Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(10): 5478-5485, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32094191

RESUMEN

Multicellularity is a key evolutionary innovation, leading to coordinated activity and resource sharing among cells, which generally occurs via the physical exchange of chemical compounds. However, filamentous cable bacteria display a unique metabolism in which redox transformations in distant cells are coupled via long-distance electron transport rather than an exchange of chemicals. This challenges our understanding of organismal functioning, as the link among electron transfer, metabolism, energy conservation, and filament growth in cable bacteria remains enigmatic. Here, we show that cells within individual filaments of cable bacteria display a remarkable dichotomy in biosynthesis that coincides with redox zonation. Nanoscale secondary ion mass spectrometry combined with 13C (bicarbonate and propionate) and 15N-ammonia isotope labeling reveals that cells performing sulfide oxidation in deeper anoxic horizons have a high assimilation rate, whereas cells performing oxygen reduction in the oxic zone show very little or no label uptake. Accordingly, oxygen reduction appears to merely function as a mechanism to quickly dispense of electrons with little to no energy conservation, while biosynthesis and growth are restricted to sulfide-respiring cells. Still, cells can immediately switch roles when redox conditions change, and show no differentiation, which suggests that the "community service" performed by the cells in the oxic zone is only temporary. Overall, our data reveal a division of labor and electrical cooperation among cells that has not been seen previously in multicellular organisms.


Asunto(s)
Deltaproteobacteria/crecimiento & desarrollo , Deltaproteobacteria/metabolismo , Electricidad , Transporte de Electrón , Amoníaco/metabolismo , Isótopos de Carbono , Espectrometría de Masa de Ion Secundario , Sulfuros/metabolismo
2.
ISME Commun ; 3(1): 68, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37423910

RESUMEN

Ocean plastic pollution is a severe environmental problem but most of the plastic that has been released to the ocean since the 1950s is unaccounted for. Although fungal degradation of marine plastics has been suggested as a potential sink mechanism, unambiguous proof of plastic degradation by marine fungi, or other microbes, is scarce. Here we applied stable isotope tracing assays with 13C-labeled polyethylene to measure biodegradation rates and to trace the incorporation of plastic-derived carbon into individual cells of the yeast Rhodotorula mucilaginosa, which we isolated from the marine environment. 13C accumulation in the CO2 pool during 5-day incubation experiments with R. mucilaginosa and UV-irradiated 13C-labeled polyethylene as a sole energy and carbon source translated to degradation rates of 3.8% yr-1 of the initially added substrate. Furthermore, nanoSIMS measurements revealed substantial incorporation of polyethylene-derived carbon into fungal biomass. Our results demonstrate the potential of R. mucilaginosa to mineralize and assimilate carbon from plastics and suggest that fungal plastic degradation may be an important sink for polyethylene litter in the marine environment.

3.
Front Microbiol ; 13: 883807, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663875

RESUMEN

Cable bacteria are multicellular sulfide oxidizing bacteria that display a unique metabolism based on long-distance electron transport. Cells in deeper sediment layers perform the sulfide oxidizing half-reaction whereas cells in the surface layers of the sediment perform the oxygen-reducing half-reaction. These half-reactions are coupled via electron transport through a conductive fiber network that runs along the shared cell envelope. Remarkably, only the sulfide oxidizing half-reaction is coupled to biosynthesis and growth whereas the oxygen reducing half-reaction serves to rapidly remove electrons from the conductive fiber network and is not coupled to energy generation and growth. Cells residing in the oxic zone are believed to (temporarily) rely on storage compounds of which polyphosphate (poly-P) is prominently present in cable bacteria. Here we investigate the role of poly-P in the metabolism of cable bacteria within the different redox environments. To this end, we combined nanoscale secondary ion mass spectrometry with dual-stable isotope probing (13C-DIC and 18O-H2O) to visualize the relationship between growth in the cytoplasm (13C-enrichment) and poly-P activity (18O-enrichment). We found that poly-P was synthesized in almost all cells, as indicated by 18O enrichment of poly-P granules. Hence, poly-P must have an important function in the metabolism of cable bacteria. Within the oxic zone of the sediment, where little growth is observed, 18O enrichment in poly-P granules was significantly lower than in the suboxic zone. Thus, both growth and poly-P metabolism appear to be correlated to the redox environment. However, the poly-P metabolism is not coupled to growth in cable bacteria, as many filaments from the suboxic zone showed poly-P activity but did not grow. We hypothesize that within the oxic zone, poly-P is used to protect the cells against oxidative stress and/or as a resource to support motility, while within the suboxic zone, poly-P is involved in the metabolic regulation before cells enter a non-growing stage.

4.
Front Microbiol ; 12: 620807, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33584623

RESUMEN

Cable bacteria are multicellular, Gram-negative filamentous bacteria that display a unique division of metabolic labor between cells. Cells in deeper sediment layers are oxidizing sulfide, while cells in the surface layers of the sediment are reducing oxygen. The electrical coupling of these two redox half reactions is ensured via long-distance electron transport through a network of conductive fibers that run in the shared cell envelope of the centimeter-long filament. Here we investigate how this unique electrogenic metabolism is linked to filament growth and cell division. Combining dual-label stable isotope probing (13C and 15N), nanoscale secondary ion mass spectrometry, fluorescence microscopy and genome analysis, we find that the cell cycle of cable bacteria cells is highly comparable to that of other, single-celled Gram-negative bacteria. However, the timing of cell growth and division appears to be tightly and uniquely controlled by long-distance electron transport, as cell division within an individual filament shows a remarkable synchronicity that extends over a millimeter length scale. To explain this, we propose the "oxygen pacemaker" model in which a filament only grows when performing long-distance transport, and the latter is only possible when a filament has access to oxygen so it can discharge electrons from its internal electrical network.

5.
Front Microbiol ; 12: 620915, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33613489

RESUMEN

Unicellular nitrogen fixing cyanobacteria (UCYN) are abundant members of phytoplankton communities in a wide range of marine environments, including those with rapidly changing nitrogen (N) concentrations. We hypothesized that differences in N availability (N2 vs. combined N) would cause UCYN to shift strategies of intracellular N and C allocation. We used transmission electron microscopy and nanoscale secondary ion mass spectrometry imaging to track assimilation and intracellular allocation of 13C-labeled CO2 and 15N-labeled N2 or NO3 at different periods across a diel cycle in Cyanothece sp. ATCC 51142. We present new ideas on interpreting these imaging data, including the influences of pre-incubation cellular C and N contents and turnover rates of inclusion bodies. Within cultures growing diazotrophically, distinct subpopulations were detected that fixed N2 at night or in the morning. Additional significant within-population heterogeneity was likely caused by differences in the relative amounts of N assimilated into cyanophycin from sources external and internal to the cells. Whether growing on N2 or NO3, cells prioritized cyanophycin synthesis when N assimilation rates were highest. N assimilation in cells growing on NO3 switched from cyanophycin synthesis to protein synthesis, suggesting that once a cyanophycin quota is met, it is bypassed in favor of protein synthesis. Growth on NO3 also revealed that at night, there is a very low level of CO2 assimilation into polysaccharides simultaneous with their catabolism for protein synthesis. This study revealed multiple, detailed mechanisms underlying C and N management in Cyanothece that facilitate its success in dynamic aquatic environments.

6.
Anal Chem ; 79(7): 2940-4, 2007 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-17311408

RESUMEN

The TEX86 is a recently proposed paleothermometer through which ancient seawater temperatures of up to 120 My ago can be reconstructed. It is based on the relative distribution of glycerol dibiphytanyl glycerol tetraethers as measured by high-performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry (HPLC/APCI-MS). The aim of this study was to examine and improve several analytical aspects in the determination of this important proxy in environmental matrices. Comparison of TEX86 analysis using single ion mode (SIM) and mass scanning (m/z 950 to 1450) detection, respectively, revealed that SIM is up to 2 orders of magnitude more sensitive and that the TEX86 can be determined with a reproducibility of +/-0.004 or +/-0.3 degrees C using this method. Comparison of TEX86 values obtained with two different HPLC/APCI-MS set-ups revealed no significant differences. In addition, analysis of TEX86 of extracts obtained by Soxhlet, ultrasonic, and accelerated high-pressure extraction techniques also showed no significant differences between the methods. Our results suggest that TEX86 analysis by HPLC/APCI-MS is robust and can be determined with analytical errors comparable to those of other temperature proxies.


Asunto(s)
Sedimentos Geológicos/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Termómetros , Cromatografía Líquida de Alta Presión/métodos , Sensibilidad y Especificidad , Tiempo
7.
Rapid Commun Mass Spectrom ; 20(14): 2099-103, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16767688

RESUMEN

Ladderane lipids, containing three or five linearly concatenated cyclobutane moieties, are considered to be unique biomarkers for the process of anaerobic ammonium oxidation, an important link in the oceanic nitrogen cycle. Due to the thermal lability of the strained cyclobutane moieties, the ladderane lipids are difficult to analyze by gas chromatography. A method combining high-performance liquid chromatography coupled to positive ion atmospheric pressure chemical ionization tandem mass spectrometry (HPLC/APCI-MS/MS) was developed for the analysis of the most abundant ladderane lipids, occurring as fatty acids and ether-bound to glycerol. Detection was achieved by selective reaction monitoring of four specific fragmentations per ladderane lipid. Detection limits of 30-35 pg injected on-column and a linear response (r(2) > 0.99) over nearly 3 orders of magnitude were achieved for all compounds. Using this method, these unique ladderane lipids were for the first time identified in a surface sediment from the Gullmarsfjorden, in concentrations ranging from 1.1-5.5 ng/g for the ladderane fatty acids and of 0.7 ng/g for the monoether. It is foreseen that this method will allow the investigation of the occurrence of anaerobic ammonium oxidation in natural settings in much greater detail than before.


Asunto(s)
Biomasa , Cromatografía Líquida de Alta Presión/métodos , Sedimentos Geológicos/química , Lípidos de la Membrana/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Anaerobiosis , Atmósfera , Éteres/química , Ácidos Grasos/química , Bacterias Gramnegativas/química , Bacterias Gramnegativas/metabolismo , Oxidación-Reducción , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA