Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biomacromolecules ; 24(8): 3742-3754, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37523746

RESUMEN

Gene knockdown by siRNA offers an unrestricted choice of targets and specificity based on the principle of complementary Watson-Crick base pairing with mRNA. However, the negative charge, large molecular size, and susceptibility to enzymatic degradation of siRNA impede its successful transfection, hence limiting its potential for therapeutic use. The development of efficient and safe siRNA transfection agents is, therefore, critical for siRNA-based therapy. Herein, we developed a protein-based biodynamic polymer (biodynamer) that showed potential as a siRNA transfection vector, owing to its excellent biocompatibility, easy tunability, and dynamic polymerization under acidic environments. The positively charged biodynamers formed stable dynamic nanocomplexes (XL-DPs, hydrodynamic diameter of approximately 104 nm) with siRNA via electrostatic interactions and chemical cross-linking. As a proof of concept, the optimized XL-DPs were stable in physiological conditions with serum proteins and demonstrated significant pH-dependent size change and degradability, as well as siRNA release capability. The minimal cytotoxicity and excellent cellular uptake of XL-DPs effectively supported the intracellular delivery of siRNA. Our study demonstrated that the XL-DPs in survivin siRNA delivery enabled potent knockdown of survivin mRNA and induced notable apoptosis of carcinoma cells (2.2 times higher than a lipid-based transfection agent, Lipofectamine 2000). These findings suggested that our XL-DPs hold immense potential as a promising platform for siRNA delivery and can be considered strong candidates in the advancement of next-generation transfection agents.


Asunto(s)
Apoptosis , Survivin/genética , ARN Interferente Pequeño , Transfección , Concentración de Iones de Hidrógeno , ARN Mensajero , Línea Celular Tumoral
2.
Angew Chem Int Ed Engl ; 62(23): e202301178, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-36938924

RESUMEN

Nature's way to construct highly complex molecular entities as part of biosynthetic pathways is unmatched by any chemical synthesis. Yet, relying on a cascade of native enzymatic transformations to achieve a certain target structure, biosynthesis is also significantly limited in its scope. In this study, non-natural biocatalytic modules, a peroxidase-mediated Achmatowicz rearrangement and a dehydrogenase-catalyzed borrowing-hydrogen-type isomerization were successfully incorporated into an artificial metabolism, combining the benefits of traditional retrosynthesis with the elegance and efficacy of biosynthetic networks. In a highly streamlined process, the total synthesis of tricyclic angiopterlactone B was achieved in two steps operating entirely in an aqueous environment while relying mainly on enzymes as key reaction mediators.


Asunto(s)
Oxidorreductasas , Peroxidasas , Biocatálisis , Hidrógeno/química
3.
Chemistry ; 28(10): e202104484, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-34990513

RESUMEN

Structure elucidation and total synthesis of five unprecedented terpenoid-alkaloids, the sandacrabins, are reported, alongside with the first description of their producing organism Sandaracinus defensii MSr10575, which expands the Sandaracineae family by only its second member. The genome sequence of S. defensii as presented in this study was utilized to identify enzymes responsible for sandacrabin formation, whereby dimethylbenzimidazol, deriving from cobalamin biosynthesis, was identified as key intermediate. Biological activity profiling revealed that all sandacrabins except congener A exhibit potent antiviral activity against the human pathogenic coronavirus HCoV229E in the three digit nanomolar range. Investigation of the underlying mode of action discloses that the sandacrabins inhibit the SARS-CoV-2 RNA-dependent RNA polymerase complex, highlighting them as structurally distinct non-nucleoside RNA synthesis inhibitors. The observed segregation between cell toxicity at higher concentrations and viral inhibition opens the possibility for their medicinal chemistry optimization towards selective inhibitors.


Asunto(s)
Antivirales , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , Myxococcales/química , SARS-CoV-2/efectos de los fármacos , Antivirales/química , Antivirales/farmacología
4.
bioRxiv ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168313

RESUMEN

Actinobacteria, the bacterial phylum most renowned for natural product discovery, has been established as a valuable source for drug discovery and biotechnology but is underrepresented within accessible genome and strain collections. Herein, we introduce the Natural Products Discovery Center (NPDC), featuring 122,449 strains assembled over eight decades, the genomes of the first 8490 NPDC strains (7142 Actinobacteria), and the online NPDC Portal making both strains and genomes publicly available. A comparative survey of RefSeq and NPDC Actinobacteria highlights the taxonomic and biosynthetic diversity within the NPDC collection, including three new genera, hundreds of new species, and ~7000 new gene cluster families. Selected examples demonstrate how the NPDC Portal's strain metadata, genomes, and biosynthetic gene clusters can be leveraged using genome mining approaches. Our findings underscore the ongoing significance of Actinobacteria in natural product discovery, and the NPDC serves as an unparalleled resource for both Actinobacteria strains and genomes.

5.
Curr Opin Chem Biol ; 76: 102366, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37451204

RESUMEN

Sulfur-containing natural products (S-containing NPs) exhibit diverse chemical structures and biosynthetic machineries. Unraveling the intricate chemistry of S-incorporation requires innovative and multidisciplinary approaches. In this review, we surveyed the landscape of S-containing NP biosynthetic machineries, classified the S-incorporation chemistry into four distinct classes, and highlighted each of the four classes with representative examples from recent studies. All highlighted chemistry has been correlated to the genes encoding the biosynthetic machineries of the S-containing NPs, which open new opportunities to discover S-containing NPs through genome mining. These examples should inspire the community to explore uncharted territories in NP research, promoting further advancements in both novel S-containing NP discovery and S-incorporation chemistry.


Asunto(s)
Productos Biológicos , Productos Biológicos/metabolismo , Familia de Multigenes
6.
J Med Chem ; 66(2): 1562-1573, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36599039

RESUMEN

Antibody-drug conjugates (ADCs) are cancer chemotherapeutics that utilize a monoclonal antibody (mAb)-based delivery system, a cytotoxic payload, and a chemical linker. ADC payloads must be strategically functionalized to allow linker attachment without perturbing the potency required for ADC efficacy. We previously developed a biocatalytic system for the precise functionalization of tiancimycin (TNM)-based payloads. The TNMs are anthraquinone-fused enediynes (AFEs) and have yet to be translated into the clinic. Herein, we report the translation of biocatalytically functionalized TNMs into ADCs in combination with the dual-variable domain (DVD)-mAb platform. The DVD enables both site-specific conjugation and a plug-and-play modularity for antigen-targeting specificity. We evaluated three linker chemistries in terms of TNM-based ADC potency and antigen selectivity, demonstrating a trade-off between potency and selectivity. This represents the first application of AFE-based payloads to DVDs for ADC development, a workflow that is generalizable to further advance AFE-based ADCs for multiple cancer types.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Neoplasias , Humanos , Inmunoconjugados/química , Anticuerpos Monoclonales/química , Antineoplásicos/farmacología , Antineoplásicos/química , Relación Estructura-Actividad
7.
J Med Chem ; 65(13): 8869-8880, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35709475

RESUMEN

Here, we report on a potent class of substituted ureidothiophenes targeting energy-coupling factor (ECF) transporters, an unexplored target that is not addressed by any antibiotic in the market. Since the ECF module is crucial for the vitamin transport mechanism, the prevention of substrate uptake should ultimately lead to cell death. By utilizing a combination of virtual and functional whole-cell screening of our in-house library, the membrane-bound protein mediated uptake of folate could be effectively inhibited. Structure-based optimization of our hit yielded low-micromolar inhibitors, whereby the most active compounds showed in addition potent antimicrobial activities against a panel of clinically relevant Gram-positive pathogens without significant cytotoxic effects.


Asunto(s)
Proteínas Bacterianas , Proteínas de la Membrana , Proteínas Bacterianas/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Ácido Fólico/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Moleculares
8.
Eur J Med Chem ; 231: 114148, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35114538

RESUMEN

Small macrocyclic peptides are promising candidates for new anti-infective drugs. To date, such peptides have been poorly studied in the context of anti-virulence targets. Using phage display and a self-designed peptide library, we identified a cyclic heptapeptide that can bind the carbon storage regulator A (CsrA) from Yersinia pseudotuberculosis and displace bound RNA. This disulfide-bridged peptide, showed an IC50 value in the low micromolar range. Upon further characterization, cyclisation was found to be essential for its activity. To increase metabolic stability, a series of disulfide mimetics were designed and a redox-stable 1,4-disubstituted 1,2,3-triazole analogue displayed activity in the double-digit micromolar range. Further experiments revealed that this triazole peptidomimetic is also active against CsrA from Escherichia coli and RsmA from Pseudomonas aeruginosa. This study provides an ideal starting point for medicinal chemistry optimization of this macrocyclic peptide and might pave the way towards broad-acting virulence modulators.


Asunto(s)
Bacteriófagos , Péptidos Cíclicos , Carbono , Péptidos Cíclicos/metabolismo , Péptidos Cíclicos/farmacología , Pseudomonas aeruginosa/metabolismo , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA