between a pan-Plasmodium antigen and HRP2, but were positive by PCR. An additional 16 samples with negative HRP2 RDT results but P. falciparum positive by microscopy were also chosen for pfhrp2/3 genotyping. The summation of false negative RDT results and laboratory antigen results provided 35 total samples with confirmed P. falciparum DNA for pfhrp2/3 genotyping. Of the 35 samples, 4 (11.4%) failed to consistently amplify positive control genes; pfmsp1 and pfmsp2 and were excluded from the analysis. The pfhrp2 and pfhrp3 genes were successfully amplified in the remaining 31 (88.6%) samples, confirming an absence of deletions in these genes. CONCLUSIONS: This study provides evidence that P. falciparum parasites in the study area have no deletions of both pfhrp2 and pfhrp3 genes. Although single gene deletions could have been missed by the multiplex antigen assay, the findings support the continued use of HRP2-based RDTs in Tanzania for routine malaria diagnosis. There is a need for the surveillance to monitor the status of pfhrp2 and/or pfhrp3 deletions in the future.


Asunto(s)
Antígenos de Protozoos/genética , Pruebas Diagnósticas de Rutina/estadística & datos numéricos , Eliminación de Gen , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Adolescente , Adulto , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Malaria Falciparum/parasitología , Masculino , Persona de Mediana Edad , Prevalencia , Tanzanía , Adulto Joven
4.
Front Res Metr Anal ; 8: 1070390, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324282

RESUMEN

We have applied the sensitize-train-hack-community model to build awareness of and capacity in bioinformatics in Kenya. Open science is the practice of science openly and collaboratively, with tools, techniques, and data freely shared to facilitate reuse and collaboration. Open science is not a mandatory curriculum course in schools, whereas bioinformatics is relatively new in some African regions. Open science tools can significantly enhance bioinformatics, leading to increased reproducibility. However, open science and bioinformatics skills, especially blended, are still lacking among students and researchers in resource-constrained regions. We note the need to be aware of the power of open science among the bioinformatics community and a clear strategy to learn bioinformatics and open science skills for use in research. Using the OpenScienceKE framework-Sensitize, Train, Hack, Collaborate/Community-the BOSS (Bioinformatics and Open Science Skills) virtual events built awareness and empowered researchers with the skills and tools in open science and bioinformatics. Sensitization was achieved through a symposium, training through a workshop and train-the-trainer program, hack through mini-projects, community through conferences, and continuous meet-ups. In this paper, we discuss how we applied the framework during the BOSS events and highlight lessons learnt in planning and executing the events and their impact on the outcome of each phase. We evaluate the impact of the events through anonymous surveys. We show that sensitizing and empowering researchers with the skills works best when the participants apply the skills to real-world problems: project-based learning. Furthermore, we have demonstrated how to implement virtual events in resource-constrained settings by providing Internet and equipment support to participants, thus improving accessibility and diversity.

5.
Bioinform Adv ; 2(1): vbab047, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699416

RESUMEN

Summary: MicroRNAs (miRNAs) are single stranded gene regulators of 18-25 bp in length. They play a crucial role in regulating several biological processes in insects. However, the functions of miRNA in Glossina pallidipes, one of the biological vectors of African animal trypanosomosis in sub-Saharan Africa, remain poorly characterized. We used a combination of both molecular biology and bioinformatics techniques to identify miRNA genes at different developmental stages (larvae, pupae, teneral and reproductive unmated adults, gravid females) and sexes of G. pallidipes. We identified 157 mature miRNA genes, including 12 novel miRNAs unique to G. pallidipes. Moreover, we identified 93 miRNA genes that were differentially expressed by sex and/or in specific developmental stages. By combining both miRanda and RNAhybrid algorithms, we identified 5550 of their target genes. Further analyses with the Gene Ontology term and KEGG pathways for these predicted target genes suggested that the miRNAs may be involved in key developmental biological processes. Our results provide the first repository of G. pallidipes miRNAs across developmental stages, some of which appear to play crucial roles in tsetse fly development. Hence, our findings provide a better understanding of tsetse biology and a baseline for exploring miRNA genes in tsetse flies. Availability and implementation: Raw sequence data are available from NCBI Sequence Read Archives (SRA) under Bioproject accession number PRJNA590626. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

6.
Front Res Metr Anal ; 6: 669675, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34056516

RESUMEN

According to the United Nations Educational, Scientific, and Cultural Organization (UNESCO), Open Science is the movement to make scientific research and data accessible to all. It has great potential for advancing science. At its core, it includes (but is not limited to) open access, open data, and open research. Some of the associated advantages are promoting collaboration, sharing and reproducibility in research, and preventing the reinvention of the wheel, thus saving resources. As research becomes more globalized and its output grows exponentially, especially in data, the need for open scientific research practices is more evident - the future of modern science. This has resulted in a concerted global interest in open science uptake. Even so, barriers still exist. The formal training curriculum in most, if not all, universities in Kenya does not equip students with the knowledge and tools to subsequently practice open science in their research. Therefore, to work openly and collaboratively, there is a need for awareness and training in the use of open science tools. These have been neglected, especially in most developing countries, and remain barriers to the cause. Moreover, there is scanty research on the state of affairs regarding the practice and/or adoption of open science. Thus, we developed, through the OpenScienceKE framework, a model to narrow the gap. A sensitize-train-hack-collaborate model was applied in Nairobi, the economic and administrative capital of Kenya. Using the model, we sensitized through seminars, trained on the use of tools through workshops, applied the skills learned in training through hackathons to collaboratively answer the question on the state of open science in Kenya. While the former parts of the model had 20-50 participants, the latter part mainly involved participants with a bioinformatics background, leveraging their advanced computational skills. This model resulted in an open resource that researchers can use to publish as open access cost-effectively. Moreover, we observed a growing interest in open science practices in Kenya through literature search and data mining and that lack of awareness and skills may still hinder the adoption and practice of open science. Furthermore, at the time of the analyses, we surprisingly found that out of the 20,069 papers downloaded from BioRXiv, only 18 had Kenyan authors, a majority of which are international (16) collaborations. This may suggest poor uptake of the use of preprints among Kenyan researchers. The findings in this study highlight the state of open science in Kenya and challenges facing its adoption and practice while bringing forth possible areas for primary consideration in the campaign toward open science. It also proposes a model (sensitize-train-hack-collaborate model) that may be adopted by researchers, funders and other proponents of open science to address some of the challenges faced in promoting its adoption in Kenya.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA