Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38396886

RESUMEN

Phosphate (Pi) starvation is a critical factor limiting crop growth, development, and productivity. Rice (Oryza sativa) R2R3-MYB transcription factors function in the transcriptional regulation of plant responses to various abiotic stresses and micronutrient deprivation, but little is known about their roles in Pi starvation signaling and Pi homeostasis. Here, we identified the R2R3-MYB transcription factor gene OsMYB58, which shares high sequence similarity with AtMYB58. OsMYB58 expression was induced more strongly by Pi starvation than by other micronutrient deficiencies. Overexpressing OsMYB58 in Arabidopsis thaliana and rice inhibited plant growth and development under Pi-deficient conditions. In addition, the overexpression of OsMYB58 in plants exposed to Pi deficiency strongly affected root development, including seminal root, lateral root, and root hair formation. Overexpressing OsMYB58 strongly decreased the expression of the rice microRNAs OsmiR399a and OsmiR399j. By contrast, overexpressing OsMYB58 strongly increased the expression of rice PHOSPHATE 2 (OsPHO2), whose expression is repressed by miR399 during Pi starvation signaling. OsMYB58 functions as a transcriptional repressor of the expression of its target genes, as determined by a transcriptional activity assay. These results demonstrate that OsMYB58 negatively regulates OsmiR399-dependent Pi starvation signaling by enhancing OsmiR399s expression.


Asunto(s)
Arabidopsis , Oryza , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Plantas/metabolismo , Fosfatos/metabolismo , Homeostasis , Arabidopsis/genética , Arabidopsis/metabolismo , Desarrollo de la Planta , Micronutrientes/metabolismo , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Oryza/genética , Oryza/metabolismo
2.
Opt Express ; 30(11): 18018-18031, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-36221610

RESUMEN

This paper investigated the effects of femtosecond laser beam polarization on ablation efficiency and microstructure symmetricity for 64FeNi alloy (Invar) sheet processing to fabricate fine metal masks. It was found that the ablation efficiency for linear polarization was approximately 15% higher than that for circular polarization due to electric field enhancement induced by low-spatial-frequency laser-induced periodic surface structures (LIPSS). The hole size and sidewall taper angles for the microstructures generated by linear polarization were asymmetric, whereas those generated by circular polarization were symmetric due to non-oriented LIPSS. The asymmetric and symmetric three-dimensional microstructure profiles, measured by using a confocal laser scanning microscope, were verified by employing an analytical model that was derived using the total input fluence and the ablation rates for linear and circular polarizations, respectively.

3.
Plant Physiol ; 184(1): 443-458, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32690755

RESUMEN

Drought is one of the most critical environmental stresses limiting plant growth and crop productivity. The synthesis and signaling of abscisic acid (ABA), a key phytohormone in the drought stress response, is under photoperiodic control. GIGANTEA (GI), a key regulator of photoperiod-dependent flowering and the circadian rhythm, is also involved in the signaling pathways for various abiotic stresses. In this study, we isolated ENHANCED EM LEVEL (EEL)/basic Leu zipper 12, a transcription factor involved in ABA signal responses, as a GI interactor in Arabidopsis (Arabidopsis thaliana). The diurnal expression of 9-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3), a rate-limiting ABA biosynthetic enzyme, was reduced in the eel, gi-1, and eel gi-1 mutants under normal growth conditions. Chromatin immunoprecipitation and electrophoretic mobility shift assays revealed that EEL and GI bind directly to the ABA-responsive element motif in the NCED3 promoter. Furthermore, the eel, gi-1, and eel gi-1 mutants were hypersensitive to drought stress due to uncontrolled water loss. The transcript of NCED3, endogenous ABA levels, and stomatal closure were all reduced in the eel, gi-1, and eel gi-1 mutants under drought stress. Our results suggest that the EEL-GI complex positively regulates diurnal ABA synthesis by affecting the expression of NCED3, and contributes to the drought tolerance of Arabidopsis.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Inmunoprecipitación de Cromatina , Dioxigenasas/genética , Dioxigenasas/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Unión Proteica
4.
Opt Express ; 29(13): 20545-20557, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34266142

RESUMEN

This paper reports a mechanism to suppress nanoparticle (NP) generation during femtosecond laser processing of 64FeNi alloy (Invar) to realize high precision fine metal masks. Nanoparticle redeposition during processing can reduce precision and ablation efficiency. Since Gaussian laser beams have spatially distributed fluence, NP types can vary even within a laser spot. Surface areas irradiated by the beam center with high peak fluence can be decomposed into vapor and liquid droplets by phase explosion; whereas positions irradiated by the beam edge, where fluence is close to ablation threshold, can be decomposed by stress confinement under the surface, known as spallation. Spallation characteristics were verified from target surfaces covered with exfoliation and fragments. It occurred above a certain number of pulses, indicating a significant incubation effect. Spallation induced NPs, i.e., agglomerated fragments, distort micro-hole size and shape, but were effectively suppressed by increasing repetition rate, due to increased surface temperature, i.e., heat accumulation. Suppression also occurred from direct sample heating using a hot plate. Thus, thermal energy can relax stress confinement and inhibit spallation induced NPs. Numerical simulation for heat accumulation also confirmed that suppression arises from thermal effects. Increasing repetition rate also helped to increase productivity.

5.
Asian-Australas J Anim Sci ; 34(1): 134-142, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31011008

RESUMEN

Objective: To understand the athletic characteristics of Thoroughbreds, high-throughput analysis has been conducted using horse muscle tissue. However, an in vitro system has been lacking for studying and validating genes from in silico data. The aim of this study is to validate genes from differentially expressed genes (DEGs) of our previous RNA-sequencing data in vitro. Also, we investigated the effects of exercise-induced stress including heat, oxidative, hypoxic and cortisol stress on horse skeletal muscle derived cells with the top six upregulated genes of DEGs. Methods: Enriched pathway analysis was conducted using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) tool with upregulated genes in horse skeletal muscle tissue after exercise. Among the candidates, the top six genes were analysed through geneMANIA to investigate gene networks. Muscle cells derived from neonatal horse skeletal tissue were maintained and subjected to exercise-related stressors. Transcriptional changes in the top six genes followed by stressors were investigated using qRT-PCR. Results: The inflammation response pathway was the most commonly upregulated pathway after horse exercise. Under non-cytotoxic conditions of exercise-related stressors, the transcriptional response of the top six genes was different among types of stress. Oxidative stress yielded the most similar expression pattern to DEGs. Conclusion: Our results indicate that transcriptional change after horse exercise in skeletal muscle tissue strongly relates to stress response. qRT-PCR results showed that stressors contribute differently to the transcriptional regulation. These results would be valuable information to understand horse exercise in the stress aspect.

6.
Int J Mol Sci ; 21(16)2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32824161

RESUMEN

Rice is one of the world's leading food crops, and over 90% of the world's rice production stems from Asia. In particular, an increase of 1 °C in the minimum temperature reduces the quantity of rice by 10%. Therefore, the development of rice varieties that can stably maintain the yield and quality of the rice even under these rapid climate changes is indispensable. In this study, we performed quantitative trait loci (QTL) mapping after treatment with heat stress during the booting stage in rice. We performed a QTL analysis using the Cheongcheong/Nagdong double haploid (CNDH) line and identified 19 QTLs during the 2 year analysis. Of these QTL regions, the 2.2 cM region of RM3709-RM11694 on chromosome 1 was shared among the six traits (heading date; culm length; panicle length; number of tiller; 1000 grain weight; and content of chlorophyll) examined. Rice Microsatellite (RM) 3709-RM11694 contained 27 high-temperature-tolerance candidate genes. Among the candidate genes, OsBHT showed a different gene expression level between CNDH75, which is a high-temperature tolerant line, and CNDH11 which is a susceptible line. Although some existing high-temperature-tolerant genes have been reported, OsBHT can be used more effectively for the development of heat tolerance in rice.


Asunto(s)
Oryza/genética , Sitios de Carácter Cuantitativo , Termotolerancia , Cromosomas de las Plantas/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Plant Physiol ; 161(1): 362-73, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23154535

RESUMEN

Although a role for microRNA399 (miR399) in plant responses to phosphate (Pi) starvation has been indicated, the regulatory mechanism underlying miR399 gene expression is not clear. Here, we report that AtMYB2 functions as a direct transcriptional activator for miR399 in Arabidopsis (Arabidopsis thaliana) Pi starvation signaling. Compared with untransformed control plants, transgenic plants constitutively overexpressing AtMYB2 showed increased miR399f expression and tissue Pi contents under high Pi growth and exhibited elevated expression of a subset of Pi starvation-induced genes. Pi starvation-induced root architectural changes were more exaggerated in AtMYB2-overexpressing transgenic plants compared with the wild type. AtMYB2 directly binds to a MYB-binding site in the miR399f promoter in vitro, as well as in vivo, and stimulates miR399f promoter activity in Arabidopsis protoplasts. Transcription of AtMYB2 itself is induced in response to Pi deficiency, and the tissue expression patterns of miR399f and AtMYB2 are similar. Both genes are expressed mainly in vascular tissues of cotyledons and in roots. Our results suggest that AtMYB2 regulates plant responses to Pi starvation by regulating the expression of the miR399 gene.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , MicroARNs/metabolismo , Fosfatos/metabolismo , Compuestos de Potasio/metabolismo , Transactivadores/metabolismo , Activación Transcripcional , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sitios de Unión , Inmunoprecipitación de Cromatina , Cotiledón/genética , Cotiledón/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , MicroARNs/genética , Fosfatos/farmacología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Compuestos de Potasio/farmacología , Regiones Promotoras Genéticas , Unión Proteica , Protoplastos/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Transducción de Señal , Transactivadores/genética
8.
Plants (Basel) ; 13(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38475483

RESUMEN

Inorganic phosphate (Pi) homeostasis plays an important role in plant growth and abiotic stress tolerance. Several MYB-CC transcription factors involved in Pi homeostasis have been identified in rice (Oryza sativa). PHOSPHATE STARVATION RESPONSE-LIKE 7 (PHL7) is a class II MYC-CC protein, in which the MYC-CC domain is located at the N terminus. In this study, we established that OsPHL7 is localized to the nucleus and that the encoding gene is induced by Pi deficiency. The Pi-responsive genes and Pi transporter genes are positively regulated by OsPHL7. The overexpression of OsPHL7 enhanced the tolerance of rice plants to Pi starvation, whereas the RNA interference-based knockdown of this gene resulted in increased sensitivity to Pi deficiency. Transgenic rice plants overexpressing OsPHL7 produced more roots than wild-type plants under both Pi-sufficient and Pi-deficient conditions and accumulated more Pi in the shoots and roots. In addition, the overexpression of OsPHL7 enhanced rice tolerance to salt stress. Together, these results demonstrate that OsPHL7 is involved in the maintenance of Pi homeostasis and enhances tolerance to Pi deficiency and salt stress in rice.

9.
Mol Biol Rep ; 40(11): 6113-21, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24096889

RESUMEN

We identified rice genes that might be involved in drought stress tolerance by virtue of their anti-apoptotic activity. Potential anti-apoptosis related genes were identified by screening an Oryza sativa cDNA library derived from drought stressed tissues in a yeast functional assay. About 28 O. sativa cDNAs promoted yeast survival following engagement of Bax-induced apoptosis. An O. sativa cDNA encoding R12H780 was a highly conserved putative senescence-associated-protein (OsSAP). OsSAP was both highly and rapidly expressed in response to drought stress. Additionally, OsSAP was found to be localized to the mitochondria. Overall, OsSAP represents a new type of Bax suppressor related gene and endows multiple stress tolerance in yeast.


Asunto(s)
Sequías , Genes de Plantas , Oryza/genética , Estrés Fisiológico/genética , Levaduras/genética , Proteína X Asociada a bcl-2/genética , Secuencia de Aminoácidos , Apoptosis/genética , Secuencia de Bases , Biomasa , Senescencia Celular/genética , Expresión Génica , Perfilación de la Expresión Génica , Datos de Secuencia Molecular , Oryza/química , Filogenia , Agua/química , Levaduras/metabolismo , Proteína X Asociada a bcl-2/metabolismo
10.
Biochem Biophys Res Commun ; 427(2): 309-14, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-23000158

RESUMEN

A previously unidentified gene encoding ubiquitin-conjugating enzyme was isolated from leaves of wild rice plant treated with wounding and microbe-associated molecular patterns. The OgUBC1 gene was composed of 148 amino acids and contained a typical active site and 21 ubiquitin thioester intermediate interaction residues and 4 E3 interaction residues. Both exogenous application of salicylic acid and UV-B irradiation triggered expression of OgUBC1 in leaves of wild rice. Recombinant OgUBC1 proteins bound to ubiquitins in vitro, proposing that the protein might act as E2 enzyme in planta. Heterologous expression of the OgUBC1 in Arabidopsis thaliana protected plants from cellular damage caused by an excess of UV-B radiation. A stable expression of chalcone synthase gene was detected in leaves of OgUBC1-expressing Arabidopsis, resulting in producing higher amounts of anthocyanin than those in wild-type Col-0 plants. Additionally, both pathogenesis-related gene1 and 5 were transcribed in the transgenic Arabidopsis in the absence of pathogen infection. The OgUBC1-expressing plants were resistant to the infection of Botrytis cinerea. Taken together, we suggested that the OgUBC1 is involved in ubiquitination process important for cellular response against biotic and abiotic stresses in plants.


Asunto(s)
Arabidopsis/microbiología , Arabidopsis/efectos de la radiación , Botrytis , Expresión Génica , Oryza/enzimología , Enfermedades de las Plantas/genética , Tolerancia a Radiación/genética , Enzimas Ubiquitina-Conjugadoras/genética , Arabidopsis/genética , Oryza/genética , Enfermedades de las Plantas/microbiología , Rayos Ultravioleta
11.
Mol Biol Rep ; 39(5): 5883-8, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22201023

RESUMEN

The ubiquitin-26S proteasome system is important in the quality control of intracellular proteins. The ubiquitin-26S proteasome system includes the E1 (ubiquitin activating), E2 (ubiquitin conjugating), and E3 (ubiquitin ligase) enzymes. U-box proteins are a derived version of RING-finger domains, which have E3 enzyme activity. Here, we present the isolation of a novel U-box protein, U-box containing E3 ligase induced by phosphate starvation (OsUPS), from rice (Oryza sativa). The cDNA encoding the O. sativa U-box protein (OsUPS) comprises 1338 bp, with an open reading frame of 445 amino acids. The amino acid sequence of OsUPS cDNA shows 41-79% identity with other plant U-box homologous genes. The open reading frame of the OsUPS protein is comprised of notable domains: a single ~70-amino acid domain and a GKL domain that contains conserved glycine, lysine/arginine residues and leucine-rich feature. We found that full-length expression of OsUPS was up-regulated in both rice plants and cell culture in the absence of inorganic phosphate (P(i)). A self-ubiquitination assay indicated that the bacterially expressed OsUPS protein had E3 ligase activity, and subcellular localization results showed that OsUPS was located in the chloroplast. These results support the notion that OsUPS plays an important role in the P(i) signaling pathway through the ubiquitin-26S proteasome system.


Asunto(s)
Genes de Plantas/genética , Oryza/enzimología , Oryza/genética , Fosfatos/deficiencia , Proteínas de Plantas/genética , Ubiquitina-Proteína Ligasas/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Bioensayo , Cloroplastos/efectos de los fármacos , Cloroplastos/enzimología , Clonación Molecular , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Oryza/efectos de los fármacos , Fosfatos/farmacología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Transporte de Proteínas/efectos de los fármacos , Proteínas Recombinantes de Fusión/metabolismo , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/enzimología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/efectos de los fármacos
12.
Front Plant Sci ; 13: 1027688, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36618614

RESUMEN

The plant hormone gibberellic acid (GA) is important for plant growth and productivity. Actin-related proteins (ARPs) also play central roles in plant growth, including cell elongation and development. However, the relationships between ARPs and GA signaling and biosynthesis are not fully understood. Here, we isolated OsGASD, encoding an ARP subunit from rice (Oryza sativa), using the Ac/Ds knockout system. The osgasd knockout (Ko) mutation reduced GA3 content in shoots as well as plant growth and height. However, GA application restored the plant height of the osgasd Ko mutant to a height similar to that of the wild type (WT). Rice plants overexpressing OsGASD (Ox) showed increased plant height and grain yield compared to the WT. Transcriptome analysis of flag leaves of OsGASD Ox and osgasd Ko plants revealed that OsGASD regulates cell development and the expression of elongation-related genes. These observations suggest that OsGASD is involved in maintaining GA homeostasis to regulate plant development, thereby affecting rice growth and productivity.

13.
Toxicol Appl Pharmacol ; 255(2): 207-13, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21763709

RESUMEN

Bee venom is a rich source of pharmacologically active components; it has been used as an immunotherapy to treat bee venom hypersensitivity, and venom therapy has been applied as an alternative medicine. Here, we present evidence that the serine protease found in bumblebee venom exhibits fibrin(ogen)olytic activity. Compared to honeybee venom, bumblebee venom contains a higher content of serine protease, which is one of its major components. Venom serine proteases from bumblebees did not cross-react with antibodies against the honeybee venom serine protease. We provide functional evidence indicating that bumblebee (Bombus terrestris) venom serine protease (Bt-VSP) acts as a fibrin(ogen)olytic enzyme. Bt-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products. However, Bt-VSP is not a plasminogen activator, and its fibrinolytic activity is less than that of plasmin. Taken together, our results define roles for Bt-VSP as a prothrombin activator, a thrombin-like protease, and a plasmin-like protease. These findings offer significant insight into the allergic reaction sequence that is initiated by bee venom serine protease and its potential usefulness as a clinical agent in the field of hemostasis and thrombosis.


Asunto(s)
Venenos de Abeja/enzimología , Abejas/enzimología , Coagulación Sanguínea/efectos de los fármacos , Fibrina/metabolismo , Fibrinolíticos/farmacología , Protrombina/metabolismo , Serina Endopeptidasas/farmacología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Venenos de Abeja/genética , Western Blotting , Clonación Molecular , ADN/química , ADN/genética , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Alineación de Secuencia , Serina Endopeptidasas/genética
14.
Mol Biol Rep ; 38(6): 3741-50, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21104014

RESUMEN

We cloned the gene, CdPAL1, from Cistanche deserticola callus using RACE PCR with degenerate primers that were designed based on a multiple sequence alignment of known PAL genes from other plant species. The gene shows high homology to other known PAL genes registered in GenBank. The recombinant protein exhibited Michaelis-Menten kinetics with a Km of 0.1013 mM, Vmax of 4.858 µmol min(-1), Kcat of 3.36 S(-1), and Kcat/Km is 33,168 M(-1) S(-1). The enzyme had an optimal pH of 8.5 and an activation energy of 38.92 kJ mol(-1) when L-Phenylalanine was used as a substrate; L-tyrosine cannot be used as substrate for this protein. The optimal temperature was 55°C, and the thermal stability results showed that, after a treatment at 70°C for 20 min, the protein retained 87% activity, while a treatment at 75°C for 20 min resulted in a loss of over 85% of the enzyme activity. Treatment with heavy metal ions (Hg2+, Pb2+, and Zn2+) showed remarkable inhibitory effects. Among the intermediates from the lignin (cinnamyl alcohol, cinnamyl aldehyde, coniferyl aldehyde, coniferyl alcohol), phenylpropanoid (cinnamic acid, coumaric acid, caffeic acid, and chlorogenic acid) and phenylethanoid (tyrosol and salidroside) biosynthetic pathways, only cinnamic acid showed strong inhibitory effects against CdPAL1 activity with a Ki of 8 µM. Competitive inhibitor AIP exhibited potent inhibition with Ki=0.056 µM.


Asunto(s)
Cistanche/enzimología , Cistanche/genética , Genes de Plantas/genética , Fenilanina Amoníaco-Liasa/genética , Cistanche/efectos de los fármacos , Electroforesis en Gel de Poliacrilamida , Estabilidad de Enzimas/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Concentración de Iones de Hidrógeno/efectos de los fármacos , Iones , Cinética , Metales Pesados/farmacología , Datos de Secuencia Molecular , Especificidad de Órganos/efectos de los fármacos , Péptidos/química , Fenoles/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Análisis de Secuencia de Proteína , Espectrofotometría Ultravioleta , Temperatura
15.
Plant Cell Rep ; 30(4): 665-74, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21243361

RESUMEN

2-Aminoindan-2-phosphonic acid (AIP), a specific competitive phenylalanine ammonia lyase (PAL) inhibitor was applied to a suspension cell culture of Cistanche deserticola. The effects of AIP treatment on cell growth, PAL activity, contents and yields of total phenolic compound, salidroside and four phenylethanoid glycosides (PheGs) are investigated. The results demonstrated that, 0.5 and 2.0 µM AIP treatments had similar effects on the measurements investigated in this study. AIP treatment resulted in significant decreases in PAL activity, total phenolic compounds content, and PheGs content. Linear regression analysis showed that PAL activity had a high correlation coefficient with the total phenolic compound content and the four PheGs contents. Total PAL activity-time area under curve (AUC) had a high correlation coefficient with the total phenolic compound yield and the yields of five tested compounds in untreated cell samples. In AIP-treated cells, total PAL activity-time AUC retained a high correlation with the total phenolic compound yield and the yields of three tested compounds, echinacoside, acteoside, and tubuloside A, but not salidroside and cistanoside A. The difference could be caused by the different biosynthetic origins of each of the tested compounds. These results demonstrate the important role of PAL in the biosynthesis of PheGs in the suspension cell culture of C. deserticola.


Asunto(s)
Cistanche/efectos de los fármacos , Cistanche/metabolismo , Glucósidos/metabolismo , Glicósidos/metabolismo , Organofosfonatos/farmacología , Fenoles/metabolismo , Catecoles , Cromatografía Líquida de Alta Presión , Indanos
16.
Plant Signal Behav ; 16(2): 1849490, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33300429

RESUMEN

Height and leaf morphology are important agronomic traits of the major crop plant rice (Oryza sativa). In previous studies, the dwarf and narrow leaf genes (dnl1, dnl2 and dnl3) have identified in rice. Using the Ac/Ds knockout system, we found a new dwarf and narrow leaf (dnl) mutant and identified mutated gene. The dnl-4 mutant showed reduced plant height and leaf blade width compared to the wild type, and increased leaf inclination. The morphological defects of the mutant were caused by the suppressed expression of the DNL-4 gene, which encodes a pfkB carbohydrate kinase protein. These results suggest that DNL-4 expression is involved in modulating plant height and leaf growth. Furthermore, DNL-4 expression also affects productivity in rice: the dnl-4 mutant exhibited reduced panicle length and grain width compared with the wild type. To understand DNL-4 function in rice, we analyzed the expression levels of leaf growth-related genes, such as NAL1, NAL7, and CSLD4, in the dnl-4 mutant. Expression of NAL1 and NAL7 was downregulated in the dnl-4 mutant compared to the wild type. The observation that DNL-4 expression corresponded with that of NAL1 and NAL7 is consistent with the narrow leaf phenotype of the dnl-4 mutant. These results suggest that DNL-4 regulates plant height and leaf structure in rice.


Asunto(s)
Oryza/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Oryza/genética , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética
17.
Antioxidants (Basel) ; 10(11)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34829563

RESUMEN

Unpredictable climate change might cause serious lack of food in the world. Therefore, in the present world, it is urgent to prepare countermeasures to solve problems in terms of human survival. In this research, quantitative trait loci (QTLs) were analyzed when rice attacked by white backed planthopper (WBPH) were analyzed using 120 Cheongcheong/Nagdong double haploid lines. Moreover, from the detected QTLs, WBPH resistance-related genes were screened in large candidate genes. Among them, OsCM, a major gene in the synthesis of Cochlioquinone-9 (cq-9), was screened. OsCM has high homology with the sequence of chorismate mutase, and exists in various functional and structural forms in plants that produce aromatic amino acids. It also induces resistance to biotic stress through the synthesis of secondary metabolites in plants. The WBPH resistance was improved in rice overexpressed through map-based cloning of the WBPH resistance-related gene OsCM, which was finally detected by QTL mapping. In addition, cq-9 increased the survival rate of caecal ligation puncture (CLP)-surgery mice by 60%. Moreover, the aorta of rat treated with cq-9 was effective in vasodilation response and significantly reduced the aggregation of rat platelets induced by collagen treatment. A cq-9, which is strongly associated with resistance to WBPH in rice, is also associated with positive effect of CLP surgery mice survival rate, vasodilation, and significantly reduced rat platelet aggregation induced by collagen treatment. Therefore, cq-9 presents research possibilities as a substance in a new paradigm that can act on both Plant-Insect in response to the present unpredictable future.

18.
Plant Cell Environ ; 33(11): 1923-34, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20561251

RESUMEN

Sumoylation is a post-translational regulatory process in diverse cellular processes in eukaryotes, involving conjugation/deconjugation of small ubiquitin-like modifier (SUMO) proteins to other proteins thus modifying their function. The PIAS [protein inhibitor of activated signal transducers and activators of transcription (STAT)] and SAP (scaffold attachment factor A/B/acinus/PIAS)/MIZ (SIZ) proteins exhibit SUMO E3-ligase activity that facilitates the conjugation of SUMO proteins to target substrates. Here, we report the isolation and molecular characterization of Oryza sativa SIZ1 (OsSIZ1) and SIZ2 (OsSIZ2), rice homologs of Arabidopsis SIZ1. The rice SIZ proteins are localized to the nucleus and showed sumoylation activities in a tobacco system. Our analysis showed increased amounts of SUMO conjugates associated with environmental stresses such as high and low temperature, NaCl and abscisic acid (ABA) in rice plants. The expression of OsSIZ1 and OsSIZ2 in siz1-2 Arabidopsis plants partially complemented the morphological mutant phenotype and enhanced levels of SUMO conjugates under heat shock conditions. In addition, ABA-hypersensitivity of siz1-2 seed germination was partially suppressed by OsSIZ1 and OsSIZ2. The results suggest that rice SIZ1 and SIZ2 are able to functionally complement Arabidopsis SIZ1 in the SUMO conjugation pathway. Their effects on the Arabidopsis mutant suggest a function for these genes related to stress responses and stress adaptation.


Asunto(s)
Oryza/genética , Proteínas de Plantas/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ácido Abscísico/farmacología , Secuencia de Aminoácidos , Arabidopsis/genética , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Calor , Datos de Secuencia Molecular , Oryza/enzimología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , ARN de Planta/genética , Homología de Secuencia de Aminoácido , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Estrés Fisiológico , Sumoilación , Nicotiana/metabolismo , Ubiquitina-Proteína Ligasas/genética
19.
Biotechnol Lett ; 32(1): 163-70, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19838636

RESUMEN

A phosphate starvation-induced, purple, acid phosphatase cDNA was cloned from rice, Oryza sativa. The cDNA encoding the phosphatase (OsPAP2) has 1,893 bp with an open reading frame of 630 amino acid residues. The deduced amino acid sequence of OsPAP2 shows identities of 60-63% with other plant purple acid phosphatases and appears to have five conserved motifs containing the residues involved in metal binding. OsPAP2 expression is up-regulated in the rice plant and in cell cultures in the absence of phosphate (P( i )). The induced expression of OsPAP2 is a specific response to P( i ) starvation, and is not affected by the deprivation of other nutrients. OsPAP2 expression was responsive to the level of P( i )-supply, and transcripts of OsPAP2 were abundant in P( i )-deprived roots. The OsPAP2 cDNA was expressed as a 69 kDa polypeptide in baculovirus-infected insect Sf9 cells. In addition, the OsPAP2 gene was introduced into Arabidopsis via an Agrobacterium-mediated transformation. Functional expression of the OsPAP2 gene in the transgenic Arabidopsis line was confirmed by northern and western blot analyses, as well as by phosphatase activity assays. These results suggest that the OsPAP2 gene can be used to develop new transgenic dicotyledonous plants that are able to adapt to P( i )-deficient conditions.


Asunto(s)
Fosfatasa Ácida/metabolismo , Glicoproteínas/metabolismo , Oryza/enzimología , Fosfatos/deficiencia , Proteínas de Plantas/metabolismo , Fosfatasa Ácida/química , Fosfatasa Ácida/genética , Secuencia de Aminoácidos , Animales , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Northern Blotting , Línea Celular , Células Cultivadas , Regulación de la Expresión Génica de las Plantas , Glicoproteínas/química , Glicoproteínas/genética , Datos de Secuencia Molecular , Oryza/genética , Fosfatos/fisiología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Reacción en Cadena de la Polimerasa , Rhizobium/genética , Homología de Secuencia de Aminoácido , Spodoptera
20.
Anticancer Res ; 40(4): 1905-1913, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32234879

RESUMEN

BACKGROUND/AIM: Methylsulfonylmethane (MSM) is a natural organic compound that displays anti-inflammatory as well as antioxidant properties. MSM reportedly has potential in inhibition of tumor cells. However, molecular mechanisms underlying the effects of MSM on lung cancer remain unclear. MATERIALS AND METHODS: In this study, the effect of MSM on A549 cells was examined. We focused on the mode of apoptosis induced by MSM and investigated alterations in the integrity of the outer membrane of mitochondria. RESULTS: Our results showed that MSM inhibited viability of A549 cells and changed the shape and permeability of nuclei. In addition, MSM induced G2/M arrest. MSM reduced the mitochondrial membrane potential and contributed to release of cytochrome c from mitochondria to cytoplasm. CONCLUSION: MSM is a potential anticancer agent for the treatment of lung cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Dimetilsulfóxido/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Sulfonas/farmacología , Células A549 , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA