Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neuroinflammation ; 20(1): 187, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580715

RESUMEN

BACKGROUND: Neuroinflammation is a widely studied phenomenon underlying various neurodegenerative diseases. Earlier study demonstrated that pharmacological activation of GPR110 in both central and peripheral immune cells cooperatively ameliorates neuroinflammation caused by systemic lipopolysaccharide (LPS) administration. Ethanol consumption has been associated with exacerbation of neurodegenerative and systemic inflammatory conditions. The goal of this study is to determine the effects of single-dose acute ethanol exposure and GPR110 activation on the neuro-inflammation mechanisms. METHODS: For in vivo studies, GPR110 wild type (WT) and knockout (KO) mice at 10-12 weeks of age were given an oral gavage of ethanol (3 g/kg) or maltose (5.4 g/kg) at 1-4 h prior to the injection of LPS (1 mg/kg, i.p.) followed by the GPR110 ligand, synaptamide (5 mg/kg). After 2-24 h, brains were collected for the analysis of gene expression by RT-PCR or protein expression by western blotting and enzyme-linked immunosorbent assay (ELISA). Microglial activation was assessed by western blotting and immunohistochemistry. For in vitro studies, microglia and peritoneal macrophages were isolated from adult WT mice and treated with 25 mM ethanol for 4 h and then with LPS (100 ng/ml) followed by 10 nM synaptamide for 2 h for gene expression and 12 h for protein analysis. RESULTS: Single-dose exposure to ethanol by gavage before LPS injection upregulated pro-inflammatory cytokine expression in the brain and plasma. The LPS-induced Iba-1 expression in the brain was significantly higher after ethanol pretreatment in both WT and GPR110KO mice. GPR110 ligand decreased the mRNA and/or protein expression of these cytokines and Iba-1 in the WT but not in GPR110KO mice. In the isolated microglia and peritoneal macrophages, ethanol also exacerbated the LPS-induced expression of pro-inflammatory cytokines which was mitigated at least partially by synaptamide. The expression of an inflammasome marker NLRP3 upregulated by LPS was further elevated with prior exposure to ethanol, especially in the brains of GPR110KO mice. Both ethanol and LPS reduced adenylate cyclase 8 mRNA expression which was reversed by the activation of GPR110. PDE4B expression at both mRNA and protein level in the brain increased after ethanol and LPS treatment while synaptamide suppressed its expression in a GPR110-dependent manner. CONCLUSION: Single-dose ethanol exposure exacerbated LPS-induced inflammatory responses. The GPR110 ligand synaptamide ameliorated this effect of ethanol by counteracting on the cAMP system, the common target for synaptamide and ethanol, and by regulating NLRP3 inflammasome.


Asunto(s)
Etanol , Enfermedades Neuroinflamatorias , Receptores Acoplados a Proteínas G , Animales , Ratones , Citocinas/metabolismo , Etanol/toxicidad , Inflamasomas/metabolismo , Ligandos , Lipopolisacáridos/toxicidad , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , ARN Mensajero/metabolismo
2.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36982411

RESUMEN

It is extremely difficult to achieve functional recovery after axonal injury in the adult central nervous system. The activation of G-protein coupled receptor 110 (GPR110, ADGRF1) has been shown to stimulate neurite extension in developing neurons and after axonal injury in adult mice. Here, we demonstrate that GPR110 activation partially restores visual function impaired by optic nerve injury in adult mice. Intravitreal injection of GPR110 ligands, synaptamide and its stable analogue dimethylsynaptamide (A8) after optic nerve crush significantly reduced axonal degeneration and improved axonal integrity and visual function in wild-type but not gpr110 knockout mice. The retina obtained from the injured mice treated with GPR110 ligands also showed a significant reduction in the crush-induced loss of retinal ganglion cells. Our data suggest that targeting GPR110 may be a viable strategy for functional recovery after optic nerve injury.


Asunto(s)
Traumatismos del Nervio Óptico , Animales , Ratones , Axones , Ligandos , Ratones Noqueados , Compresión Nerviosa , Regeneración Nerviosa/fisiología , Receptores Acoplados a Proteínas G/genética , Retina , Células Ganglionares de la Retina/fisiología
3.
Int J Mol Sci ; 23(9)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35563025

RESUMEN

The neurodevelopmental and neuroprotective actions of docosahexaenoic acid (DHA) are mediated by mechanisms involving membrane- and metabolite-related signal transduction. A key characteristic in the membrane-mediated action of DHA results from the stimulated synthesis of neuronal phosphatidylserine (PS). The resulting DHA-PS-rich membrane domains facilitate the translocation and activation of kinases such as Raf-1, protein kinase C (PKC), and Akt. The activation of these signaling pathways promotes neuronal development and survival. DHA is also metabolized in neural tissues to bioactive mediators. Neuroprotectin D1, a docosatriene synthesized by the lipoxygenase activity, has an anti-inflammatory property, and elovanoids formed from DHA elongation products exhibit antioxidant effects in the retina. Synaptamide, an endocannabinoid-like lipid mediator synthesized from DHA in the brain, promotes neurogenesis and synaptogenesis and exerts anti-inflammatory effects. It binds to the GAIN domain of the GPR110 (ADGRF1) receptor, triggers the cAMP/protein kinase A (PKA) signaling pathway, and activates the cAMP-response element binding protein (CREB). The DHA status in the brain influences not only the PS-dependent signal transduction but also the metabolite formation and expression of pre- and post-synaptic proteins that are downstream of the CREB and affect neurotransmission. The combined actions of these processes contribute to the neurodevelopmental and neuroprotective effects of DHA.


Asunto(s)
Ácidos Docosahexaenoicos , Neuroprotección , Antiinflamatorios/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Ácidos Docosahexaenoicos/farmacología , Endocannabinoides/metabolismo , Transducción de Señal
4.
J Neuroinflammation ; 18(1): 157, 2021 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-34273979

RESUMEN

BACKGROUND: Repetitive mild traumatic brain injury (mTBI) can result in chronic visual dysfunction. G-protein receptor 110 (GPR110, ADGRF1) is the target receptor of N-docosahexaenoylethanolamine (synaptamide) mediating the anti-neuroinflammatory function of synaptamide. In this study, we evaluated the effect of an endogenous and a synthetic ligand of GPR110, synaptamide and (4Z,7Z,10Z,13Z,16Z,19Z)-N-(2-hydroxy-2-methylpropyl) docosa-4,7,10,13,16,19-hexaenamide (dimethylsynaptamide, A8), on the mTBI-induced long-term optic tract histopathology and visual dysfunction using Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA), a clinically relevant model of mTBI. METHODS: The brain injury in wild-type (WT) and GPR110 knockout (KO) mice was induced by CHIMERA applied daily for 3 days, and GPR110 ligands were intraperitoneally injected immediately following each impact. The expression of GPR110 and proinflammatory mediator tumor necrosis factor (TNF) in the brain was measured by using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) in an acute phase. Chronic inflammatory responses in the optic tract and visual dysfunction were assessed by immunostaining for Iba-1 and GFAP and visual evoked potential (VEP), respectively. The effect of GPR110 ligands in vitro was evaluated by the cyclic adenosine monophosphate (cAMP) production in primary microglia isolated from adult WT or KO mouse brains. RESULTS: CHIMERA injury acutely upregulated the GPR110 and TNF gene level in mouse brain. Repetitive CHIMERA (rCHIMERA) increased the GFAP and Iba-1 immunostaining of glia cells and silver staining of degenerating axons in the optic tract with significant reduction of N1 amplitude of visual evoked potential at up to 3.5 months after injury. Both GPR110 ligands dose- and GPR110-dependently increased cAMP in cultured primary microglia with A8, a ligand with improved stability, being more effective than synaptamide. Intraperitoneal injection of A8 at 1 mg/kg or synaptamide at 5 mg/kg significantly reduced the acute expression of TNF mRNA in the brain and ameliorated chronic optic tract microgliosis, astrogliosis, and axonal degeneration as well as visual deficit caused by injury in WT but not in GPR110 KO mice. CONCLUSION: Our data demonstrate that ligand-induced activation of the GPR110/cAMP system upregulated after injury ameliorates the long-term optic tract histopathology and visual impairment caused by rCHIMERA. Based on the anti-inflammatory nature of GPR110 activation, we suggest that GPR110 ligands may have therapeutic potential for chronic visual dysfunction associated with mTBI.


Asunto(s)
Conmoción Encefálica/complicaciones , Etanolaminas/metabolismo , Etanolaminas/farmacología , Gliosis/tratamiento farmacológico , Gliosis/metabolismo , Tracto Óptico/efectos de los fármacos , Tracto Óptico/patología , Receptores Acoplados a Proteínas G/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Conmoción Encefálica/patología , Técnicas de Cultivo de Célula , AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Electrorretinografía , Potenciales Evocados Visuales , Gliosis/complicaciones , Inflamación , Ligandos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Tracto Óptico/lesiones , Factor de Necrosis Tumoral alfa/metabolismo , Visión Ocular
5.
Alcohol Clin Exp Res ; 45(12): 2506-2517, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34719812

RESUMEN

BACKGROUND: Repetitive, highly elevated blood alcohol (ethanol) concentrations (BACs) of 350 to 450 mg/dl over several days cause brain neurodegeneration and coincident neuroinflammation in adult rats localized in the hippocampus (HC), temporal cortex (especially the entorhinal cortex; ECX), and olfactory bulb (OB). The profuse neuroinflammation involves microgliosis, increased proinflammatory cytokines, and elevations of Ca+2 -dependent phospholipase A2 (cPLA2) and secretory PLA2 (sPLA2), which both mobilize proinflammatory ω-6 arachidonic acid (ARA). In contrast, Ca+2 -independent PLA2 (iPLA2) and anti-inflammatory ω-3 docosahexaenoic acid (DHA), a polyunsaturated fatty acid regulated primarily by iPLA2, are diminished. Furthermore, supplemented DHA exerts neuroprotection. Given uncertainties about the possible effects of lower circulating BACs that are common occurring during short- term binges, we examined how moderate BACs affected the above inflammatory events, and the impact of supplemented DHA. METHODS AND RESULTS: Young adult male rats sustaining upper-moderate BACs (~150 mg/dl) from once-daily alcohol intubations were sacrificed with appropriate controls after 1 week. The HC, ECX and OB were quantitatively examined using immunoblotting, neurodegeneration staining, and lipidomics assays. Whereas neurodegeneration, increases in cPLA2 IVA, sPLA2 IIA, and ARA, and microglial activation were not detected, the HC and ECX regions demonstrated significantly reduced iPLA2 levels. Levels of DHA and synaptamide, its anti-inflammatory N-docosahexaenoylethanolamide derivative, also were lower in HC, and DHA supplementation prevented the iPLA2 decrements in HC. Additionally, adult mice maintaining upper-moderate BACs from limited alcohol binges had reduced midbrain iPLA2 levels. CONCLUSIONS: The apparently selective depletion by moderate BACs of the metabolically linked anti-inflammatory triad of hippocampal iPLA2, DHA, and synaptamide, and of iPLA2 in the ECX, potentially indicates an unappreciated deficit in brain anti-inflammatory reserve that may be a harbinger of regional neurovulnerability.


Asunto(s)
Antiinflamatorios/farmacología , Etanol/farmacología , Etanolaminas/metabolismo , Fosfolipasas A2 Calcio-Independiente/farmacología , Fosfolipasas A2 Citosólicas/metabolismo , Animales , Encéfalo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Fosfolipasas A2/metabolismo , Ratas
6.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33806166

RESUMEN

Recovery from axonal injury is extremely difficult, especially for adult neurons. Here, we demonstrate that the activation of G-protein coupled receptor 110 (GPR110, ADGRF1) is a mechanism to stimulate axon growth after injury. N-docosahexaenoylethanolamine (synaptamide), an endogenous ligand of GPR110 that promotes neurite outgrowth and synaptogenesis in developing neurons, and a synthetic GPR110 ligand stimulated neurite growth in axotomized cortical neurons and in retinal explant cultures. Intravitreal injection of GPR110 ligands following optic nerve crush injury promoted axon extension in adult wild-type, but not in gpr110 knockout, mice. In vitro axotomy or in vivo optic nerve injury rapidly induced the neuronal expression of gpr110. Activating the developmental mechanism of neurite outgrowth by specifically targeting GPR110 that is upregulated upon injury may provide a novel strategy for stimulating axon growth after nerve injury in adults.


Asunto(s)
Axones/metabolismo , Etanolaminas/farmacología , Regeneración Nerviosa , Receptores Acoplados a Proteínas G/metabolismo , Animales , Femenino , Ligandos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microfluídica , Simulación del Acoplamiento Molecular , Compresión Nerviosa , Neurogénesis , Neuronas/metabolismo , Nervio Óptico/metabolismo , Retina/metabolismo
7.
J Neurosci Res ; 98(11): 2232-2244, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32840025

RESUMEN

Previous studies suggest that long-term supplementation and dietary intake of omega-3 polyunsaturated fatty acids (PUFAs) may have neuroprotective effects following brain injury. The objective of this study was to investigate potential neuroprotective effects of omega-3 PUFAs on white matter following closed-head trauma. The closed-head injury model of engineered rotational acceleration (CHIMERA) produces a reproducible injury in the optic tract and brachium of the superior colliculus in mice. Damage is detectable using diffusion tensor imaging (DTI) metrics, particularly fractional anisotropy (FA), with sensitivity comparable to histology. We acquired in vivo (n = 38) and ex vivo (n = 41) DTI data in mice divided into sham and CHIMERA groups with two dietary groups: one deficient in omega-3 PUFAs and one adequate in omega-3 PUFAs. We examined injury effects (reduction in FA) and neuroprotection (FA reduction modulated by diet) in the optic tract and brachium. We verified that diet did not affect FA in sham animals. In injured animals, we found significantly reduced FA in the optic tract and brachium (~10% reduction, p < 0.001), and Bayes factor analysis showed strong evidence to reject the null hypothesis. However, Bayes factor analysis showed substantial evidence to accept the null hypothesis of no diet-related FA differences in injured animals in the in vivo and ex vivo samples. Our results indicate no neuroprotective effect from adequate dietary omega-3 PUFA intake on white matter damage following traumatic brain injury. Since damage from CHIMERA mainly affects white matter, our results do not necessarily contradict previous findings showing omega-3 PUFA-mediated neuroprotection in gray matter.


Asunto(s)
Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Dieta , Ácidos Grasos Omega-3/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/lesiones , Animales , Teorema de Bayes , Imagen de Difusión Tensora , Sustancia Gris/patología , Traumatismos Cerrados de la Cabeza/diagnóstico por imagen , Masculino , Ratones , Ratones Endogámicos C57BL , Tracto Óptico/diagnóstico por imagen , Tracto Óptico/lesiones , Colículos Superiores/diagnóstico por imagen , Colículos Superiores/lesiones
8.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33233525

RESUMEN

We investigated the synthesis of N-docosahexaenoylethanolamine (synaptamide) in neuronal cells from unesterified docosahexaenoic acid (DHA) or DHA-lysophosphatidylcholine (DHA-lysoPC), the two major lipid forms that deliver DHA to the brain, in order to understand the formation of this neurotrophic and neuroprotective metabolite of DHA in the brain. Both substrates were taken up in Neuro2A cells and metabolized to N-docosahexaenoylphosphatidylethanolamine (NDoPE) and synaptamide in a time- and concentration-dependent manner, but unesterified DHA was 1.5 to 2.4 times more effective than DHA-lysoPC at equimolar concentrations. The plasmalogen NDoPE (pNDoPE) amounted more than 80% of NDoPE produced from DHA or DHA-lysoPC, with 16-carbon-pNDoPE being the most abundant species. Inhibition of N-acylphosphatidylethanolamine-phospholipase D (NAPE-PLD) by hexachlorophene or bithionol significantly decreased the synaptamide production, indicating that synaptamide synthesis is mediated at least in part via NDoPE hydrolysis. NDoPE formation occurred much more rapidly than synaptamide production, indicating a precursor-product relationship. Although NDoPE is an intermediate for synaptamide biosynthesis, only about 1% of newly synthesized NDoPE was converted to synaptamide, possibly suggesting additional biological function of NDoPE, particularly for pNDoPE, which is the major form of NDoPE produced.


Asunto(s)
Ácidos Araquidónicos/biosíntesis , Ácidos Docosahexaenoicos/metabolismo , Endocannabinoides/biosíntesis , Etanolaminas/metabolismo , Lisofosfatidilcolinas/metabolismo , Neuronas/metabolismo , Animales , Ácidos Araquidónicos/antagonistas & inhibidores , Ácidos Araquidónicos/aislamiento & purificación , Bitionol/farmacología , Isótopos de Carbono , Línea Celular Tumoral , Cromatografía Liquida , Endocannabinoides/antagonistas & inhibidores , Endocannabinoides/aislamiento & purificación , Etanolaminas/antagonistas & inhibidores , Etanolaminas/aislamiento & purificación , Hexaclorofeno/farmacología , Cinética , Ratones , Neuronas/citología , Neuronas/efectos de los fármacos , Plasmalógenos/antagonistas & inhibidores , Plasmalógenos/biosíntesis , Plasmalógenos/aislamiento & purificación , Alcamidas Poliinsaturadas/antagonistas & inhibidores , Alcamidas Poliinsaturadas/aislamiento & purificación , Espectrometría de Masas en Tándem
9.
J Neuroinflammation ; 16(1): 225, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31730008

RESUMEN

BACKGROUND: Neuroinflammation is a widely accepted underlying condition for various pathological processes in the brain. In a recent study, synaptamide, an endogenous metabolite derived from docosahexaenoic acid (DHA, 22:6n-3), was identified as a specific ligand to orphan adhesion G-protein-coupled receptor 110 (GPR110, ADGRF1). Synaptamide has been shown to suppress lipopolysaccharide (LPS)-induced neuroinflammation in mice, but involvement of GPR110 in this process has not been established. In this study, we investigated the possible immune regulatory role of GPR110 in mediating the anti-neuroinflammatory effects of synaptamide under a systemic inflammatory condition. METHODS: For in vitro studies, we assessed the role of GPR110 in synaptamide effects on LPS-induced inflammatory responses in adult primary mouse microglia, immortalized murine microglial cells (BV2), primary neutrophil, and peritoneal macrophage by using quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA) as well as neutrophil migration and ROS production assays. To evaluate in vivo effects, wild-type (WT) and GPR110 knock-out (KO) mice were injected with LPS intraperitoneally (i.p.) or TNF intravenously (i.v.) followed by synaptamide (i.p.), and expression of proinflammatory mediators was measured by qPCR, ELISA, and western blot analysis. Activated microglia in the brain and NF-kB activation in cells were examined microscopically after immunostaining for Iba-1 and RelA, respectively. RESULTS: Intraperitoneal (i.p.) administration of LPS increased TNF and IL-1ß in the blood and induced pro-inflammatory cytokine expression in the brain. Subsequent i.p. injection of the GPR110 ligand synaptamide significantly reduced LPS-induced inflammatory responses in wild-type (WT) but not in GPR110 knock-out (KO) mice. In cultured microglia, synaptamide increased cAMP and inhibited LPS-induced proinflammatory cytokine expression by inhibiting the translocation of NF-κB subunit RelA into the nucleus. These effects were abolished by blocking synaptamide binding to GPR110 using an N-terminal targeting antibody. GPR110 expression was found to be high in neutrophils and macrophages where synaptamide also caused a GPR110-dependent increase in cAMP and inhibition of LPS-induced pro-inflammatory mediator expression. Intravenous injection of TNF, a pro-inflammatory cytokine that increases in the circulation after LPS treatment, elicited inflammatory responses in the brain which were dampened by the subsequent injection (i.p.) of synaptamide in a GPR110-dependent manner. CONCLUSION: Our study demonstrates the immune-regulatory function of GPR110 in both brain and periphery, collectively contributing to the anti-neuroinflammatory effects of synaptamide under a systemic inflammatory condition. We suggest GPR110 activation as a novel therapeutic strategy to ameliorate inflammation in the brain as well as periphery.


Asunto(s)
Antiinflamatorios/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Etanolaminas/farmacología , Inflamación/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
10.
J Pharmacol Exp Ther ; 365(1): 117-126, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29339456

RESUMEN

Using rat adult-age hippocampal-entorhinal cortical (HEC) slice cultures, we examined the role of poly [ADP-ribose] polymerase (PARP) in binge ethanol's brain inflammatory and neurodegenerative mechanisms. Activated by DNA strand breaks, PARP (principally PARP1 in the brain) promotes DNA repair via poly [ADP-ribose] (PAR) products, but PARP overactivation triggers regulated neuronal necrosis (e.g., parthanatos). Previously, we found that brain PARP1 levels were upregulated by neurotoxic ethanol binges in adult rats and HEC slices, and PARP inhibitor PJ34 abrogated slice neurodegeneration. Binged HEC slices also exhibited increased Ca+2-dependent phospholipase A2 (PLA2) isoenzymes (cPLA2 IVA and sPLA2 IIA) that mobilize proinflammatory ω6 arachidonic acid (ARA). We now find in 4-day-binged HEC slice cultures (100 mM ethanol) that PARP1 elevations after two overnight binges precede PAR, cPLA2, and sPLA2 enhancements by 1 day and high-mobility group box-1 (HMGB1), an ethanol-responsive alarmin that augments proinflammatory cytokines via toll-like receptor-4 (TLR4), by 2 days. After verifying that PJ34 effectively blocks PARP activity (↑PAR), we demonstrated that, like PJ34, three other PARP inhibitors-olaparib, veliparib, and 4-aminobenzamide-provided neuroprotection from ethanol. Importantly, PJ34 and olaparib also prevented ethanol's amplification of the PLA2 isoenzymes, and two PLA2 inhibitors were neuroprotective-thus coupling PARP to PLA2, with PLA2 activity promoting neurodegeneration. Also, PJ34 and olaparib blocked ethanol-induced HMGB1 elevations, linking brain PARP induction to TLR4 activation. The results provide evidence in adult brains that induction of PARP1 may mediate dual neuroinflammatory pathways (PLA2→phospholipid→ARA and HMGB1→TLR4→proinflammatory cytokines) that are complicit in binge ethanol-induced neurodegeneration.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/patología , Etanol/efectos adversos , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/prevención & control , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Animales , Acuaporina 4/metabolismo , Encéfalo/metabolismo , Proteína HMGB1/metabolismo , Inflamación/patología , Masculino , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Fármacos Neuroprotectores/farmacología , Fosfolipasas A2 Secretoras/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
11.
J Nutr ; 147(9): 1624-1630, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28768838

RESUMEN

Background: Premature infants are deprived of prenatal accumulation of brain docosahexaenoic acid [DHA (22:6n-3)], an omega-3 fatty acid [ω-3 FA (n-3 FA)] important for proper development of cognitive function. The resulting brain DHA deficit can be reversed by ω-3 FA supplementation.Objective: The objective was to test whether there is a critical period for providing ω-3 FA to correct cognitive deficits caused by developmental ω-3 FA deprivation in mice.Methods: Twelve timed-pregnant mice [embryonic day 14 (E14), C57/BL6NCr] were fed an ω-3 FA-deficient diet containing 0.04% α-linolenic acid [ALA (18:3n-3)], and their offspring were fed the same deficient diet (Def group) or changed to an ω-3 FA-adequate diet containing 3.1% ALA at 3 wk, 2 mo, or 4 mo of age. In parallel, 3 E14 pregnant mice were fed the adequate diet and their offspring were fed the same diet (Adeq group) throughout the experiment. Brain FA composition, learning and memory, and hippocampal synaptic protein expression were evaluated at 6 mo by gas chromatography, the Morris water maze test, and western blot analysis, respectively.Results: Maternal dietary ω-3 FA deprivation decreased DHA by >50% in the brain of their offspring at 3 wk of age. The Def group showed significantly worse learning and memory at 6 mo than those groups fed the adequate diet. These pups also had decreased hippocampal expression of postsynaptic density protein 95 (43% of Adeq group), Homer protein homolog 1 (21% of Adeq group), and synaptosome-associated protein of 25 kDa (64% of Adeq group). Changing mice to the adequate diet at 3 wk, 2 mo, or 4 mo of age restored brain DHA to the age-matched adequate concentration. However, deficits in hippocampal synaptic protein expression and spatial learning and memory were normalized only when the diet was changed at 3 wk.Conclusion: Developmental deprivation of brain DHA by dietary ω-3 FA depletion in mice may have a lasting impact on cognitive function if not corrected at an early age.


Asunto(s)
Encéfalo/efectos de los fármacos , Cognición/efectos de los fármacos , Enfermedades Carenciales/tratamiento farmacológico , Ácidos Docosahexaenoicos/administración & dosificación , Recien Nacido Prematuro , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Animales , Animales Recién Nacidos , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Enfermedades Carenciales/complicaciones , Dieta , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/farmacología , Grasas de la Dieta/uso terapéutico , Homólogo 4 de la Proteína Discs Large , Ácidos Docosahexaenoicos/deficiencia , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/uso terapéutico , Femenino , Guanilato-Quinasas/metabolismo , Proteínas de Andamiaje Homer/metabolismo , Humanos , Lactante , Recien Nacido Prematuro/crecimiento & desarrollo , Recien Nacido Prematuro/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos , Proteínas de la Membrana/metabolismo , Ratones , Embarazo , Proteína 25 Asociada a Sinaptosomas/metabolismo , Factores de Tiempo
12.
Biochim Biophys Acta ; 1851(4): 356-65, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25093613

RESUMEN

Polyunsaturated fatty acids (PUFA) are oxidized by cytochrome P450 epoxygenases to PUFA epoxides which function as potent lipid mediators. The major metabolic pathways of PUFA epoxides are incorporation into phospholipids and hydrolysis to the corresponding PUFA diols by soluble epoxide hydrolase. Inhibitors of soluble epoxide hydrolase stabilize PUFA epoxides and potentiate their functional effects. The epoxyeicosatrienoic acids (EETs) synthesized from arachidonic acid produce vasodilation, stimulate angiogenesis, have anti-inflammatory actions, and protect the heart against ischemia-reperfusion injury. EETs produce these functional effects by activating receptor-mediated signaling pathways and ion channels. The epoxyeicosatetraenoic acids synthesized from eicosapentaenoic acid and epoxydocosapentaenoic acids synthesized from docosahexaenoic acid are potent inhibitors of cardiac arrhythmias. Epoxydocosapentaenoic acids also inhibit angiogenesis, decrease inflammatory and neuropathic pain, and reduce tumor metastasis. These findings indicate that a number of the beneficial functions of PUFA may be due to their conversion to PUFA epoxides. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Compuestos Epoxi/metabolismo , Ácidos Grasos Insaturados/metabolismo , Animales , Ácido Araquidónico/metabolismo , Enfermedad , Homeostasis , Humanos , Isoenzimas , Transducción de Señal
13.
J Neuroinflammation ; 13(1): 253, 2016 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-27663791

RESUMEN

BACKGROUND: Adequate consumption of polyunsaturated fatty acids (PUFA) is vital for normal development and functioning of the central nervous system. The long-chain n-3 PUFAs docosahexaenoic acid (DHA) and eicosapentaenoic acid are anti-inflammatory and neuroprotective in the models of central nervous system injury including traumatic brain injury (TBI). In the present study, we tested whether a higher brain DHA status in a mouse model on an adequate dietary α-linolenic acid (ALA) leads to reduced neuroinflammation and improved spontaneous recovery after TBI in comparison to a moderately lowered brain DHA status that can occur in humans. METHODS: Mice reared on diets with differing ALA content were injured by a single cortical contusion impact. Change in the expression of inflammatory cytokines was measured, and cellular changes occurring after injury were analyzed by immunostaining for macrophage/microglia and astrocytes. Behavioral studies included rotarod and beam walk tests and contextual fear conditioning. RESULTS: Marginal supply (0.04 %) of ALA as the sole dietary source of n-3 PUFA from early gestation produced reduction of brain DHA by 35 % in adult offspring mice in comparison to the mice on adequate ALA diet (3.1 %). The DHA-depleted group showed significantly increased TBI-induced expression of pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6 in the brain as well as slower functional recovery from motor deficits compared to the adequate ALA group. Despite the reduction of pro-inflammatory cytokine expression, adequate ALA diet did not significantly alter either microglia/macrophage density around the contusion site or the relative M1/M2 phenotype. However, the glial fibrillary acidic protein immunoreactivity was reduced in the injured cerebral cortex of the mice on adequate ALA diet, indicating that astrocyte activation may have contributed to the observed differences in cellular and behavioral responses to TBI. CONCLUSIONS: Increasing the brain DHA level even from a moderately DHA-depleted state can reduce neuroinflammation and improve functional recovery after TBI, suggesting possible improvement of functional outcome by increasing dietary n-3 PUFA in human TBI.

14.
J Neuroinflammation ; 13(1): 284, 2016 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-27809877

RESUMEN

BACKGROUND: Brain inflammation has been implicated as a critical mechanism responsible for the progression of neurodegeneration and characterized by glial cell activation accompanied by production of inflammation-related cytokines and chemokines. Growing evidence also suggests that metabolites derived from docosahexaenoic acid (DHA) have anti-inflammatory and pro-resolving effects; however, the possible role of N-docosahexaenoylethanolamine (synaptamide), an endogenous neurogenic and synaptogenic metabolite of DHA, in inflammation, is largely unknown. (The term "synaptamide" instead of "DHEA" was used for N-docosahexaenoylethanolamine since DHEA is a widely used and accepted term for the steroid, dehydroepiandrosterone.) In the present study, we tested this possibility using a lipopolysaccharide (LPS)-induced neuroinflammation model both in vitro and in vivo. METHODS: For in vitro studies, we used P3 primary rat microglia and immortalized murine microglia cells (BV2) to assess synaptamide effects on LPS-induced cytokine/chemokine/iNOS (inducible nitric oxide synthase) expression by quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA). To evaluate in vivo effects, mice were intraperitoneally (i.p.) injected with LPS followed by synaptamide, and expression of proinflammatory mediators was measured by qPCR and western blot analysis. Activation of microglia and astrocyte in the brain was examined by Iba-1 and GFAP immunostaining. RESULTS: Synaptamide significantly reduced LPS-induced production of TNF-α and NO in cultured microglia cells. Synaptamide increased intracellular cAMP levels, phosphorylation of PKA, and phosphorylation of CREB but suppressed LPS-induced nuclear translocation of NF-κB p65. Conversely, adenylyl cyclase or PKA inhibitors abolished the synaptamide effect on p65 translocation as well as TNF-α and iNOS expression. Administration of synaptamide following LPS injection (i.p.) significantly reduced neuroinflammatory responses, such as microglia activation and mRNA expression of inflammatory cytokines, chemokine, and iNOS in the brain. CONCLUSIONS: DHA-derived synaptamide is a potent suppressor of neuroinflammation in an LPS-induced model, by enhancing cAMP/PKA signaling and inhibiting NF-κB activation. The anti-inflammatory capability of synaptamide may provide a new therapeutic avenue to ameliorate the inflammation-associated neurodegenerative conditions.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Endocannabinoides/farmacología , Microglía/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Amidohidrolasas/deficiencia , Amidohidrolasas/genética , Animales , Animales Recién Nacidos , Encéfalo/citología , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Inhibidores Enzimáticos/farmacología , Ácidos Grasos/metabolismo , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ratas , Ratas Wistar
15.
J Lipid Res ; 56(1): 11-21, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25339684

RESUMEN

Dietary fat was recognized as a good source of energy and fat-soluble vitamins by the first part of the 20th century, but fatty acids were not considered to be essential nutrients because they could be synthesized from dietary carbohydrate. This well-established view was challenged in 1929 by George and Mildred Burr who reported that dietary fatty acid was required to prevent a deficiency disease that occurred in rats fed a fat-free diet. They concluded that fatty acids were essential nutrients and showed that linoleic acid prevented the disease and is an essential fatty acid. The Burrs surmised that other unsaturated fatty acids were essential and subsequently demonstrated that linolenic acid, the omega-3 fatty acid analog of linoleic acid, is also an essential fatty acid. The discovery of essential fatty acids was a paradigm-changing finding, and it is now considered to be one of the landmark discoveries in lipid research.


Asunto(s)
Ácidos Grasos Esenciales/historia , Animales , Grasas Insaturadas en la Dieta , Historia del Siglo XX , Historia del Siglo XXI , Humanos
16.
Alcohol Clin Exp Res ; 38(1): 161-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23909864

RESUMEN

BACKGROUND: Brain neurodamage from chronic binge ethanol (EtOH) exposure is linked to neuroinflammation and associated oxidative stress. Using rat organotypic hippocampal-entorhinal cortical (HEC) slice cultures of developing brain age, we reported that binge EtOH promotes release of a neuroinflammatory instigator, arachidonic acid (AA), concomitant with neurodegeneration, and that mepacrine, a global inhibitor of phospholipase A2 (PLA2) enzymes mobilizing AA from phospholipids, is neuroprotective. Here, we sought with binge EtOH-treated HEC cultures to establish that PLA2 activity is responsible in part for significant oxidative stress and to ascertain the PLA2 families responsible for AA release and neurodegeneration. METHODS: HEC slices, prepared from 1-week-old rats and cultured 2 to 2.5 weeks, were exposed to 100 mM EtOH over 6 successive days, with 4 daytime "withdrawals" (no EtOH). Brain 3-nitrotyrosinated (3-NT)- and 4-hydroxy-2-nonenal (4-HNE)-adducted proteins, oxidative stress footprints, were immunoassayed on days 3 through 6, and mepacrine's effect was determined on day 6. The effects of specific PLA2 inhibitors on neurodegeneration (propidium iodide staining) and AA release (ELISA levels in media) in the cultures were then determined. Also, the effect of JZL184, an inhibitor of monoacylglycerol lipase (MAGL) which is reported to mobilize AA from endocannabinoids during neuroinflammatory insults, was examined. RESULTS: 3-NT- and 4-HNE-adducted proteins were significantly increased by the binge EtOH exposure, consistent with oxidative stress, and mepacrine prevented the increases. The PLA2 inhibitor results implicated secretory PLA2 (group II sPLA2) and to some extent Ca(2+) -independent cytosolic PLA2 (group VI iPLA2) in binge EtOH-induced neurotoxicity and in AA release, but surprisingly, Ca(2+) -dependent cytosolic PLA2 (group IV cPLA2) did not appear important. Furthermore, unlike PLA2 inhibition, MAGL inhibition failed to prevent the neurodegeneration. CONCLUSIONS: In these developing HEC slice cultures, pro-oxidative signaling via sPLA2 and iPLA2, but not necessarily cPLA2 or MAGL, is involved in EtOH neurotoxicity. This study provides further insights into neuroinflammatory phospholipase signaling and oxidative stress underlying binge EtOH-induced neurodegeneration in developing (adolescent age) brain in vitro.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Corteza Entorrinal/metabolismo , Etanol/toxicidad , Hipocampo/metabolismo , Estrés Oxidativo/fisiología , Fosfolipasas A2/biosíntesis , Animales , Animales Recién Nacidos , Corteza Entorrinal/efectos de los fármacos , Corteza Entorrinal/crecimiento & desarrollo , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Hipocampo/efectos de los fármacos , Hipocampo/crecimiento & desarrollo , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/metabolismo , Técnicas de Cultivo de Órganos , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
17.
J Lipid Res ; 54(1): 214-22, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23071296

RESUMEN

Phosphatidylserine (PS), the major anionic phospholipid in eukaryotic cell membranes, is synthesized by the integral membrane enzymes PS synthase 1 (PSS1) and 2 (PSS2). PSS2 is highly expressed in specific tissues, such as brain and testis, where docosahexaenoic acid (DHA, 22:6n-3) is also highly enriched. The purpose of this work was to characterize the hydrocarbon-chain preference of PSS2 to gain insight on the specialized role of PSS2 in PS accumulation in the DHA-abundant tissues. Flag-tagged PSS2 was expressed in HEK cells and immunopurified in a functionally active form. Purified PSS2 utilized both PE plasmalogen and diacyl PE as substrates. Nevertheless, the latter was six times better utilized, indicating the importance of an ester linkage at the sn-1 position. Although no sn-1 fatty acyl preference was noted, PSS2 exhibited significant preference toward DHA compared with 18:1 or 20:4 at the sn-2 position. Preferential production of DHA-containing PS (DHA-PS) was consistently observed with PSS2 purified from a variety of cell lines as well as with microsomes from mutant cells in which PS synthesis relies primarily on PSS2. These findings suggest that PSS2 may play a key role in PS accumulation in brain and testis through high activity toward DHA-containing substrates that are abundant in these tissues.


Asunto(s)
Ácidos Docosahexaenoicos/química , Transferasas de Grupos Nitrogenados/metabolismo , Fosfatidilserinas/biosíntesis , Fosfatidilserinas/química , Animales , Células CHO , Bovinos , Cricetinae , Cricetulus , Células HEK293 , Humanos , Ratones , Microsomas/enzimología , Especificidad por Sustrato
18.
J Biol Chem ; 287(4): 2579-90, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22128152

RESUMEN

Bacterial elongation factor P (EF-P) is the ortholog of archaeal and eukaryotic initiation factor 5A (eIF5A). EF-P shares sequence homology and crystal structure with eIF5A, but unlike eIF5A, EF-P does not undergo hypusine modification. Recently, two bacterial genes, yjeA and yjeK, encoding truncated homologs of class II lysyl-tRNA synthetase and of lysine-2,3-aminomutase, respectively, have been implicated in the modification of EF-P to convert a specific lysine to a hypothetical ß-lysyl-lysine. Here we present biochemical evidence for ß-lysyl-lysine modification in Escherichia coli EF-P and for its role in EF-P activity by characterizing native and recombinant EF-P proteins for their modification status and activity in vitro. Mass spectrometric analyses confirmed the lysyl modification at lysine 34 in native and recombinant EF-P proteins. The ß-lysyl-lysine isopeptide was identified in the exhaustive Pronase digests of native EF-P and recombinant EF-P isolated from E. coli coexpressing EF-P, YjeA, and YjeK but not in the digests of proteins derived from the vectors encoding EF-P alone or EF-P together with YjeA, indicating that both enzymes, YjeA and YjeK, are required for ß-lysylation of EF-P. Endogenous EF-P as well as the recombinant EF-P preparation containing ß-lysyl-EF-P stimulated N-formyl-methionyl-puromycin synthesis ∼4-fold over the preparations containing unmodified EF-P and/or α-lysyl-EF-P. The mutant lacking the modification site lysine (K34A) was inactive. This is the first report of biochemical evidence for the ß-lysylation of EF-P in vivo and the requirement for this modification for the activity of EF-P.


Asunto(s)
Desoxirribonucleasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lisina/metabolismo , Factores de Elongación de Péptidos/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Desoxirribonucleasas/química , Desoxirribonucleasas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Lisina/química , Lisina/genética , Espectrometría de Masas , Factores de Elongación de Péptidos/química , Factores de Elongación de Péptidos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
J Neurochem ; 125(6): 869-84, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23570577

RESUMEN

Docosahexaenoic acid (DHA) has been shown to promote neuronal differentiation of neural stem cells (NSCs) in vivo and in vitro. Previously, we found that N-docosahexaenoylethanolamine (synaptamide), an endogenous DHA metabolite with an endocannabinoid-like structure, promotes neurite growth, synaptogenesis, and synaptic function. In this study, we demonstrate that synaptamide potently induces neuronal differentiation of NSCs. Differentiating NSCs were capable of synthesizing synaptamide from DHA. Treatment of NSCs with synaptamide at low nanomolar concentrations significantly increased the number of MAP2 and Tuj-1-positive neurons with concomitant induction of protein kinase A (PKA)/cAMP response element binding protein (CREB) phosphorylation. Conversely, PKA inhibitors or PKA knockdown abolished the synaptamide-induced neuronal differentiation of NSCs. URB597, a fatty acid amide hydrolase (FAAH) inhibitor, elevated the level of DHA-derived synaptamide and further potentiated the DHA- or synaptamide-induced neuronal differentiation of NSCs. Similarly, NSCs obtained from FAAH KO mice exhibited greater capacity to induce neuronal differentiation in response to DHA or synaptamide compared to the wild type NSCs. Neither synaptamide nor DHA affected NSC differentiation into GFAP-positive glia cells. These results suggest that endogenously produced synaptamide is a potent mediator for neurogenic differentiation of NSCs acting through PKA/CREB activation.


Asunto(s)
Ácidos Docosahexaenoicos/metabolismo , Células Madre Embrionarias/citología , Etanolaminas/metabolismo , Células-Madre Neurales/citología , Neuronas/citología , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ácidos Docosahexaenoicos/farmacología , Células Madre Embrionarias/metabolismo , Endocannabinoides , Etanolaminas/farmacología , Ratones , Ratones Noqueados , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , ARN Interferente Pequeño/genética , Ratas , Ratas Wistar , Transducción de Señal
20.
STAR Protoc ; 4(4): 102691, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37925637

RESUMEN

G-protein-coupled receptors (GPCRs) are important therapeutic targets expressed on the cell surface. Here, we present a protocol for identifying physiologically relevant binding proteins of adhesion GPCR GPR110. We describe steps for in-cell chemical crosslinking, immunoprecipitation, and quantitative high-resolution mass spectrometry. Notably, we detail a label-free quantitation strategy that eliminates irrelevant interacting proteins using an inactive GPR110 mutant with impaired surface expression. Furthermore, we outline procedures for validating the identified partners. For complete details on the use and execution of this protocol, please refer to Huang et al. (2023).1.


Asunto(s)
Proteínas Portadoras , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/genética , Membrana Celular , Inmunoprecipitación , Espectrometría de Masas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA