Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37239986

RESUMEN

Let-7 miRNAs have pleiotropic cellular functions in cell proliferation, migration, and regenerative processes. Here, we investigate whether the inhibition of let-7 miRNAs with antisense oligonucleotides (ASOs) can be a transient and safe strategy enhancing the therapeutic potential of mesenchymal stromal cells (MSCs) to overcome their limitations in cell therapeutic trials. We first identified major subfamilies of let-7 miRNAs preferentially expressed in MSCs, and efficient ASO combinations against these selected subfamilies that mimic the effects of LIN28 activation. When let-7 miRNAs were inhibited with an ASO combination (anti-let7-ASOs), MSCs exhibited higher proliferation with delayed senescence during the passaging into a culture. They also exhibited increased migration and enhanced osteogenic differentiation potential. However, these changes in MSCs were not accompanied by cell-fate changes into pericytes or the additional acquisition of stemness, but instead occurred as functional changes accompanied by changes in proteomics. Interestingly, MSCs with let-7 inhibition exhibited metabolic reprogramming characterized by an enhanced glycolytic pathway, decreased reactive oxygen species, and lower transmembrane potential in mitochondria. Moreover, let-7-inhibited MSCs promoted the self-renewal of neighboring hematopoietic progenitor cells, and enhanced capillary formation in endothelial cells. These findings together show that our optimized ASO combination efficiently reprograms the MSC functional state, allowing for more efficient MSC cell therapy.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Osteogénesis , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/metabolismo , Células Endoteliales/metabolismo , Células Madre Mesenquimatosas/metabolismo , Diferenciación Celular/genética , MicroARNs/metabolismo
2.
Biochem Biophys Res Commun ; 629: 128-134, 2022 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-36116375

RESUMEN

Chronic Kidney Disease (CKD) is increasingly recognized as a global public health issue. Diabetic nephropathy (DN), also known as diabetic kidney disease, is a leading cause of CKD. Regenerative medicine strategy employing nephron progenitor cells (NPCs) is worthy of consideration as an alternative to shortage of donor organs for kidney transplantation. In previous study, we successfully generated induced NPCs (iNPCs) from human urine-derived cells that resembled human embryonic stem cell-derived NPCs. Here, we aimed to investigate the therapeutic potential of iNPCs in DN animal model. The results revealed the therapeutic effect of iNPCs as follows: (1) diminished glomerular hypertrophy, (2) reduced tubulointerstitial fibrosis, (3) low blood urea nitrogen, serum creatinine and albuminuria value, (4) decreased inflammation/fibrosis, (5) enhanced renal regeneration and (6) confirmed safety. This study demonstrates that human iNPCs have a therapeutic potential as a cell source for transplantation in patients with kidney diseases.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Insuficiencia Renal Crónica , Animales , Creatinina , Diabetes Mellitus/patología , Nefropatías Diabéticas/tratamiento farmacológico , Fibrosis , Humanos , Riñón/patología , Ratones , Nefronas , Insuficiencia Renal Crónica/patología , Células Madre
3.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34948246

RESUMEN

BACKGROUND: Regenerative medicine strategies employing nephron progenitor cells (NPCs) are a viable approach that is worthy of substantial consideration as a promising cell source for kidney diseases. However, the generation of induced nephron progenitor-like cells (iNPCs) from human somatic cells remains a major challenge. Here, we describe a novel method for generating NPCs from human urine-derived cells (UCs) that can undergo long-term expansion in a serum-free condition. RESULTS: Here, we generated iNPCs from human urine-derived cells by forced expression of the transcription factors OCT4, SOX2, KLF4, c-MYC, and SLUG, followed by exposure to a cocktail of defined small molecules. These iNPCs resembled human embryonic stem cell-derived NPCs in terms of their morphology, biological characteristics, differentiation potential, and global gene expression and underwent a long-term expansion in serum-free conditions. CONCLUSION: This study demonstrates that human iNPCs can be readily generated and expanded, which will facilitate their broad applicability in a rapid, efficient, and patient-specific manner, particularly holding the potential as a transplantable cell source for patients with kidney disease.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Nefronas/metabolismo , Diferenciación Celular/genética , Reprogramación Celular/genética , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Humanos , Células Madre Pluripotentes Inducidas/citología , Nefronas/crecimiento & desarrollo , Nefronas/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma/genética , Orina/citología
4.
J Biomed Sci ; 27(1): 56, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32312260

RESUMEN

BACKGROUND: Human keratinocytes and derived products are crucial for skin repair and regeneration. Despite substantial advances in engineered skin equivalents, their poor availability and immunorejection remain major challenges in skin grafting. METHODS: Induced keratinocyte-like cells (iKCs) were directly reprogrammed from human urine cells by retroviral transduction of two lineage-specific transcription factors BMI1 and △NP63α (BN). Expression of keratinocyte stem cell or their differentiation markers were assessed by PCR, immunofluorescence and RNA-Sequencing. Regeneration capacity of iKCs were assessed by reconstitution of a human skin equivalent under air-interface condition. RESULTS: BN-driven iKCs were similar to primary keratinocytes (pKCs) in terms of their morphology, protein expression, differentiation potential, and global gene expression. Moreover, BN-iKCs self-assembled to form stratified skin equivalents in vitro. CONCLUSIONS: This study demonstrated an approach to generate human iKCs that could be directly reprogrammed from human somatic cells and extensively expanded in serum- and feeder cell-free systems, which will facilitate their broad applicability in an efficient and patient-specific manner.


Asunto(s)
Reprogramación Celular/fisiología , Queratinocitos/fisiología , Células Cultivadas/fisiología , Técnicas de Reprogramación Celular , Femenino , Humanos , Técnicas In Vitro , Masculino , Fenómenos Fisiológicos de la Piel
5.
Metab Eng ; 53: 35-47, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30779965

RESUMEN

Reprogramming of 'adult' differentiated somatic cells to 'embryonic' pluripotent stem cells accompanied by increased rate of glycolysis. Conversely, glycolysis triggers accumulation of advanced glycation end products (AGEs), a potential causative factor in aging, by promoting methylglyoxal production. Therefore, it is reasonable that pluripotent stem cells (PSCs) would specifically regulate glycolysis to maintain their embryonic features. In this study, we focused on glycine decarboxylase (GLDC), a key enzyme in the glycine cleavage system that regulates glycolysis and methylglyoxal production in cancer. GLDC was exclusively expressed in PSCs, and inhibition of this enzyme induced alterations of metabolome and AGE accumulation, thereby suppressing the embryonic pluripotent state. Surprisingly, the level of accumulated AGEs in somatic cells gradually decreased during reprogramming, ultimately disappearing in iPSCs. In addition, ectopic expression of GLDC or treatment with the AGE inhibitor LR-90 promoted reprogramming. Together, these findings suggest that GLDC-mediated regulation of glycolysis and controlling AGE accumulation is related to maintenance and induction of pluripotency.


Asunto(s)
Reprogramación Celular , Regulación Enzimológica de la Expresión Génica , Productos Finales de Glicación Avanzada/metabolismo , Glicina-Deshidrogenasa (Descarboxilante)/biosíntesis , Glucólisis , Células Madre Pluripotentes Inducidas/enzimología , Butiratos/farmacología , Línea Celular , Productos Finales de Glicación Avanzada/genética , Glicina/genética , Glicina/metabolismo , Glicina-Deshidrogenasa (Descarboxilante)/genética , Humanos , Células Madre Pluripotentes Inducidas/citología
6.
Biochem Biophys Res Commun ; 507(1-4): 236-241, 2018 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-30414673

RESUMEN

Control of adipogenesis in mesenchymal stem cells (MSCs) offers enormous potential for management of obesity- and aging-related diseases. Celastrol, the traditional Chinese medicine extracted from Tripterygium wilfordi, exhibits anti-obesity effects in in vitro and in vivo murine models. This study describes how celastrol affects multilineage differentiation potential of human adipose-derived stem cells (hADSCs). We performed in vitro adipogenic differentiation of hADSCs and investigated how celastrol-induced lipid accumulation and expression of adipocyte differentiation markers varied with dose, duration, and donor age. In addition, we assessed the effect of celastrol on osteogenic and chondrogenic differentiation of hADSCs. During adipogenic induction of hADSCs, the inhibitory effect of celastrol on lipid accumulation and adipogenesis depended on dose, duration, time of administration, and individual donor. Inhibition was mediated by proliferator-activated receptor-γ (PPARG) and CCAAT/enhancer-binding protein alpha (CEBPA). Celastrol also suppressed differentiation of hADSCs into the osteogenic and chondrogenic lineages. Celastrol plays a regulatory role in multilineage differentiation of human MSCs. Our findings provide important insights regarding management of obesity and stem cell therapy.


Asunto(s)
Adipogénesis/efectos de los fármacos , Tejido Adiposo/citología , Células Madre/citología , Triterpenos/farmacología , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Biomarcadores/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Persona de Mediana Edad , Triterpenos Pentacíclicos , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Triterpenos/administración & dosificación , Adulto Joven
7.
J Microencapsul ; 34(1): 57-62, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28097929

RESUMEN

In this study, we investigated the effect of intracapsular environment on the survival of anchorage-dependent cells (ADCs) encapsulated in alginate microcapsules with three different core structures, i.e. liquid, semi-liquid and microsphere-encapsulating semi-liquid core, using NIH 3T3 fibroblasts as an ADC model. For the latter, we fabricated poly (ɛ-caprolactone) microspheres and co-encapsulated them with the cells, to establish cell-substrate interactions in the capsule. The fibroblast cells co-encapsulated with the microspheres exhibited higher survival and growth than those without. This study provides a "proof of concept" for employing microspheres as a cell-friendly surface to establish intracapsular cell-substrate interactions thus prolonging the survival of encapsulated therapeutic ADCs.


Asunto(s)
Alginatos/química , Fibroblastos/citología , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Poliésteres/química , Animales , Cápsulas , Supervivencia Celular , Células Inmovilizadas/citología , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Ratones , Microesferas , Células 3T3 NIH
8.
Nanomedicine ; 11(6): 1407-16, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25819884

RESUMEN

Monodisperse spherical silica nanoparticles (SNPs) with diameters of 20-200 nm were employed to study size, dose, and cell-type dependent cytotoxicity in A549 and HepG2 epithelial cells and NIH/3T3 fibroblasts. These uniform SNPs of precisely controlled sizes eliminated uncertainties arising from mixed sizes, and uniquely allowed the probing of effects entirely size-dependent. Cell viability, membrane disruption, oxidative stress, and cellular uptake were studied. The extent and mechanism of SNP cytotoxicity were found to be not only size and dose dependent, but also highly cell type dependent. Furthermore, the 60 nm SNPs exhibited highly unusual behavior in comparison to particles of other sizes tested, implying interesting possibilities for controlling cellular activities using nanoparticles. Specifically, the 60 nm SNPs were preferentially endocytosed by cells and, at high doses, caused a disproportionate decrease in cell viability. The present work may help elucidate certain contradictions among existing results on nanoparticle-induced cytotoxicity. FROM THE CLINICAL EDITOR: Silica nanoparticles are being investigated in many research areas for their use in clinical applications. Nonetheless, the relationship between particle size and potential toxicity remains to be elucidated. In this article, the authors studied the biological effects of spherical SNPs with precise diameters between 20 and 200 nm on three different cell types and their results should provide more data on safety for better drug design.


Asunto(s)
Nanopartículas/toxicidad , Dióxido de Silicio/toxicidad , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Dióxido de Silicio/química
9.
J Control Release ; 370: 583-599, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729435

RESUMEN

Stem cells are recognized as an important target and tool in regenerative engineering. In this study, we explored the feasibility of engineering amniotic fluid-derived mesenchymal stem cell-secreted molecules (afMSC-SMs) as a versatile bioactive material for skin regenerative medicine applications in a time- and cost-efficient and straightforward manner. afMSC-SMs, obtained in powder form through ethanol precipitation, effectively contributed to preserving the self-renewal capacity and differentiation potential of primary human keratinocytes (pKCs) in a xeno-free environment, offering a potential alternative to traditional culture methods for their long-term in vitro expansion, and allowed them to reconstitute a fully stratified epithelium sheet on human dermal fibroblasts. Furthermore, we demonstrated the flexibility of afMSC-SMs in wound healing and hair regrowth through injectable hydrogel and nanogel-mediated transdermal delivery systems, respectively, expanding the pool of regenerative applications. This cell-free approach may offer several potential advantages, including streamlined manufacturing processes, scalability, controlled formulation, longer shelf lives, and mitigation of risks associated with living cell transplantation. Accordingly, afMSC-SMs could serve as a promising therapeutic toolbox for advancing cell-free regenerative medicine, simplifying their broad applicability in various clinical settings.


Asunto(s)
Queratinocitos , Células Madre Mesenquimatosas , Medicina Regenerativa , Piel , Humanos , Medicina Regenerativa/métodos , Queratinocitos/citología , Animales , Células Madre Mesenquimatosas/citología , Piel/metabolismo , Células Cultivadas , Líquido Amniótico/citología , Cicatrización de Heridas/efectos de los fármacos , Diferenciación Celular , Fibroblastos/metabolismo , Fibroblastos/citología , Ingeniería de Tejidos/métodos , Hidrogeles/química , Hidrogeles/administración & dosificación
10.
Exp Mol Med ; 55(6): 1182-1192, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37258581

RESUMEN

Spinal cord injury (SCI) is a clinical condition that leads to permanent and/or progressive disabilities of sensory, motor, and autonomic functions. Unfortunately, no medical standard of care for SCI exists to reverse the damage. Here, we assessed the effects of induced neural stem cells (iNSCs) directly converted from human urine cells (UCs) in SCI rat models. We successfully generated iNSCs from human UCs, commercial fibroblasts, and patient-derived fibroblasts. These iNSCs expressed various neural stem cell markers and differentiated into diverse neuronal and glial cell types. When transplanted into injured spinal cords, UC-derived iNSCs survived, engrafted, and expressed neuronal and glial markers. Large numbers of axons extended from grafts over long distances, leading to connections between host and graft neurons at 8 weeks post-transplantation with significant improvement of locomotor function. This study suggests that iNSCs have biomedical applications for disease modeling and constitute an alternative transplantation strategy as a personalized cell source for neural regeneration in several spinal cord diseases.


Asunto(s)
Células-Madre Neurales , Traumatismos de la Médula Espinal , Humanos , Ratas , Animales , Células-Madre Neurales/metabolismo , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/metabolismo , Neuronas/metabolismo , Axones , Médula Espinal , Diferenciación Celular/fisiología
11.
Tissue Eng Regen Med ; 19(3): 643-658, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35325404

RESUMEN

BACKGROUND: Immunoglobulin A (IgA) nephropathy (IgAN) is one of an important cause of progressive kidney disease and occurs when IgA settles in the kidney resulted in disrupts kidney's ability to filter waste and excess water. Hydrogels are promising material for medical applications owing to their excellent adaptability and filling ability. Herein, we proposed a hyaluronic acid/gelatin (CHO-HA/Gel-NH2) bioactive hydrogel as a cell carrier for therapeutic kidney regeneration in IgAN. METHODS: CHO-HA/Gel-NH2 hydrogel was fabricated by Schiff-base reaction without any additional crosslinking agents. The hydrogel concentrations and ratios were evaluated to enhance adequate mechanical properties and biocompatibility for further in vivo study. High serum IgA ddY mice kidneys were treated with human urine-derived renal progenitor cells encapsulated in the hydrogel to investigate the improvement of IgA nephropathy and kidney regeneration. RESULTS: The stiffness of the hydrogel was significantly enhanced and could be modulated by altering the concentrations and ratios of hydrogel. CHO-HA/Gel-NH2 at a ratio of 3/7 provided a promising milieu for cells viability and cells proliferation. From week four onwards, there was a significant reduction in blood urea nitrogen and serum creatinine level in Cell/Gel group, as well as well-organized glomeruli and tubules. Moreover, the expression of pro-inflammatory and pro-fibrotic molecules significantly decreased in the Gel/Cell group, whereas anti-inflammatory gene expression was elevated compared to the Cell group. CONCLUSION: Based on in vivo studies, the renal regenerative ability of the progenitor cells could be further increased by this hydrogel system.


Asunto(s)
Glomerulonefritis por IGA , Hidrogeles , Animales , Gelatina , Glomerulonefritis por IGA/tratamiento farmacológico , Ácido Hialurónico , Inmunoglobulina A , Riñón , Ratones , Regeneración
12.
NPJ Regen Med ; 7(1): 4, 2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35027563

RESUMEN

The generation of human oligodendrocyte progenitor cells (OPCs) may be therapeutically valuable for human demyelinating diseases such as multiple sclerosis. Here, we report the direct reprogramming of human somatic cells into expandable induced OPCs (iOPCs) using a combination of OCT4 and a small molecule cocktail. This method enables generation of A2B5+ (an early marker for OPCs) iOPCs within 2 weeks retaining the ability to differentiate into MBP-positive mature oligodendrocytes. RNA-seq analysis revealed that the transcriptome of O4+ iOPCs was similar to that of O4+ OPCs and ChIP-seq analysis revealed that putative OCT4-binding regions were detected in the regulatory elements of CNS development-related genes. Notably, engrafted iOPCs remyelinated the brains of adult shiverer mice and experimental autoimmune encephalomyelitis mice with MOG-induced 14 weeks after transplantation. In conclusion, our study may contribute to the development of therapeutic approaches for neurological disorders, as well as facilitate the understanding of the molecular mechanisms underlying glial development.

13.
Opt Express ; 19(9): 8406-12, 2011 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-21643091

RESUMEN

Single-mode, strip-loaded silicon-rich silicon nitride (SRSN) waveguide with 11 at.% excess Si and 1.7×10(20) cm(-3) Er was fabricated and characterized. By using a 350 nm thick SRSN:Er core layer and a 850 nm wide SiO2 strip, a high core-mode overlap of 0.85 and low transmission loss of 2.9 dB/cm is achieved. Population inversion of 0.73-0.75, close to the theoretical maximum, is estimated to have been achieved via 1480 nm resonant pumping, indicating that nearly all doped Er in SRSN are optically active. Analysis of the pump power dependence of Er3+ luminescence intensity and lifetime indicate that the Er cooperative upconversion coefficient in SRSN:Er is as low as 2.1×10(-18) cm3/sec.


Asunto(s)
Europio/química , Refractometría/instrumentación , Compuestos de Silicona/química , Silicio/química , Diseño de Equipo , Análisis de Falla de Equipo , Ensayo de Materiales
14.
Analyst ; 136(9): 1802-5, 2011 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-21387028

RESUMEN

A carbon nanofiber (CNF) electrode array was integrated with the Wireless Instantaneous Neurotransmitter Concentration Sensor System (WINCS) for the detection of dopamine using fast scan cyclic voltammetry (FSCV). Dopamine detection performance by CNF arrays was comparable to that of traditional carbon fiber microelectrodes (CFMs), demonstrating that CNF arrays can be utilized as an alternative carbon electrode for neurochemical monitoring.


Asunto(s)
Carbono/química , Dopamina/análisis , Técnicas Electroquímicas/métodos , Nanofibras/química , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Fibra de Carbono , Electrodos , Microelectrodos , Neurotransmisores/metabolismo , Telemetría
15.
Stem Cell Res ; 54: 102392, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34091428

RESUMEN

Leigh syndrome is a progressive neurodegenerative disease due to defects in the mitochondrial genes, including mitochondrial DNA cytochrome b (MTCYB) mutation, that typically begins in infancy or early childhood. Exercise intolerance and fatigue are common symptoms of mitochondrial disorders. Here, we generated induced pluripotent stem cell (iPSC) line from a 1-year-old patient with Leigh syndrome with MTCYB through temporal expression of exogenes, synthetic self-replicative mRNAs which were regulated by B18R protein. The established iPSCs showed expression of various pluripotency markers, a normal karyotype and differentiation potential to three germ layers in vitro while retaining MTCYB mutation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Leigh , Enfermedades Neurodegenerativas , Diferenciación Celular , Preescolar , Citocromos b/genética , ADN Mitocondrial/genética , Humanos , Lactante , Enfermedad de Leigh/genética , Mutación/genética , ARN Mensajero/genética
16.
Neurosurg Focus ; 29(2): E6, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20672923

RESUMEN

Deep brain stimulation (DBS) is effective when there appears to be a distortion in the complex neurochemical circuitry of the brain. Currently, the mechanism of DBS is incompletely understood; however, it has been hypothesized that DBS evokes release of neurochemicals. Well-established chemical detection systems such as microdialysis and mass spectrometry are impractical if one is assessing changes that are happening on a second-to-second time scale or for chronically used implanted recordings, as would be required for DBS feedback. Electrochemical detection techniques such as fast-scan cyclic voltammetry (FSCV) and amperometry have until recently remained in the realm of basic science; however, it is enticing to apply these powerful recording technologies to clinical and translational applications. The Wireless Instantaneous Neurochemical Concentration Sensor (WINCS) currently is a research device designed for human use capable of in vivo FSCV and amperometry, sampling at subsecond time resolution. In this paper, the authors review recent advances in this electrochemical application to DBS technologies. The WINCS can detect dopamine, adenosine, and serotonin by FSCV. For example, FSCV is capable of detecting dopamine in the caudate evoked by stimulation of the subthalamic nucleus/substantia nigra in pig and rat models of DBS. It is further capable of detecting dopamine by amperometry and, when used with enzyme linked sensors, both glutamate and adenosine. In conclusion, WINCS is a highly versatile instrument that allows near real-time (millisecond) detection of neurochemicals important to DBS research. In the future, the neurochemical changes detected using WINCS may be important as surrogate markers for proper DBS placement as well as the sensor component for a "smart" DBS system with electrochemical feedback that allows automatic modulation of stimulation parameters. Current work is under way to establish WINCS use in humans.


Asunto(s)
Técnicas Biosensibles/métodos , Encéfalo/metabolismo , Estimulación Encefálica Profunda/métodos , Técnicas Electroquímicas/métodos , Retroalimentación , Monitoreo Intraoperatorio/métodos , Telemetría/métodos , Adenosina/metabolismo , Animales , Técnicas Biosensibles/instrumentación , Estimulación Encefálica Profunda/instrumentación , Dopamina/metabolismo , Técnicas Electroquímicas/instrumentación , Ácido Glutámico/metabolismo , Humanos , Modelos Animales , Monitoreo Intraoperatorio/instrumentación , Ratas , Serotonina/metabolismo , Núcleo Subtalámico/metabolismo , Núcleo Subtalámico/fisiología , Porcinos , Telemetría/instrumentación
17.
Stem Cells Transl Med ; 9(12): 1643-1650, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32716131

RESUMEN

Glial cells are crucial for the development of the central nervous system and the maintenance of chemical homeostasis. The process of gliogenesis has been well studied in the rodent brain, but it remains less well studied in the human brain. In addition, rodent glial cells differ from human counterparts in terms of morphologies, functions, and anatomical locations. Cerebral organoids (also referred to as spheroids) derived from human pluripotent stem cells (hPSCs) have been developed and are suitable cell-based models for researching developmental and neurodegenerative diseases. The in vitro generation of glia, including astrocytes and oligodendrocytes, from such organoids represents a promising tool to model neuronal diseases. Here, we showed that three-dimensional (3D) culture of OLIG2- and NKX2.2-expressing neurospheres produced efficiently mature astrocytes and oligodendrocytes in terms of morphologies and expression pattern recapitulating native 3D environment. Our findings provide important insights for developmental research of the human brain and glial specification that may facilitate patient-specific disease modeling.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Células Madre Pluripotentes/metabolismo , Esferoides Celulares/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteína Homeobox Nkx-2.2 , Humanos , Proteínas Nucleares , Factores de Transcripción
18.
Obstet Gynecol Sci ; 63(5): 594-604, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32698560

RESUMEN

OBJECTIVE: Exploiting their ability to differentiate into mesenchymal lineages like cartilage, bone, fat, and muscle, and to elicit paracrine effects, mesenchymal stem cells (MSCs) are widely used in clinical settings to treat tissue injuries and autoimmune disorders. One of accessible sources of MSC is the samples used for Papanicolaou (Pap) test, which is a cervical screening method for detecting potentially pre-cancerous and cancerous alterations in the cervical cells and to diagnose genetic abnormalities in fetuses. This study aimed to identify and isolate the stem cells from Pap smear samples collected from pregnant women, and to trace the origin of these cells to maternal or fetal tissue, and characterize their stem cell properties. METHODS: To investigate the possibility and efficiency of establishing MSC lines from the Pap smear samples, we were able to establish 6 cell lines from Pap smear samples from 60 pregnant women at different stages of gestation. RESULTS: The 3 cell lines randomly selected among the 6 established in this study, displayed high proliferation rates, several characteristics of MSCs, and the capacity to differentiate into adipocytes, osteocytes, and chondrocytes. Our study identified that the stem cell lines obtainable from Pap smear sampling were uterine cervical stromal cells (UCSCs) and had 10% efficiency of establishment. CONCLUSION: Despite their low efficiency of establishment, human UCSCs from Pap smear samples can become a simple, safe, low-cost, and donor-specific source of MSCs for stem cell therapy and regenerative medicine.

19.
Stem Cells Dev ; 28(10): 633-648, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30880587

RESUMEN

Engraftment of oligodendrocyte progenitor cells (OPCs), which form myelinating oligodendrocytes, has the potential to treat demyelinating diseases such as multiple sclerosis. However, conventional strategies for generating oligodendrocytes have mainly focused on direct differentiation into forebrain- or spinal cord-restricted oligodendrocytes without establishing or amplifying stem/progenitor cells. Taking advantage of a recently established culture system, we generated expandable EN1- and GBX2-positive glial-restricted progenitor-like cells (GPLCs) near the anterior hindbrain. These cells expressed PDGFRα, CD9, S100ß, and SOX10 and mostly differentiated into GFAP-positive astrocytes and MBP-positive oligodendrocytes. RNA-seq analysis revealed that the transcriptome of GPLCs was similar to that of O4-positive OPCs, but distinct from that of rosette-type neural stem cells. Notably, engrafted GPLCs not only differentiated into GFAP-positive astrocytes but also myelinated the brains of adult shiverer mice 8 weeks after transplantation. Our strategy for establishing anterior hindbrain-specific GPLCs with gliogenic potency will facilitate their use in the treatment of demyelinating diseases and studies of the molecular mechanisms underlying glial development in the hindbrain.


Asunto(s)
Astrocitos/citología , Enfermedades Desmielinizantes/terapia , Vaina de Mielina/metabolismo , Células Precursoras de Oligodendrocitos/citología , Células Precursoras de Oligodendrocitos/trasplante , Oligodendroglía/citología , Células Madre Pluripotentes/citología , Animales , Astrocitos/metabolismo , Perfilación de la Expresión Génica , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Ratones Transgénicos , Oligodendroglía/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Rombencéfalo/citología , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Factores de Transcripción SOXE/metabolismo , Tetraspanina 29/metabolismo
20.
Cells ; 8(9)2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31489945

RESUMEN

Human neural stem cells (NSCs) hold enormous promise for neurological disorders, typically requiring their expandable and differentiable properties for regeneration of damaged neural tissues. Despite the therapeutic potential of induced NSCs (iNSCs), a major challenge for clinical feasibility is the presence of integrated transgenes in the host genome, contributing to the risk for undesired genotoxicity and tumorigenesis. Here, we describe the advanced transgene-free generation of iNSCs from human urine-derived cells (HUCs) by combining a cocktail of defined small molecules with self-replicable mRNA delivery. The established iNSCs were completely transgene-free in their cytosol and genome and further resembled human embryonic stem cell-derived NSCs in the morphology, biological characteristics, global gene expression, and potential to differentiate into functional neurons, astrocytes, and oligodendrocytes. Moreover, iNSC colonies were observed within eight days under optimized conditions, and no teratomas formed in vivo, implying the absence of pluripotent cells. This study proposes an approach to generate transplantable iNSCs that can be broadly applied for neurological disorders in a safe, efficient, and patient-specific manner.


Asunto(s)
Técnicas de Reprogramación Celular/métodos , Reprogramación Celular , Células-Madre Neurales/citología , ARN Mensajero/metabolismo , Orina/citología , Adulto , Animales , Células Cultivadas , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células-Madre Neurales/metabolismo , ARN Mensajero/genética , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA