Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Food Microbiol ; 415: 110632, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38428167

RESUMEN

The objectives of this research were to study the effect of UV irradiation on quality characteristics of mango juice during cold storage. Mango juice exposed to UV radiation was also used to determine zero-order and first-order kinetic models of microbial (total plate count, yeast and mold count, and Escherichia coli) reduction. According to the microbiological results, UV light at 120 J/cm2 caused a 5.19 log reduction. It was found that microbial inactivation of all tested microorganisms followed first-order kinetic model. The treatments did not differ significantly in terms of the quality metrics. L*, b*, pH, total soluble solid, total phenolic compound, total flavonoid content, and antioxidant activity as measured by the DPPH and FRAP assay all tended to decline during storage at 4 °C, whereas a*, ∆E, titratable acidity, total plate count, yeast and mold count, as well as the total plate count, had an increasing trend. During storage at 4 °C, UV irradiation increased the shelf life of mango juice by about 14 days compared to the control sample. In conclusion, this study demonstrated the potential of UV treatment as an alternative to thermal pasteurization for preserving mango juice quality and safety while also prolonging shelf life.


Asunto(s)
Mangifera , Pasteurización , Pasteurización/métodos , Rayos Ultravioleta , Saccharomyces cerevisiae/efectos de la radiación , Antioxidantes/análisis
2.
Foods ; 13(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38254591

RESUMEN

Using clarifying agents is essential in the production of fruit juice. This study utilized gelatin and bentonite as clarifying agents to improve the quality and shelf-life of Indian gooseberry juice (IGBJ). Different treatments were prepared using varying levels of gelatin and bentonite alone or in combination (1.5-2 mg/mL and 1-2 mg/mL, respectively). The untreated IGBJ was used as a control. The results showed the combined treatment of 1.5 mg/mL gelatin and 1 mg/mL bentonite significantly (p ≤ 0.05) improved the transmittance, △E value, total acidity, vitamin C, and antioxidant activity of the IGBJ sample. During storage for 49 days at 4 °C, the quality changes in the IGBJ were minimal with the use of 1.5 mg/mL gelatin and 1 mg/mL bentonite compared to the control (p > 0.05). The treated samples showed no signs of spoilage bacteria, yeast, or mold during cold storage. The combined use of gelatin and bentonite (1.5 mg/mL gelatin and 1 mg/mL bentonite) was found to effectively preserve the sensory quality, bioactivity, and color properties of IGBJ, thereby extending its shelf-life. Thus, gelatin and bentonite can be used as preferred filtering aids for quality and shelf-life extension in the food industry, as they have synergistic effects.

3.
Foods ; 13(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38472832

RESUMEN

This study aimed to investigate the effectiveness of dimethyl dicarbonate (DMDC) at various concentrations (0-250 ppm) in inhibiting the growth of Escherichia coli TISTR 117 and spoilage microbes in passion fruit juice (PFJ) and its impact on the physicochemical and antioxidant quality of the juice during refrigerated storage. The highest log reduction in the total viable count, yeast/molds and E. coli was attained in PFJ samples with 250 ppm of DMDC (p ≤ 0.05) added. Microbial growth inhibition by DMDC followed the first-order kinetic model with a coefficient of determination (R2) and inhibition constants (k) ranging from 0.98 to 0.99 and 0.022 to 0.042, respectively. DMDC at 0-250 ppm showed an insignificant effect on pH, °Brix, color (L*, a*, b*), ascorbic acid, total phenolic compound (TPC), total flavonoid content, and antioxidant activity (DPPH, FRAP) (p > 0.05). Control (untreated PFJ), DMDC-250 ppm, and pasteurized (15 s at 72 °C) samples were subjected to 27 days of cold storage at 4 °C. A decreasing trend in pH, total soluble solid, ascorbic acid content, DPPH and FRAP values were observed in all the samples during refrigerated storage. However, the DMDC-250 ppm sample showed a better prospect in physicochemical quality changes compared to the pasteurized and untreated control PFJ samples. ΔE values showed marked changes in the control sample than the DMDC-250 ppm and pasteurized samples at 27 days of storage. Additionally, the total viable count and yeast/mold count were augmented during storage, and an estimated shelf-life of the control, DMDC-250 ppm, and pasteurized samples was approximately 3, 24 and 18 days, respectively. In conclusion, DMDC at 250 ppm could ensure microbial safety without affecting the quality attributes of PFJ during 24 days of storage at 4 °C.

4.
Foods ; 12(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37509817

RESUMEN

This study evaluated the efficiency of UV radiation doses (4.68-149.76 J/cm2) and nisin (50-200 ppm) and their combination in comparison with thermal pasteurization on the microbial inhibition kinetics and physicochemical properties of tangerine juice. It was noted that UV-149.76 J/cm2 and nisin (NS) at 200 ppm in conjunction exhibited the highest log reduction in spoilage and pathogenic microbes including Escherichia coli, Lactiplantibacillus plantarum, and Saccharomyces cerevisiae, yeast and molds, and total plate count in tangerine juice. Additionally, the first-order kinetic model provides a better fit for spoilage and pathogenic strains compared with the zero-order model (higher coefficient of determination, R2), particularly for E. coli. UV and NS showed insignificant effects (p > 0.05) on pH, TSS, and TA values compared with pasteurization. However, there were notable differences observed in color analysis, total phenolic compound, total flavonoid content, vitamin C, carotenoid content, and antioxidant activity using DPPH and FRAP assays. The optimized UV + NS samples were subjected to refrigerated storage for 21 days. The results revealed that during the entire storage period, the pH values and the TSS values slightly decreased, and the TA values increased in the treated samples. The UV + NS treatment insignificantly impacted the color properties. The total phenolic, total flavonoid, and carotenoid contents, and vitamin C decreased over time for all sample treatments, whereas the antioxidant properties exhibited varying outcomes, compared with an untreated control and pasteurization. Therefore, UV radiation and nisin (UV-149.76 J/cm2 + NS-200 ppm) in combination could serve as a viable alternative to traditional heat pasteurization of fruit juice during cold storage.

5.
Foods ; 12(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36673504

RESUMEN

In this study, the extraction of cocoa shell powder (CSP) was optimized, and the optimized extracts were spray-dried for encapsulation purposes. Temperature (45−65 °C), extraction time (30−60 min), and ethanol concentration (60−100%) were the extraction parameters. The response surface methodology analysis revealed that the model was significant (p ≤ 0.05) in interactions between all variables (total phenolic compound, total flavonoid content, and antioxidant activity as measured by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP assays), with a lack of fit test for the model being insignificant (p > 0.05). Temperature (55 °C), time (45 min), and ethanol concentration (60%) were found to be the optimal extraction conditions. For spray-drying encapsulation, some quality metrics (e.g., water solubility, water activity) were insignificant (p > 0.05). The microcapsules were found to be spherical in shape using a scanning electron microscope. Thermogravimetric and differential thermogravimetric measurements of the microcapsules revealed nearly identical results. The gum arabic + maltodextrin microcapsule (GMM) showed potential antibacterial (zone of inhibition: 11.50 mm; lower minimum inhibitory concentration: 1.50 mg/mL) and antioxidant (DPPH: 1063 mM trolox/100g dry wt.) activities (p ≤ 0.05). In conclusion, the microcapsules in this study, particularly GMM, are promising antioxidant and antibacterial agents to be fortified as functional food ingredients for the production of nutraceutical foods with health-promoting properties.

6.
Foods ; 12(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36673368

RESUMEN

Purple corn kernels were subjected to boiling and steaming times of 5-15 min to extract purple corn milk (PCM). Pasteurized and unpasteurized PCM samples were investigated for changes in anthocyanins, antioxidants, and physicochemical properties. Anthocyanins, total phenolics, antioxidant activity, color and viscosity values showed promising results in pasteurized PCM samples extracted from kernels steamed for 5 min (PPCM-S5) compared to other samples (p ≤ 0.05). Changes in L*, a* and b* values, total phenolics and DPPH activity were lowered in PPCM-S5 samples with higher retention of anthocyanins compared to the PCM extracted from boiled kernels (p ≤ 0.05). PCM extracted from 5 min steamed kernels fortified with 4% sucrose (PCM5-S4) after pasteurization revealed the lowest changes in color, pH, total soluble solid and viscosity during 12 days of storage at 4 °C compared to the unpasteurized PCM without sucrose and pasteurized PCM fortified with 6% sucrose. Additionally, pasteurized PCM5-S4 samples marked the highest anthocyanins, total phenolics and antioxidant activity during storage. Microbial load was lowest in pasteurized PCM5-S4 samples stored at 4 °C for 12 days. However, coliforms, yeast or mold and Escherichia coli were not present in the thermally processed PCM samples. The highest sensory scores were obtained in PCM5-S4 at day 12 of storage compared to PCM without any treatment. Therefore, pasteurized PCM extracted from 5 min steamed purple corn kernels retained bioactivity along with 4% sucrose fortification resulted in higher sensory acceptability. As a consequence the shelf-life of PCM5-S4 sample was extended up to 12 days at 4 °C.

7.
J Food Sci ; 87(3): 1096-1107, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35150138

RESUMEN

The effect of roasting temperature (70, 120, 140°C) and food processing (soaking, steaming, and roasting) on the content of bioactive constituents (total phenolic content, total flavonoid content, total anthocyanin, and γ-oryzanol) and antioxidant activity of processed riceberry were investigated. In addition, the degradation kinetics of bioactive constituents and antioxidant activity during storage were assessed using zero-order and first-order kinetic models. Results showed riceberry roasted at 120°C had the highest total anthocyanin content and antioxidant activity. In addition, riceberry obtained from roasting exhibited the highest bioactive compound and antioxidant activity. Besides, first-order kinetic was confirmed as the best-fitted model to describe degradation of bioactive constituents and antioxidant activity of processed riceberry during storage. This finding suggested that roasting at 120°C was chosen as an optimum condition to maximize the content of bioactive constituents and antioxidant activity and kinetic models provided a better understanding of antioxidant property reduction of processed riceberry during storage. PRACTICAL APPLICATION: Riceberry is an abundant source of bioactive constituents with beneficial health effects leading to a development of functional food product. However, processing may negatively affect biological properties of riceberry and bioactive constituent degradation of processed riceberry during storage has not been previously reported. Therefore, different processes were investigated to determine the effect on bioactive constituents and antioxidant activity of riceberry, and the degradation kinetic model of bioactive constituents during storage was also studied. Optimum processing is appropriate to design riceberry containing high concentration of bioactive constituents and antioxidant activity, which could be considered as a functional diet for health-conscious consumer.


Asunto(s)
Antioxidantes , Manipulación de Alimentos , Antocianinas , Antioxidantes/análisis , Cinética , Fenoles/análisis
8.
Ultrason Sonochem ; 82: 105806, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34991963

RESUMEN

This study aimed to optimize the ultrasound-assisted extraction (UAE) condition of mulberry leaf extract (MLE) using response surface methodology and to microencapsulate MLE by spray drying using different coating materials and ratios of coating material and MLE. The extraction results showed that MLE from condition of 60 °C (X1, temperature), 30 min (X2, time) and 60% v/v (X3, ethanol concentration) exhibited the highest bioactive compound and antioxidant activity (DPPH and FRAP assay). Based on this optimal condition, MLE was further encapsulated by spray drying. It was found that MLE encapsulated with resistant maltodextrin at ratio of MLE and resistant maltodextrin 1:1 (w/w) showed the highest encapsulation yield (%) and encapsulation efficiency (%). Water solubility, moisture content and water activity were non-significant (p > 0.05) among the microcapsules. The scanning electron microscope (SEM) revealed that the types of coating material affected their microstructures and microcapsules prepared by resistant maltodextrin as coating material had a spherical shape, smooth surface and less shrinkage than microcapsules prepared by maltodextrin and gum arabic which had rough surfaces. The highest antioxidant activity was obtained from microcapsule prepared by gum arabic at ratio of MLE and gam arabic 1:2 (w/w). In conclusion, optimal condition from UAE and encapsulation by spray drying suggest the critical potential for production of functional food with improved bioactive compound stability and maximized antioxidant activity.


Asunto(s)
Morus , Antioxidantes , Cápsulas , Composición de Medicamentos , Goma Arábiga , Extractos Vegetales , Hojas de la Planta , Secado por Pulverización , Agua
9.
Ultrason Sonochem ; 83: 105916, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35093738

RESUMEN

An ultrasound-assisted extraction (UAE) was optimized for the extraction of bioactive compound (total phenolic compound and total flavonoid content) with antioxidant activity (DPPH and FRAP assays) using response surface methodology based on Box-Behnken design (BBD). The effect of extraction temperature (X1: 30-70 °C), extraction time (X2: 25-45 min) and amplitude (X3: 30-50%) were determined. In addition, antimicrobial activity and application of optimized makiang seed extract (MSE) were also evaluated. Results showed that the optimum condition of UAE were X1: 51.82 °C, X2: 31.87 min and X3: 40.51%. It was also found that gallic acid was the major phenolic compound of optimized MSE and its minimum inhibitiory concentration (MIC) and minimum bactericidal concentration (MBC) was between 1.56 - 6.25 and 25-100 mg/mL respectively. The addition of MSE could enhance the stability of orange juice and shelf life extension was also obtained. This research finding suggests the beneficial opportunities for ultrasound-assisted extraction for the production of bioactive compound from makiang seed with antioxidant activity leading to an application in medicinal and functional food industry.


Asunto(s)
Antiinfecciosos , Citrus sinensis , Antiinfecciosos/análisis , Antiinfecciosos/farmacología , Antioxidantes/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Semillas/química
10.
Sci Rep ; 12(1): 1014, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35046451

RESUMEN

The objectives of this research were to study the changes of phenolic compounds in vegetable (yellow VS green) tablets with/without probiotics (Lacticaseibacillus rhamnosus LR5) supplementation by using high performance liquid chromatography and probiotic survivability through the simulated gastrointestinal tract. The green vegetable tablets with/without probiotics had a greater (p ≤ 0.05) phenolic content compared to the yellow ones. There were no significant differences of most phenolic compound contents between probiotic-supplemented vegetable tablets and non-probiotic supplemented ones (p > 0.05). The contents of ferulic acid, epicatechin, tannic acid and rutin for both vegetable tablets tended to decrease through passing the stomach (1 and 2 h) and small intestine (2 and 4 h), however, the content of catechin in the yellow vegetable tablets tended to increase. The results also showed that the survival of Lacticaseibacillus rhamnosus LR5 slightly decreased through the simulated gastrointestinal tract. The vibrations from FTIR appeared in the wave length of 4000-3100, 3000-2800 and 1652-1545 cm-1, which accounted for the change in the N-H bonds of the amine group, changes in the structure of fatty acids and the change of carbonyl groups, respectively. This work highlighted the opportunity of application of probiotics in food products; especially non-dairy foods for consumer with dairy allergy.


Asunto(s)
Lacticaseibacillus rhamnosus/fisiología , Fenoles/análisis , Probióticos/análisis , Tracto Gastrointestinal/fisiología , Comprimidos/análisis , Verduras/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA